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Abstract. With the growing demand for various IoT applications, fog nodes fre-
quently become overloaded. Fog computing requires effective load balancing to
maximize resource utilization. It is essential to determine the load on host to
obtain workload consolidation. Various random parameters, including CPU utiliza-
tion, the number of CPU cores, RAM, memory allocated, memory available, disk
I/0, and network I/O are employed to better comprehend host workloads. In the
proposed work, the host’s load status is detected using an ensemble approach into
three categories: under-loaded, balanced and overloaded. Further, the proposed
work considers three case studies and varying numbers of virtual machines (VMs)
are executed with various parameter combinations. In each case study, a different
number of VMs are executed in parallel on two different platforms. In the proposed
study, we predicted the load on multiple hosts by employing a variety of advanced
machine-learning models. To construct an ensemble model, we selected models with
higher accuracy based on retrieved performance evaluation criteria. The ensemble
method is applied to deal with the worst-case scenario of the model prediction. For
a selected number of case studies, the Random Forest model, Ada Boost Classi-
fier, Gradient Boost and Decision Tree models perform better than other models.
These state-of-the-art predictive models are outperformed by our proposed ensem-
ble model and achieves an improved accuracy of nearly 82 % by correctly classifying
hosts as overloaded, underloaded and balanced.

Keywords: IoT, virtual machine, containers, fog computing, machine learning,
load prediction
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1 INTRODUCTION

Mobile Internet, Cyber Physical Systems, along with the Internet of Things (IoT)
have empowered a multitude of entities, including individuals, machinery and ob-
jects, to establish continuous connections with the digital realm, irrespective of time
or location. Data is being generated in unprecedented quantities and variety [II, 2].
Cisco predicts that by 2023, the number of networked gadgets per user will increase
from 2.4 in 2018 to 3.6. This surge will drive the total count of networked devices
from 18.4 billion in 2018 to an estimated 29.3 billion by 2023. This proliferation
in connected devices corresponds to a remarkable surge in data generation rates.
In a recent study including a healthcare related ToT application, it has been found
that thirty million people produce 25000 data tuples per second collectively [3].
Given this tremendous data volume, the current processing and storage capacities
fall short of the demands. Conventional computing methods, including distributed
computing and cloud computing, struggle to cope with this data deluge. As a more
pragmatic solution, fog computing has emerged, bridging the gap between network
edge devices and centralized cloud centers to efficiently address these limitations [4].
Fog Computing is a middle man between the Internet of Things and the cloud that
brings information closer to the sensors [3]. Nevertheless, considering the increasing
demand for a variety of IoT applications, fog nodes frequently become overloaded,
degrading the response times of IoT apps with latency constraints and as a result,
compromising users’ quality of experience [6]. Understanding workload characteris-
tics and underlying data centers are critical for both data center operators and fog
service providers to sustain the adoption of fog data centers and increase data center
operators’ ability to tune existing and build new resource management approaches.
The architecture of fog computing is shown in Figure [T}

Google Data Centers reportedly utilized an estimated 260 million Watts of elec-
trical power in 2013, accounting for one percent of global energy consumption [7].
A 2020 New York Times article states that data centers consumed around 1% of
global electrical output 2018. The inefficient use of hardware resources is the cause
of high energy consumption. Servers inactive can use up to 60% of their peak
power [8, [@].

Virtualization capabilities, which were initially introduced by IBM in the early
1960s as a transparent method to facilitate continuous and direct access to powerful
computers by numerous users, represent a valuable method for addressing energy
inefficiencies [I0]. This virtualization technique abstracts the physical resources
that underlie a system, thereby generating an integrated view of a resource pooling
within fog data centers. where a single server can accommodate multiple virtual
machines. Virtualization provides several advantages for distributed systems, in-
cluding increased resource utilization, enhanced isolation, improved manageability,
and heightened reliability [T1]. It becomes crucial to assess the host’s workload to
achieve effective workload consolidation. This is useful when migrating containers
from a particular virtual machine to another in order to reduce the number of service
level agreement (SLA) violations and balancing of loads violations.
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Figure 1. The architecture of fog computing

A novel framework has been developed to classify hosts into overloaded, under-
loaded and balanced hosts. Then the process of workload consolidation in a fog envi-
ronment is discussed by detecting overloaded hosts. Containers represent a ground-
breaking innovation in the era of cloud computing due to their lightweight nature,
simplified configuration and administration, and substantial reduction in startup
times [12]. Consequently, a diverse range of applications can be seamlessly executed
within these containers. To achieve this, we have employed Podman to run con-
tainerized applications on VMs. We can run heavy applications through containers
as these are lightweight. The two platforms we have used are shown in Table
We can efficiently run heavy applications through containers, such as applications
related to heavily loaded images due to high resolution. Containers are executed
on the virtual machines, created using the command line with various random pa-
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rameters, including the CPU, number of cores, RAM, memory allocated, memory
available, disk Input/Output and network I/0 in order to understand the host work-
loads better. Figure 2] shows the container-based virtual machines.

Virtual Machine Virtual Machine Virtual Machine

Container 1 Container 2 Container Container

Hyperviser

Physical Server

Figure 2. Container-based virtual machines

In this work, own dataset is generated using various types of VMs. The entire
dataset is merged, after which machine learning models are applied to detect loads on
multiple hosts. This paper consists of various sections as follows: Section 2 describes
the related work and significant contributions. Section 3 describes materials and
methods and gives an overview of the various parameters used for dataset generation,
dataset generation using modeling and simulation, including the transformation of
data, Load prediction on Physical Machine (PM), Service Level Agreement Metric
and various machine learning methods used to predict the load on multiple hosts.
Section 4 includes the methodology, multilevel ensemble model proposed, and case
studies. Section 5 discusses model evaluation. The results analysis, comparison, and
discussion are discussed in Section 6. Section 7 contains the conclusion and the next
steps.

2 RELATED WORK

Several studies have examined the prediction of load for cloud hosts and implemented
various methods to address the problem of workload prediction, thereby enhancing
the accuracy of models. Present approaches for workload prediction primarily im-
prove model accuracy by employing techniques such as regression, statistics, machine
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learning and RNN-based methods. In cloud computing, workload prediction based
machine learning techniques include parametric, non parametric, neural network and
deep learning approaches. Parametric models use learning methods like the kalman
filter [13] and the automatic regression moving average model (ARIMA) [14]. Sup-
port vector regression (SVR) and neural network (NN)-based methodologies are non
parametric approaches.

For prediction of load on host, different time series-based approaches are sug-
gested, such as ARIMA [I5], linear regression [I6], exponential averaging [17] and
others. Calheiros et al. [I4] proposed an ARIMA-based load prediction model for
cloud computing in order to accomplish predictive scaling for virtual machine in-
stances. Tan et al. [I8], proposed an aggregation method for prediction of traffic
flow that incorporates ARIMA [I4], moving average, exponential smoothing, and
neural networks. The utilization of time series prediction methods is sub optimal
in non linear scenarios due to the non linearity and linearity of the time series pro-
duced by varying resource loads. A large number of machine learning techniques,
including recurrent neural networks (RNN), support vector machines (SVM) and
artificial neural networks (ANN), are also employed for load prediction. Janard-
hanan et al. [I9] used Long Short Term Memory (LSTM) to forecast CPU uti-
lization. LSTM exhibits superior performance to time series, according to some
results. Fan et al. [20] enhanced the performance of the Temporal Convolutional
Network (TCN) across various time series prediction tasks. Kumar et al. [21] pro-
posed a self-directed workload prediction method to capture prediction error trends
by calculating deviations. By optimizing solutions for the prediction error feedback
window, cluster size, and learning rate, its performance can be enhanced further.
Khan et al. [22] conducted a comprehensive study of numerous machine-learning
algorithms, including linear regression, Regression with Ridges, ARD Regression,
Elastic Net, along with deep learning techniques like the Gated Recurrent Unit.
Patel and Misra [23] presented a workload forecast model utilizing neural networks
and a self-adapting evolutionary algorithm. Several neural network-based methods
for improving prediction accuracy have been proposed. However, accuracy of these
methods is insufficient and considers specific workload.

Table [I] provides a summary of the comparative analysis of various approaches
for load prediction in diverse computing paradigms. As per Table [I] load predic-
tion is evaluated on cloud computing platform whereas our approach performs load
prediction on nodes in fog computing environment. As cloud environment generate
enormous amount of data volumes, so conventional computing methodologies, like
distributed computing and cloud computing are unable to handle challenges such as
reducing latency, response time and consumption of energy. As shown in Figure [T}
fog computing effectively bridges the gap between network gadgets at the network’s
periphery and centrally located cloud computing facilities, emerges as a simpler ap-
proach to manage these challenges. In our proposed work, a multilevel ensemble
model for classifying hosts as overloaded, underloaded, or balanced is presented.
Multiple features are extracted in the proposed work. All of the features utilized
by the proposed model, including CPU utilization, number of cores, RAM, allo-
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cated memory, disk I/0, available memory and network I/0, are extracted from
running hosts. The experimental outcomes demonstrate that the performance of
the proposed multilevel ensemble model for prediction of load gives more accuracy
as compared to existing state-of-the-art approaches, as discussed in Table [T}

2.1 Major Contribution

This paper’s contributions are summed up as follows:

1. A multilevel ensemble model has been developed to classify hosts. This proposed
approach uses various parameters like CPU usage, number of cores, RAM, mem-
ory allocated, disk I/O, memory available and network I/O. The load forecasting
of hosts based on these parameters has been completed utilizing modern artificial
intelligence algorithms.

2. The dataset is generated by executing a different number of VMs in parallel on
two platforms with different configurations.

3. In our proposed method for categorizing hosts as overloaded, underloaded, or
balanced, we employed a range of supervised machine learning models. These
models encompassed Random Forest, Light Gradient Boosting Machine, K-
Neighbors Classifier, Ridge Classifier, Linear Discriminant Analysis, Decision
Tree, Gradient Boost Classifier, Naive Bayes Classifier, Ada Boost Classifier
and Extra Tree Classifier. The ensemble technique is used to deal with the
worst-case scenario of the model prediction.

3 MATERIALS AND METHODS
3.1 Parameters Used for DataSet Generation

The dataset contains ten thousand records with eleven performance parameter val-
ues. For predicting whether a host is overloaded, underloaded, or balanced, the
total CPU usage parameter is retained as the target variable, while the remaining
variables in the dataset serve as input for machine learning models. Each row of
the dataset represents a performance metric observation. Each row is formatted as
follows:

CPU cores: The quantity of number of virtual CPU cores allocated.

User: The percentage of CPU consumption that happened while the user was ex-
ecuting (application).

nice: Percentage of CPU utilization during user-level execution with pleasant pri-
ority.

Total Usage of CPU: in terms of percentage.

Ideal CPU: The percentage of time the CPU or CPUs were idle when no disk I/O
requests were pending.
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Memory Total: the memory given to the system in terms of KB.
Memory Free: the memory that is actively not used in terms of KB.

Memory Available: An estimate of the amount of memory available to execute
new applications without swapping in additional KB.

Disk Read/Write Throughput: in terms of KB/s.

Network Received Throughput: Received network throughput in terms
of MBITS/s.

Network Transmitted Throughput: Transmitted network throughput in terms
of MBITS/s.

Basic features statistics are calculated for the statistical characterization, includ-
ing the min, the standard deviation (SDev), the mean and the unitless coefficient of
variation (CoV). Table [2 shows basic statistics of various features used in this work.
Table ] demonstrates the sample of the dataset used in the course of this work.

]
T L + 2 -
> | R _E ¢ A Ay
o _|$E%|5%3%| S 2 : ElES
o | O % ERC- O = & < B 3
& ) T w3 20| B.20 =) =} g E| » O
Q o R A - 3 5 5 2 2
7] = T|om4 |2 S| 2 0.9 =% L=
=) z| S|8p|z&H|zeE| O = = =|AamE
CoV |60.84 | 126.38 | 23.39 | 63.81 226.72 223.17 | 44.96 48.03 103.84 86.15 | 457.92

mean | 12.58 | 0.36 | 73.18 | 26.82| 131.18| 137.06| 6.01|3690608.00 | 264915.80 | 1318698.00 | 0.18
std 7.65| 045|17.11|17.11| 297.42| 305.87| 2.70|1772700.00 | 275097.20 | 1136045.00 | 0.81
min 1.01| 0.03]27.96| 2.35 0.00 0.00 | 1.00|1026028.00| 53468.00 21752.00| 0.00
25% | 6.43| 0.12]62.16 | 14.09 14.10 14.00 | 4.00 | 1537580.00 | 101126.00 | 446484.00| 0.00
50% |11.59| 0.20|81.07 | 18.93 19.10 18.80 | 7.00|4100348.00 | 139480.00 | 1127272.00| 0.02
75% | 17.13| 0.29]85.91| 37.85 23.45 23.20 | 9.00 | 4666 636.00 | 298 198.00 | 1616 788.00 |  0.09

Table 2. Basic statistics of various features

3.2 Dataset Generation Using Modeling and Simulation

To better understand the workloads of hosts, virtual machines are generated through
the command line through different random parameters. The proposed model tar-
gets a Container as a Service (CaaS) environment where an application is executed
on containers. Various applications are running on the containers and containers
are executed on these virtual machines. A whole dataset is merged, a new dataset
is generated and then a set of machine learning models is applied to them to detect
loads on various hosts. The flow chart for creating VMs through the command line
is shown in Figure [ Table [f] below describes performance parameters and their
range used for the construction of VMs through the command line for this work.
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16.05 0.1 |21.49|13.78 | 48.59 | 51.41 | 17.0 mbits/sec | 15.3 mbits/sec 9| 54756 37168 | 1.06206131
16.11]0.1 |21.85|13.92|48.02 | 51.98 | 20.4 mbits/sec | 16.9 mbits/sec 9| 61428 47468 | 0.985242367
15.96 | 0.1 |22.47[14.21|47.27 | 52.73 | 12.7 mbits/sec | 10.3 mbits/sec 9| 54820| 21752]0.130439281
15.82 0.1 |23.05|14.45|46.58 | 53.42 | 11.3 mbits/sec | 11.2 mbits/sec 9| 55792 41660 | 0.442959309
15.58 [ 0.09 | 24 14.65 | 45.68 | 54.32 | 16.3 mbits/sec | 16.8 mbits/sec 9| 53468 26824 | 10.23108006
19.2 |0.32|15.92|1.76 |62.79 | 37.21 | 25.1 mbits/sec | 20.0 mbits/sec 4514724 11415904 | 0.375194073
20.16 | 0.32 [ 16.4 [2.38 |60.73 | 39.27 | 23.1 mbits/sec | 24.7 mbits/sec 41619868 | 1403036 | 0.002605438
22.34|0.3 |18.25|2.87 |56.24 | 43.76 | 23.4 mbits/sec | 19.8 mbits/sec 4188060 | 970992 |0.495999813
22.6 0.3 |18.16|4.62 |54.32] 45.68 | 18.8 mbits/sec | 21.4 mbits/sec 4223156 | 1319912 | 0.70169425
29.94|10.23 | 25.14 | 6.64 | 38.04 | 61.96 | 22.7 mbits/sec | 11.9 mbits/sec 4708996 | 1570532 | 0.004311085
30.44 1 0.23 | 25.59 | 6.5 37.24 | 62.76 | 13.7 mbits/sec | 19.4 mbits/sec 41891736 | 1558736 | 0.625935555
Table 3. Sample dataset
SN | Parameter Range
1 | CPU cores 4-10
2 | RAM 1-6GB
3 | Disk Write Throughput (file size) | 1-5GB
4 | Disk Size 80 GB
5 | Memory 2048-8192MB

Table 4. Range of various parameters used for VM creation

3.2.1 Transformation of Data

Static thresholds T,; and Ty, are used to decide if a host’s load is overloaded, under-
loaded and balanced, as shown in Equation , respectively.

Overloaded,  if Ugy > Ty,
Host Status = ¢ Underloaded, if Ugy > To, (1)
Balanced, if Ty < Ugyy > Ty,

where T,; and T,,; represent the overloaded and underloaded thresholds, respectively,
and Uy is the utilization of CPU of host ¢ at a particular time ¢. The power con-
sumption of the CPU is considered to be a critical factor that exhibits the greatest
variability in power usage based on its utilization rate. CPU Utilization is consid-
ered a target variable, and the CPU Utilization feature binning takes place. The
transformation of the dataset is done to label the data and classifies them into three
classes: overloaded (O), underloaded (U) and balanced (B). The sample of dataset
transformation is shown in Table Bl
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Figure 3. Flow chart of data generation
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> | 32| % NEH
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R | = = o .» |9 S |0 o4 | A0 > | .5 = )
blz |B |Ep|zEB|zZeEBE| OO = =< | AR 3
19.63 | 1.22 | 74.76 | 25.24 | 9.07 4.77 111430276 | 5860808 | 0.668997049 | U
57.72118.16 | 0.05 |99.95 |31.4 27.6 211048228 | 2578964 | 0.04445672 | O
56.19120.9 [0.04 [99.96 |28.3 27.8 21 676580 | 2209468 | 0.374528646 | O
25.1810.97 |68.5 [31.5 |43.5 46.4 3| 546796 | 3116432 | 0.005527258 | B
19.93 (1.2 74.36 | 25.64 | 5.23 4.93 411406644 | 5900648 | 0.769234896 | U
24.9310.97 |68.79 |31.21 | 50.6 52.7 3] 636200 |3210656 | 1.203319788 | B
24.8510.97 |68.89|31.11 |45 49.7 3| 674404 | 3250004 | 1.265292645 | B
57.29119.26 | 0.05 [99.95 |27.2 27.4 21 906184 | 2437896 | 0.002002001 | O

Table 5. Sample of dataset transformation
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3.2.2 Load Prediction on Physical Machine

A virtual machine (VM) behaves like a physical machine (PM). So each VM has
its CPU, memory and bandwidth. The key component for estimating the energy
consumption of hosts is the CPU’s power consumption. CPU utilization presents the
most significant variance in power consumption concerning its utilization rate. CPU
utilization is regarded as a target variable. Load on the i'® VM can be calculated
using Equation as follows:

VMlioad = VMéPU' (2)

Determine the weight on the PM since multiple VMs operate on each host. Thus,
as Equation illustrates, the overall load on the PM equals the sum of all the VM
loads.

n

VM
PM, = 7nld (3)
=1

where n represents the number of virtual machines on the m'" host.

3.2.3 Service Level Agreement Metric

This effectiveness metric represents the mean percentage of service level agreement
(SLA) violations. It becomes relevant when virtual machines fail to obtain the
requested resources or when the shared host’s average computing capacity is not
allocated to the requested virtual machines, as discussed in [34]. This metric directly
influences the Quality of Service (QoS) level. Equation @ outlines the calculation
for the average SLA violation as follows:

¢ RM;—AM;
== ML (4)
q

Asra =

In this context, Agy4 signifies the average unallocated VM Million Instructions
Per Second (MIPS), which results in a decline in performance. RM represents the
requested MIPS by a VM, AM represents the MIPS actually allocated to the VM
during its operation, and ¢ signifies the total number of VMs.

3.3 Feature Importance

The term feature importance refers to the procedure of feature selection from a given
dataset that makes the greatest contribution to the classification of the trained
dataset and the prediction of the objective variable.

PyCaret is a Python library [35] designed for automating machine learning pro-
cesses and workflows. PyCaret has the capability to determine the significance of
a feature. The Feature Importance operation of PyCaret finds out the features that
have the greatest impact on the accuracy of classification in the following sequence.
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e Generation of dataset;
e Multi-classification;

e Sclection of relevant features.

Following the generation of the dataset, preprocessing is performed, includ-
ing normalization, transformation, PCA and outlier removal. During data pre-
processing, unnecessary columns such as system, iowait and memtotal are removed,
as shown in Table 2l Further, the data is classified and as a result, we have de-
termined that the proposed ensemble model performs best with an average ac-
curacy of 82%. The feature importance can be derived from the dataset once
the classification result has been obtained. We must begin by defining the op-
timal model, which we refer to as the proposed ensemble model. The proposed
model includes various models including random forest. Random Forest builds
a large number of decision trees during training to generate the mode of classes
or the average prediction of individual trees. Understanding the value of fea-
tures of dataset helps to gain insights into the dataset and enhance the model
by focusing on the most informative characteristics. It could improve classifica-
tion problem feature engineering, model understanding and feature selection de-
cisions. Moreover, the model is plotted according to the importance of the fea-
tures on the basis of information gain theory. From the feature importance plot
as shown in Figure [l we can conclude that with respect to the generated dataset,
total usage of CPU is the most important feature, followed by CPU cores and
user.

3.4 Machine Learning Methods

Various machine learning models are used to classify load on hosts as overloaded,
underloaded and balanced. The details of these models are given below:

e A Random Forest Classifier: It is a method of supervised machine learning that
employs decision trees for various applications including classification, regres-
sion, and others. Using a randomly chosen training dataset, the RF classifier
generates a set of trees of decision. Essentially, it is a collection of decision trees
(DT) generated by choose a random portion of the training set.

e Gradient Boosting Classifier: It is a sequential learning ensemble approach in
which the model’s efficacy increases over time. Using this method, the model
is constructed successively. With the addition of each feeble learner, a new
model is developed, resulting in a more accurate estimation of the response of
the variable.

e Decision Tree Classifier: A decision tree is a graphical representation resembling
a tree that models decision-making processes, including prospective outcomes,
expenses for inputs, and utility factors. This algorithm is relevant to both
continuous and categorical variables as outputs and lies under the category of
trained learning methods.
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e Extra Tree Classifier: This class implements a meta-estimator that uses aver-
aging to improve predicted accuracy and prevent overfitting by fitting multiple
randomized decision trees to different sub-samples of the dataset.

e Ada Boost Classifier: It integrates multiple classifiers to increase classifier pre-
cision. AdaBoost generates a robust classifier by combining several underper-
forming classifiers, resulting in an excessively accurate classifier. Its fundamental
principle is to establish the weights of classifiers and teach the data set in each
iteration so that accurate predictions can be made for out-of-the-ordinary ob-
servations.

e K Neighbors Classifier: The KN Classifier is one of the most fundamental al-
gorithms for classification in the field of machine-learning. Among the applica-
tions found in the domain of supervised learning are pattern recognition, data
extraction, and intrusion detection. It makes no assumptions regarding data
distribution.

e Linear Discriminant Analysis: LDA is a learning with supervision algorithm used
for solving classification issues in learning under supervision. It is a method for
determining the optimal method for classifying a dataset using a linear combina-
tion of features. LDA functions by projecting the data onto a lower-dimensional
space that maximizes the separation of various classes. It determines the ori-
entations in the feature space that most effectively separate the various data
classes.

e Light Gradient Boosting Machine: Gradient boosting and tree-based learning
are utilized by Light GBM. Unique algorithm Light GBM possesses multiple
parameters. The dataset is swiftly expanding. Traditional data science meth-
ods battle to supply correct results. Light GBM manages large data sets with
minimal memory. Based on Ridge regression, the resulting Ridge Classification
converts label data to the interval [—1, 1] and employs regression to solve the
problem. Using multiclass data and multioutput regression, it selects the target
class with the best value of prediction.

e Ridge Classifier: Derived from the Ridge regression approach, the Ridge Clas-
sifier transforms label data into the range [—1, 1] and employs regression tech-
niques to address the problem. When dealing with multiclass data, It employs
multioutput regression and chooses the target class with the maximum predic-
tive value.

e Naive Bayes Classifier: The naive bayes model is constructed using the principle
of Bayes, creating a compilation of classification algorithms. It takes that each
pair of classified features has no relationship with the others, a foundational
concept shared by every algorithm in this family.
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4 METHODOLOGY

The workflow of the present work is shown in Figure [} The dataset is generated
using different numbers of VMs. The extracted feature vector is fed into the var-
ious machine-learning models. Further, an ensemble model is proposed and the
performance is computed accordingly by predicting the load on the host.

Data generation using different
VMs

!

Machine Learning Models

}

Multilevel Ensemble Model

l

Classification of Load on Host

Figure 5. Flowchart of proposed scheme

4.1 Proposed Multilevel Model

The ensemble method is used to manage the model prediction’s worst-case scenario.
The current study concentrates on the model’s false and accurate predictions and
a multilevel ensemble model is used to deal with false and accurate predictions.
As depicted in Figure [f, a total of seven models, including the RF Classifier, DT
Classifier, Linear Discriminant Analysis Classifier, NB, ET Classifier, KN Classifier,
and Ridge Classifier, are integrated to enhance accuracy. Seventy percent (70 %) of
the dataset is used for training, while the rest of the thirty percent 30 % is reserved
for testing. The proposed approach comprises three distinct phases, each of which
is explained below:

Phase I: The RF Classifier, DT Classifier, KN Classifier, and NB learned from
70 % of the data set and generate predictions from 30 % of the data.

Phase II: The Linear Discriminant Analysis model is trained using the inaccurate
predictions generated by two models, namely the Decision Tree (DT) and K
Nearest Neighbor Classifier in Phase I. Ridge Classifier model is trained using

the inaccurate predictions generated by two models, namely the RF Classifier
and NB, in Phase I.

Phase ITI: The false predictions from Phase II are combined with the accurate
predictions from Phase I. This new combined dataset is used to train the Extra
tree classifier model, which makes conclusive predictions. This method refines
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Figure 6. Multilevel ensemble model

accurate and inaccurate predictions to produce a model proposal that is precise.
The purpose of incorporating accurate predictions into other models is to combat
false-positive results. The data is passed through seven models because, ideally,
these models will use the data to produce accurate and reliable results.

4.2 Case Study

Three types of cases are considered for evaluation: In different cases, there are
different numbers of virtual machines running in parallel and two types of platforms
are used to run these VMs. Oracle VM VirtualBox has been used to run these VMs.
Each VM’s dataset has 11 parameters: user, nice, system, iowait, CPU Usage, idle,
write throughput, memory-free and memory available etc. with CPU usage being
the target variable. Table [f] provides an overview of three cases and the platforms
used.

gti:y gz::;t;elg (1)If1 ‘l/;l:l/ll"jlllel Platform 1 Platform 2 Software
Case I |4 VMs (2 on Platform | Processor INTEL(R) Oracle VM
1 and other 2 on 2nd | 11*" Gen XEON(R) VirtualBox,
Platform) Intel(R) Core(TM) | CPU E5-2650 Python
Case IT | 6 VMs (3 on Platform | i7-1165G7 V2@2.40 GHZ (OpenCV)
1 and other 3 on 2" |@2.80 GHz
Platform) 2.80 GHz
Case IIT | 10 VMs (5 on Platform | RAM 12 GB RAM 16 GB
1 and other 5 on 2™
Platform)

Table 6. Different cases considered for evaluation

Case 1: In the first case, four VMs run in parallel, two on the first platform and
two on the second. Table 8 shows the detailed comparison of different super-
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vised learning models with ensemble model proposed. The models have been
compared in various ways like without pre-processing and applying different
pre-processing methods on the generated dataset, like normalization, outlier re-
moval, transformation, PCA and feature selection. When outliers are removed
and the dataset is normalized simultaneously, the RF, GBC classifier, AB and
DT models perform equally well.

Case 2: In the second case, six VMs run in parallel, three on the first platform and
three others on the second. Table 9 shows the detailed comparison of different
supervised models with the ensemble model proposed. It has been observed that
normalizing the dataset enhances the accuracy of the model. Conversely, when
PCA is applied to the dataset, the accuracy of the model decreases.

Case 3: In the third case, ten VMs are running in parallel, five on the first plat-
form and five others on the second platform. Table 10 provides a comprehensive
comparison of various artificial intelligence models and the suggested ensem-
ble model. The performance of our proposed model is marginally superior to
that of all other models, with a maximum accuracy of around 82% after the
normalization of the dataset.

As previously stated, we have presented three cases. We have observed our
proposed model performance through different cases by increasing the number
of VMs in each case. As per our results, as shown in Tables 8, 9 and 10, it been
seen that increasing the amount of VMs makes our proposed model work better.

5 MODEL EVALUATION
5.1 Evaluation Parameters

Various metrics, including feature importance, recall, precision, the F1 score, Kappa,
and accuracy, are employed to assess the model’s performance. This study compre-
hensively evaluates all these parameters. To investigate the robustness of the pro-
posed model, repeated cross-validation with k folds is utilized. Below, we provide
explanations for these metrics.

5.1.1 Precision

It assesses the model’s ability to correctly predict true classes. Precision is deter-
mined by dividing the count of true positive predictions by the total of true positive
predictions and fake positives. This precision calculation is based on a specific for-
mula, as shown in Equation .

.. TP
Precision = TP+ FP (5)
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5.1.2 Recall

Recall quantifies the fraction of predicted positive classes. It is determined by divid-
ing the total number of true positive and deceptive negative events by the number
of true events that were positive. The formula for calculating the recall is shown in
Equation @

TP

Recall = m . (6)

5.1.3 F1-Score

It is a metric that represents the weighted average of recall and precision scores. It
is a value that ranges from 0, indicating the poorest performance, to 1, representing
the highest performance. The F1-Score is a statistical measure that combines both
precision and recall to offer a complete assessment. Equation @ is used to figure

out F1-Score: 9
F1-Score =

1 1
(Prccision + Rccall)

(7)

5.1.4 Cohen’s Kappa (Kappa)

It determines how accurate the model’s predictions are. The stronger the model,

the lower the Kappa value. The Kappa statistic developed by Cohen is ideal for

addressing multi-class and unbalanced class problems. Cohen’s Kappa is calculated
using Equation .

Po — De

Kappa = . 8

ppa = (8)

where p, represents the observed agreement and p. represents the anticipated agree-

ment. It indicates by how much our classifier outperforms a classifier that makes

random predictions based on the frequency of each class. Cohen’s Kappa is never

greater than 1 or equivalent to 1. Values of 0 or less signify an ineffective classifier.

5.1.5 Accuracy

Accuracy is a measure of the ratio of correct predictions. It is computed by dividing
the sum of true positives (TP) and true negatives (TN) by the total number of
events. The calculation of accuracy can be performed using either Equation @I)

No. of true predictions

(9)

A = '
ceuracy Total No. of predictions

5.1.6 Matthews Correlation Coefficient (MCC)

It accounts for true and false positives and negatives in machine learning and is
widely recognized as a metric that can be applied even when the class sizes vary.
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The MCC is a correlation coefficient number between -1 and 1. A flawless forecast
has a coefficient of 4+1, while an average random forecast has a coefficient of 0 and
an inverse forecast has a coefficient of -1. Another name for the statistic is the phi
coefficient. The MCC can be determined using Equation .

MCC — (TP« TN) — (FP x FN) (10)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

5.1.7 Learning Curve

A learning curve is a visual representation of the relationship between a learner’s
performance and the amount of time necessary to complete an activity. The learning
curve for the proposed model is depicted in Figure [7]

Learning Curve

105
—&— Training Scare
Cross Validation Score
100 L - * - - . > 4 - ]
085
=4
&
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0as
k]

80 o] 100 120 140 160
Training Instances

Figure 7. Learning curve of proposed model

5.1.8 K-Fold Cross Validation

Conducting extensive comparisons is a recommended practice for assessing the per-
formance of a model. One way to achieve this is by performing K-fold cross-
validation repeatedely, which involves executing K-fold validation multiple times
or increasing the number of comparisons, as discussed by Arlot and Celisse in [36].
Inside it, only K comparisons are generated, with random data allocated for each it-
eration. This technique is employed to gauge the resilience of machine learning mod-
els. In our study, we evaluate the robustness of the best prediction model through
ten consecutive executions, commonly referred to as 10-fold cross-validation.
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5.2 Implementation

5.2.1 Algorithm

Algorithm 1 is used to program the proposed approach. The Load Prediction al-
gorithm provides a mathematical explanation for the phases of data processing and
prediction. The conventions used in the algorithm are shown in Table[7] The Load
Prediction Algorithm involved examining three case studies, each with a varying
number of virtual machines (VMs). For each VM, various features were extracted
from the dataset. Next, the dataset was transformed into three categories: over-
loaded, underloaded, and balanced. Next, the data was divided, and K-fold cross-
validation was conducted. There are two segments in the dataset: the training set
and the testing set. Seventy percent (70 %) of the data has been allocated for train-
ing the models, while the remaining thirty percent (30 %) is reserved for testing.
The final step involves employing the ensemble model to obtain the end result.

6 RESULT ANALYSIS, COMPARISON AND DISCUSSION

The performance is evaluated in three different case studies. All the models are
evaluated based on three parameters: accuracy, recall and precision.
In Case 1, it has been observed that after applying normalization to the dataset,

Conventions | Description

i Number of cases

j The number of feature vectors

XY Input and output space

T,y Input and target vectors

I DataSet after preprocessing

ul, p2 Partitions of the data: Training and testing datasets i.e. ul and p2
M Model Representation i.e., M : X — Y

Mgy Represents the final multilevel ensemble model created
Feym Final output of ensemble model

e Acceptable error

Vi, VM Virtual Machine

TP True Positive

TN True Negative

FP False Positive

FN False Negative

Table 7. Conventions used

The accuracy of models is very similar to the performance of models without
preprocessing. However, the accuracy of models decreases after applying PCA to
the dataset. NB and KN classifier performance are low compared to all other mod-
els, even without preprocessing and with preprocessing of models. However, our
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Algorithm 1 Load Prediction Algorithm
BEGIN
for i =1 to 3, where i is the number of cases (Count of V,,,) do
foreach V,, =1 to n, where n is the number of V. Ms in case i do
foreach V,,, 3z; € V,,,, where x; is collection of features do
Transformation of data using following equation:
Overloaded,  if Ugy > Ty,
Host Status = Underloaded, if Ug sy > Toy,
Balanced, if Ty < Ugpy > Ty
Data Partition or split
K-fold validation (p1 = random (g, fraction = 0.70))
Hi=p— M
(1 = Training Set
u2 = Testing Set
KEKKKKIE Trgining Models *****kkkk
My, for k€ s. (s=My,My...M,)
My X = Y] : Myz; — y;|, where (2;,;) € firain
**x%% Ensemble and Testing Phase ****%%*

/
Feum(zj) = -MEM(yj) where x5 € fhgest
RKAKKHKKKARK o Rate FFF*FFF KK AR

Absolute(y; —y;) = e

= TP+TN
L ACCUracy = 55 FPIEN
.. o TP
B Precision = TP+FD
END

proposed ensemble model performance is better than all the applied models. It
provides about 78 % accuracy after simultaneously applying outlier removal and
normalization to the dataset. Table [§] displays the performance of different models.

In Case 2, it has been observed that the models’ accuracy increases after the
dataset’s normalization and the models’ accuracy decreases after applying PCA. NB,
Linear Discriminant Analysis, Ridge classifier and K neighbors classifier performance
are low compared to all other models when PCA is applied to the dataset. During
the normalization of the dataset, four models, the RF model, AB, GB and DT
model, perform equally well. However, our proposed ensemble model performance
is better than these models, even without preprocessing and with preprocessing of
models. Our proposed ensemble model provides maximum accuracy of about 80 %
when applying outlier removal and normalization simultaneously to the dataset.
Table 0] displays the performance of different models.

In Case 3, it has been observed that models perform more accurately after ap-
plying normalization to the dataset. In this case, the RF, GB, AB and DT models
perform more accurately than all others. These models also perform better after ap-
plying the transformation to the dataset. NB, Ridge classifier, Linear Discriminant
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classifier and KN classifier performance decrease after applying PCA and feature
selection to the dataset. In contrast to these other models, the performance of the
suggested ensemble approach is relatively preferable, achieving a maximum accuracy
of around 82 % after normalizing the dataset. The performance of different models
is shown in Table[I0] Figures[d] § and [[0]illustrate the comparison of various models
in terms of their precision, accuracy and recall, respectively.

During the training process, it is possible for models to become biased. The
SMOTE algorithm can be employed as a means of addressing this particular issue.
Another issue that arises in machine learning is the problems of overfitting and un-
derfitting. To mitigate issues related to over-fitting and under-fitting, it is advisable
to utilize cross-validation and assess the model’s performance on an independent
dataset. Consistent high performance indicates that the model is not affected by
over-fitting or under-fitting. Overfitting arises when a model captures an excessive
amount of information, whereas underfitting occurs when a model lacks sufficient
information.

During cross-validation, the model is repeatedly evaluated n times, and its ac-
curacy is measured accordingly. If the recorded accuracy exhibits significant fluc-
tuations, the model may suffer from issues such as overfitting, underfitting, or bias.
In this study, repeated K-fold cross-validation is employed to assess the reliability
of the correctness of the suggested model, hence demonstrating its resilience against
potential issues [36]. The suggested model exhibits a lack of over-fitting, under-
fitting, and bias-related concerns. Furthermore, the results of the suggested model
demonstrate a significant improvement compared to existing methodologies.

Comparison of Models based on Accuracy

W Compare Models M Transformation
W Outlier Removal W PCA
m Feature Selection m Outlier Removal + Normalization

m Outlier Removal +Normalization + Transformation

Figure 8. Different models comparison based on accuracy
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Comparison of Models based on Precision

M Normalization

M Compare Models

® Outlier Removal

m Transformation

HPCA

M Feature Selection

H Outlier Removal +Normalization + Transformation

W Outlier Removal + Normalization

Figure 9. Different models comparison based on precision

Comparison of Models based on Recall

B Normalization

m  Compare Models

M Outlier Removal

M Transformation

o Feature Selection

mP

= Outlier Removal +Normalization + Transformation

= Outlier Removal + Normalization

Figure 10. Different models comparison based on recall
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Compare Models

Normalization

Transformation

Outlier Removal

Model Accuracy Recall Prec. | Accuracy Recall Prec. | Accuracy Recall Prec. | Accuracy Recall Prec.

dt Decision Tree 0.760 0.758  0.734 | 0.757 0.759  0.758 | 0.754 0.754  0.756 | 0.726 0.724 0.731
ada Ada Boost 0.758 0.758  0.734 | 0.758 0.758  0.758 | 0.754 0.754  0.755 | 0.726 0.725 0.731
gbc Gradient Boosting 0.758 0.759 0.730 | 0.757 0.757  0.756 | 0.754 0.754 0.755 | 0.726 0.725 0.731
rf Random Forest 0.758 0.757 0.734 ] 0.758 0.757 0.758 | 0.753 0.754 0.755 | 0.725 0.728 0.731
lightgbm | Light Gradient Boosting 0.752 0.753  0.752 | 0.754 0.741  0.755 | 0.748 0.743  0.749 ] 0.721 0.718  0.625
et Extra Trees 0.732 0.734 0.733 ] 0.736 0.728 0.737 | 0.743 0.747 0.746 | 0.715 0.713 0.718
lda Linear Discriminant Analysis (LDA) [ 0.721 0.663 0.714 | 0.736 0.685 0.718 | 0.747 0.756  0.721 | 0.711 0.708 0.709
ridge Ridge Classifier 0.648 0.534 0.645 [ 0.728 0.726  0.732 | 0.727 0.764 0.740 | 0.641 0.676  0.658
knn K Neighbor Classifier 0.508 0.485 0.515]0.703 0.683 0.708 | 0.716 0.739 0.740 | 0.626 0.614 0.645
nb Naive Bayes 0.355 0.423 0.415]0.728 0.711 0.715 | 0.716 0.761 0.722 | 0.551 0.509 0.601
Proposed Model 0.760 0.771 0.772 ] 0.767 0.768 0.771 | 0.763 0.772  0.775 ] 0.745 0.735 0.747

. Outlier Removal Outlier + Normal
PCA Feature Selection + Normalization + Transformation

Accuracy Recall Prec. | Accuracy Recall Prec. | Accuracy Recall Prec. | Accuracy Recall Prec.

dt Decision Tree 0.666 0.649 0.623 | 0.763 0.745 0.768 | 0.758 0.774  0.758 | 0.742 0.723  0.735
ada Ada Boost 0.65 0.63 0.642 | 0.763 0.745  0.768 | 0.758 0.763 0.758 | 0.742 0.723  0.735
gbc Gradient Boosting 0.639 0.633 0.649 | 0.763 0.744  0.764 | 0.758 0.763 0.756 | 0.742 0.723  0.735
rf Random Forest 0.65 0.621 0.650 | 0.763 0.746  0.768 | 0.758 0.763 0.758 | 0.739 0.723 0.735
lightgbm | Light Gradient Boosting 0.633 0.615 0.653 | 0.757 0.742  0.761 | 0.763 0.758 0.749 | 0.720 0.740 0.724
et Extra Trees 0.628 0.619 0.622]0.741 0.714 0.710 | 0.763 0.752  0.742 | 0.705 0.736 0.716
Ida Linear Discriminant Analysis (LDA) [ 0.515 0.489 0.586 | 0.736 0.715 0.701 | 0.710 0.724  0.734 | 0.704 0.710 0.713
ridge Ridge Classifier 0.544 0.506 0.577]0.724 0.657 0.708 | 0.748 0.720 0.719 | 0.656 0.687 0.693
knn K Neighbor Classifier 0.529 0.497 0.574]0.815 0.611 0.642 | 0.713 0.723 0.720 | 0.677 0.689 0.694
nb Naive Bayes 0.461 0.327 0.481]0.554 0.546 0.646 | 0.727 0.717 0.717 | 0.686 0.672 0.676
Proposed Model 0.677 0.659 0.631 | 0.750 0.757 0.793 | 0.780 0.773 0.782 ] 0.754 0.753  0.749

Table 8. Detailed comparison of models of Case 1
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Compare Models

Normalization

Transformation

Outlier Removal

Model Accuracy Recall Prec. | Accuracy Recall Prec. | Accuracy Recall Prec. | Accuracy Recall Prec.
dt Decision Tree 0.798 0.790 0.789 | 0.799 0.813 0.815 | 0.786 0.767 0.786 | 0.772 0.770 0.783
ada Ada Boost 0.789 0.788 0.790 | 0.812 0.810 0.814 | 0.769 0.790 0.786 | 0.705 0.715  0.782
gbc Gradient Boosting (GBC) 0.792 0.763 0.785 | 0.800 0.799 0.812 | 0.776 0.787 0.798 | 0.756 0.775 0.781
f Random Forest 0.789 0.785 0.787 | 0.790 0.791 0.769 | 0.790 0.779 0.729 | 0.767 0.747  0.780
lightgbm | Light Gradient Boosting 0.782 0.780 0.798 [ 0.774 0.781 0.775 | 0.769 0.764 0.798 | 0.750 0.784 0.762
et Extra Trees 0.777 0.742  0.782]0.777 0.781 0.780 | 0.785 0.773 0.786 | 0.764 0.765 0.769
Ida Linear Discriminant Analysis (LDA) [ 0.749 0.719 0.728 | 0.763 0.764 0.768 | 0.770 0.726  0.767 | 0.742 0.731 0.745
knn K Neighbor Classifier 0.750 0.753 0.758 [ 0.672 0.649 0.685 ] 0.769 0.760 0.762 | 0.701 0.712 0.718
ridge Ridge Classifier 0.739 0.735 0.747 ] 0.662 0.642 0.686 | 0.744 0.732  0.741 | 0.661 0.662 0.684
nb Naive Bayes 0.718 0.732 0.749 | 0.590 0.549 0.626 | 0.742 0.753  0.749 | 0.600 0.558 0.641

Proposed Model 0.802 0.804 0.805 [ 0.821 0.824 0.812]0.816 0.801 0.807 | 0.784 0.784 0.792

. Outlier Removal Outlier + Normal
PCA Feature Selection + Normalization + Transformation

Model Accuracy Recall Prec. | Accuracy Recall Prec. | Accuracy Recall Prec. | Accuracy Recall Prec.
dt Decision Tree 0.669 0.640 0.681 | 0.782 0.785 0.780 | 0.791 0.773  0.784 | 0.746 0.713  0.745
ada Ada Boost 0.650 0.623  0.650 | 0.788 0.784 0.781 | 0.748 0.797 0.784 | 0.781 0.713  0.705
gbc Gradient Boosting (GBC) 0.650 0.631 0.602 | 0.783 0.786  0.708 | 0.794 0.798  0.775] 0.783 0.773  0.785
of Random Forest 0.659 0.683 0.699 | 0.753 0.744  0.768 | 0.774 0.783 0.725 ] 0.702 0.763 0.775
lightgbm | Light Gradient Boosting 0.623 0.625 0.643]0.718 0.788 0.771 | 0.758 0.727 0.769 | 0.719 0.720 0.785
et Extra Trees 0.628 0.619 0.641]0.761 0.754  0.770 | 0.788 0.782 0.789 | 0.759 0.746 0.766
Ida Linear Discriminant Analysis (LDA) [ 0.510 0.489 0.586 | 0.756 0.755 0.761 | 0.771 0.765 0.774 | 0.754 0.740 0.762
knn K Neighbor Classifier 0.534 0.519 0.550 | 0.654 0.783 0.728 [ 0.752 0.740 0.763 | 0.724 0.720 0.754
ridge Ridge Classifier 0.529 0.496 0.573]0.621 0.650 0.662 | 0.752 0.743 0.720 | 0.737 0.759 0.745
nb Naive Bayes 0.460 0.326  0.480 | 0.595 0.558 0.647 | 0.748 0.757 0.759 | 0.738 0.712 0.776

Proposed Model 0.672 0.658 0.696 | 0.791 0.796 0.798 | 0.804 0.803 0.806 | 0.790 0.781 0.794

Table 10. Detailed comparison of models of Case 3
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7 CONCLUSION AND FUTURE WORK

This work introduces an innovative reliability framework that encompasses multi-
ple phases of implementation, beginning with the generation of virtual machines
via the command line with multiple random settings, followed by the generation of
datasets, machine learning techniques, and result analysis. All models are evaluated
for their precision, recall, and accuracy. A total of ten machine learning models
were employed in order to construct an ensemble model, which ultimately yielded
optimal and accurate results for the classification of host loads. It has been observed
that applying normalization to a dataset improves the performance of models. Four
models, the RF, AB, GB, and DT models, performed equally well in all three case
studies during normalization of the dataset. However, compared to these models,
our proposed ensemble model performs marginally better, with an accuracy of ap-
proximately 82 %. The robustness of an ensemble model was then evaluated using
the 10-fold cross-validation method [36]. Improving energy efficiency in a fog en-
vironment is a challenging job. While Container as a Service (CaaS) is gaining
increasing popularity, there has been relatively little emphasis on evaluating the
energy efficiency of resource management algorithms within this service framework.
Future work will include migrating containers from one virtual machine to another,
which will only occur when a host is determined to be overloaded or underloaded
based on predetermined criteria. We plan to improve the energy consumption of
hosts in fog environment by migrating containers in the future.
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