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Abstract. With the development of deep learning, deep neural methods have been
introduced to boost the performance of Collaborative Filtering (CF) models. How-
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ever, most of the models rely solely on the user-item heterogeneous graph and
only implicitly capture homogenous information, which limits their performance
improvement. Although some state-of-the-art methods try to utilize additional
graphs to make up, they either merely aggregate the information of multiple graphs
in the step of initial embedding or only merge different multi-graph information
in the step of final embedding. Such one-time multi-graph integration leads to
the loss of interactive and topological information in the intermediate process of
propagation. This paper proposes a novel Multi-Graph iterative fusion Recommen-
dation Framework (MGRF) for CF recommendation. The core components are
dual information crossing interaction and multi-graph fusing propagation. The for-
mer enables repeated feature crossing between heterogeneous nodes throughout the
whole embedding process. The latter repeatedly integrates homogeneous nodes as
well as their topological relationships based on the constructed user-user and item-
item graphs. Thus, MGRF can improve the embedding quality by iteratively fusing
user-item heterogeneous graph, user-user and item-item homogeneous graphs. Ex-
tensive experiments on three public benchmarks demonstrate the effectiveness of
MGRF, which outperforms state-of-the-art baselines in terms of Recall and NDCG.

Keywords: Recommender systems, multi-graph fusion, graph neural networks,
embedding propagation
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1 INTRODUCTION

In the era of information explosion, recommender systems play a vital role in strug-
gling with information overload [1]. They help users to discover items of interest,
which are suitable for many online services, including travelling [2], news feeding [3],
and online shopping [4]. Hence, recommender systems have attracted great attention
in both industry [4] and academia [5].

Collaborative filtering (CF), as one of the most influential and widely used rec-
ommendation methods, has emerged to expeditiously filter out the items that users
are interested in and accurately capture user preferences [6]. The common paradigm
of CF is to parameterize users and items by learning vector representations (a.k.a.
embeddings) from historical interactions data (e.g., ratings and clicks), and perform
prediction based on the pairwise similarity of embedding vectors between users and
items [7].

With the development of deep learning, deep neural methods have been intro-
duced to boost the performance of CF models, such as Deep Crossing [8],
Wide&Deep [9] and DeepFM [10]. Deep neural methods are more expressive to
learn complex non-linear relationships and mine hidden patterns between users and
items [11]. Graph is a natural struct for representing rich pairwise relationship in
recommendation [12], due to its powerful capability of learning representation from
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non-Euclidean structure data [13, 14]. Therefore, GCN-based models are adopted
to exploit multi-hop information from user-item interactions [14]. The key idea
of GCNs is iteratively aggregating feature information from graph neighborhood,
which can capture and aggregate the high-order information of user-item bipartite
graph, thereby improving the accuracy of user and item embeddings [15]. Typical
GCN-based models include GC-MC [16], PinSage [17], NGCF [18], LR-GCCF [19],
LightGCN [20], DGCF [21] and UltraGCN [22]. Neural Graph Collaborative Filter-
ing (NGCF) [18] propagates the embeddings of users and items via utilizing multiple
GCN layers to capture high-order connectivity. LR-GCCF [19] removes non-linear
activation and LightGCN [20] takes a further step that removes all transformation
parameters and activation function in the convolutional layer, which greatly im-
proves the performance. DGCF [21] models the user’s latent intention distribution
on each pair of user-item interactions and maps the latent intention to form a sepa-
rate representation. UltraGCN [22] directly approximates the convergence state to
avoid over-smoothing problem of multi-layer message propagation.

All these methods are based on user-item heterogeneous graph, which can indeed
provide interactive information between users and items for CF recommendation.
However, those methods do not involve user-user or item-item homogeneous graphs.
In fact, these two kinds of graphs also contain meaningful topology information
for CF recommendation, which reveals the behavioral similarity between users (or
items). Take Figure 1 as a toy example. The book was purchased by user A, B, C and
D. Meanwhile, user B, C and D purchased computer. Thus, from the perspective of
user-item heterogeneous graph, user A may be interested in computer and we will
recommend computer first to user A. However, just with user-item heterogeneous
graph, we cannot effectively rank watch, ruler and phone for the recommendation
to user A. The reason is that, according to user-based CF, the interest scores of the
three items are the same for user A.

user A user B user C user D

pad pencil book computer watch ruler phone

Figure 1. A toy example

In fact, a user-user homogeneous graph can be constructed from user-item het-
erogeneous graph according to the following strategy: If there is a user i–item k–user
j path in user-item heterogeneous graph, then there will be an edge between user
i and user j in user-user homogeneous graph. The corresponding user-user graph
is shown in Figure 2, where the weight of an edge represents the interest similarity



690 X. Lin, F. Han, X. Rui, C. Sun, Z. Wang, L. Yan

between the corresponding two users. The interest similarity can be calculated by
the similarity of actions [23]. Just for example, we simply calculate the interest
similarity of user A and user B by the following Cosine similarity formula,

similarity(A,B) = COS⟨A,B⟩ = |N(A) ∩N(B)|√
|N(A)||N(B)|

=
1√
3 ∗ 4

= 0.289,

where N(·) denotes the collection of purchased items. Similarly, the similarity(A,C)
and similarity(A,D) can be obtained, which are 0.289 and 0.577, respectively.

user A user B

user C user D

0.289

0.289

0.577

Figure 2. User-user homogeneous graph

Figure 2 shows that user A and user D are more similar, which implies the
potential interest of user A and user D are more similar. Based on this additional
social information, we will preferentially recommend ruler to user A, rather than
watch and phone. In this way, the above problem of differentiating watch, ruler and
phone for the recommendation to user A can be solved.

This example shows that merely relying on the user-item heterogeneous graph
cannot ensure effective recommendation in some scenarios. Although two-hop neigh-
borhoods in user-item heterogeneous graph can implicitly capture homogeneous in-
formation to some extent by those methods, it is reasonable to believe that the
performance of CF recommendation can be improved by integrated learning from ex-
plicitly encoded homogeneous graphs. The experimental results of Multi-GCCF [12]
and FBNE [24] confirmed our assertion. However, Multi-GCCF only merges differ-
ent multi-graph information in the step of final embedding, FBNE merely aggregates
the information from related nodes within multiple bipartite graphs in the step of
initial embedding. Such one-time multi-graph integration leads to the loss of in-
teractive and topological information in the intermediate process of propagation,
resulting in limited performance improvement. Therefore, how to fully fuse and
leverage multi graphs becomes very critical.

Fundamentally different from the one-time multi-graph integration in Multi-
GCCF [12] and FBNE [24], this paper presents a novel multi-graph recommenda-
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tion framework (named MGRF) for CF by iteratively fusing user-item heterogeneous
graph, user-user and item-item homogeneous graphs. Heterogeneous graph contains
rich interactive information while homogeneous graphs provide meaningful topolog-
ical information for CF recommendation. The main contributions of this paper are
summarized as follows:

• We propose a multi-graph recommendation framework with heterogeneous and
homogeneous graph iterative fusion, which effectively leverages crossing in-
teraction between user and item (from heterogeneous graph), and repeatedly
integrates the inner high-order connectivity of users and items (from homoge-
neous graph), thereby embedding the crossing interaction and features of users
and items in high quality.

• We design the dual information crossing interaction and multi-graph fusing prop-
agation for MGRF. The former employs user-item interactions in user-item het-
erogeneous graph to explore the interaction information for crossing propagation
throughout the whole embedding process; The latter utilizes user-item hetero-
geneous graph to directly construct user-user and item-item graphs, then re-
peatedly integrates homogeneous nodes (users or items) and their topological
relationships. Thus, MGRF cannot only guarantee crossing interaction between
heterogeneous nodes, but also explicitly encode the topological information be-
tween homogeneous nodes.

• We perform extensive experiments on three real-world datasets that all com-
prise more than one million user-item interactions. The experimental results
demonstrate the effectiveness of our proposed MGRF. It can effectively inte-
grate heterogeneous and homogeneous graphs to improve the embedding quality
of the recommendation model, outperforming the state-of-the-art baselines in
terms of Recall and NDCG.

2 METHODOLOGY

In this section, we present the Multi-Graph Recommendation Framework (MGRF)
with heterogeneous and homogeneous graph iterative fusion. Heterogeneous graph
contains rich interactive information while homogeneous graphs provide meaningful
topological information for CF recommendation.

As Figure 3 shows, the proposed framework consists of three main layers. Firstly,
the embedding layer initializes user embeddings and item embeddings. Secondly, the
propagation layer iteratively fuses interactive information between heterogeneous
nodes and topological information between homogeneous nodes to refine initial user
and item embeddings. Thirdly, the prediction layer aggregates the refined embed-
dings and residual connections as final representations, and then outputs the affinity
score of each user-item pair for the top-N recommendation.
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Figure 3. The overall architecture of MGRF (the arrows present the flow of information).
The representations of user u0 (left) and item i0 (right) are initialized in embedding layer,
then refined in propagation layer whose outputs are finally combined in prediction layer for
top-N recommendation. In the propagation layer, the dual information crossing interac-
tion (left, right) and multi-graph fusing propagation (middle) iteratively cross information
between the user-item heterogeneous graph and two homogeneous graphs (i.e. user-user
graph and item-item graph) according to the order of arrows.

2.1 Embedding Layer

In a typical recommendation scenario, user IDs and item IDs are usually encoded as
one-hot vectors. Suppose there are n users andm items, the sets of user and item are
{xu1 ,xu2 , . . . ,xun} and {xi1 ,xi2 , . . . ,xim}, respectively. In the embedding layer,
MGRF transforms those user IDs and item IDs into embedding vectors eu ∈ Rd

and ei ∈ Rd following mainstream models [7, 18]:

eu = E · xu; ei = E · xi, (1)

where E ∈ R(n+m)∗d refers to the initial embedding vectors for users and items, d
denotes the size of embeddings, xu and xi represent user ID, item ID, respectively.
The initial user and item embeddings of this layer will be optimized in an end-to-end
fashion [18].
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2.2 Propagation Layer

Propagation layer ultilizes the message-passing architecture of convolution neural
networks to iteratively capture CF information from different graph structures and
refine the initial embeddings of users and items. This propagation layer consists of
two key components: dual information crossing interaction and multi-graph fusing
propagation. The former is designed to minimize the loss of fine-grained features in
propagation and guarantee the iterative crossing interaction between heterogeneous
nodes. The latter is devised to highlight the intrinsic differences of users (items),
and explicitly encode the topological information between homogeneous nodes. The
arrows marked ①②③④ in Figure 3 describe the collaborative process of the two
components, which is detailed as follows. The initial user embeddings and item
embeddings in the embedding layer serve as inputs for the first iteration of the
propagation layer. These information is aggregated on two homogenous graphs (i.e.
user-user graph and item-item graph) separately, then both sent to the user-item
graph for further crossing, as shown in the arrow marked ①. After dual information
crossing interaction receives both user and item embeddings from the multi-graph
fusing propagation, it crosses them on the heterogeneous user-item graph. The
crossed embeddings will serve as the input for the next iteration of multi-graph fus-
ing propagation, as shown in the arrow marked ②. The crossed embeddings from
user-item heterogeneous graph as well as the uncrossed embeddings from homoge-
nous graphs (i.e. user-user graph and item-item graph) are all sent to the multi-graph
fusion propagation to respectively update the representations of users and items for
the next iteration. The propagation layer repeats the above operations to itera-
tively fuse heterogeneous and homogenous graphs until the optimal embeddings are
obtained.

dual information fusion

eu
(l-1)

hi
(l)hu

(l)

AggregationAggregation

u0

i0

ei
(l-1)

user-item graph

Figure 4. Dual information crossing interaction in the user-item graph
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2.2.1 Dual Information Crossing Interaction

Interactive information between items and users is crucial for recommendation.
Therefore, MGRF designs a component named dual information crossing interaction,
which adopts GCN for repeated feature crossing in user-item bipartite graph. Dual
information crossing interaction propagates forward to capture collaborative infor-
mation between heterogeneous nodes, and minimize the loss of fine-grained feature
information. The basic idea of GCN is to learn node representations by smoothing
features over the graph, which updates the node representations in the (l + 1)th

iteration by normalizing and aggregating the representations of their neighbors in
lth iteration. The representations of user u and item i in the (l + 1)th iteration can
be respectively formulated as follows:

h(l+1)
u = σ

(
W (l)

u ·
[
h(l)

u ;h
(l)
N(u)

])
, h0

u = eu, (2)

h
(l+1)
i = σ

(
W

(l)
i ·

[
h

(l)
i ;h

(l)
N(i)

])
, h0

i = ei, (3)

where [; ] represents concatenation, W (l)
u and W

(l)
i refer to the user and item trans-

formation weight matrix of (l + 1)th iteration, h
(l)
N(u)

and h
(l)
N(i)

denote the learned

neighborhood embeddings. σ (·) is the tanh activation function.
As Figure 4 shows, the dual information crossing interaction first takes user

embedding e(l−1)
u and item embedding e

(l−1)
i as input, which is from multi-graph

fusing propagation in the (l − 1)th iteration. Then, it exploits the user-item graph
to cross features and integrate user-item interactions into the embedding function.
Finally, it aggregates the propagated messages to obtain the fused embeddings with

cross information. The output h(l)
u and h

(l)
i will serve as the input for multi-graph

fusing propagation in the following lth iteration.
When aggregating user-item interactions, MGRF applies element-wise weighted

mean aggregator to achieve permutation invariance in the neighborhood for a user
u, namely

h
(l)
N(u)

= σ
(
MEAN

({
e
(l−1)
i ·Q(l)

u , i ∈ N(u)
}))

, (4)

where Q(l)
u refers to the user aggregator weight matrix in the lth iteration, which

is trainable and shared across all users in lth iteration, N(u) denotes the set of
neighbor items of user u in the user-item graph, and MEAN(·) represents the mean
of the vectors. Similarly, the embedding of a target item i can be generated by using
another set of user transformation and aggregator weight matrices:

h
(l)
N(i)

= σ
(
MEAN

({
e(l−1)
u ·Q(l)

i , u ∈ N(i)
}))

, (5)

where Q
(l)
i refers to the item aggregator weight matrix in the lth iteration, which is

trainable and shared across all items in lth iteration, N(i) denotes the set of neighbor
users of item i in the user-item graph.
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With the dual information crossing interaction, the propagation layer can inte-
grate heterogeneous information on the opposite side for message propagation. Con-
sequently, MGRF cannot only mimimize the loss of fine-grained feature information
in propagation but also guarantee the crossing interaction between heterogeneous
nodes, i.e., users and items.

2.2.2 Multi-Graph Fusing Propagation

User-user and item-item relationships are essential homogeneous information for
recommendation, which reveals the behavioral similarity between users (or items).
Therefore, MGRF designs a component named multi-graph fusing propagation,
which utilizes the user-item bipartite graph to construct user-user and item-item
graphs and then iteratively learns embeddings from multi-graphs, including user-
item heterogeneous graph, user-user, and item-item homogeneous graphs. As shown
in Figure 5, the multi-graph fusion propagation consists of three phases: forward
sampling, iterative aggregation, and information fusion.

  multi graph propagation(user)

Information 
Fusion

eu
(l)

su
(l)

hu
(l-1)

Sample

Aggregation

multi graph propagation(item)

ei
(l)

si
(l)

hi
(l-1)

Sample

Information 
Fusion

Aggregation

eu
(l-1) ei

(l-1)

Figure 5. Multi-graph fusion propagation

Forward Sampling. CF is based on the assumption that similar users would ex-
hibit similar preferences on items. Therefore, in the forward sampling phase,
we construct user-user (or item-item) graphs based on the similarities between
users (or items). Meanwhile, samples of similar nodes within the pre-top K list
are associated in homogeneous graphs. In this paper, we attenuate the effect of
popular items in the common interest list on their similarity. Specifically, we
measure similarity spq between two homogeneous nodes p, q as:

spq =

∑
α∈N(p)∩N(q)

1
ln (1+|N(α)|)√

|N(p)||N(q)|
, (6)
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where N(p) and N(q) denote the set of neighbors of nodes p and q in the user-
item graph, respectively, α refers to the common neighbor of nodes p and q,
|N(α)| indicates the degree of denotes node α. Computing all pairwise cosine
similarities is expensive. Hence, some pairs should be pruned. Referring to
the existing method [12] that build user-user or item-item graphs based on all
adjacent interaction relationships, MGRF takes the pre-topK neighbors as valid
connections for user u (item i) to decrease the difficulty and training cost. In
Section 3.5.1, a study of the effect of the sample number K on the performance
for processing examples is provided.

Iterative Aggregation. The iterative aggregation phase follows the idea of graph
convolutional network [18] to reveal latent information. For a connected user-
user pair ⟨u1, u2⟩ (or item-item pair ⟨i1, i2⟩), MGRF defines the message from
u2 to u1 (or i2 to i1) as:

f (eu1 , eu2) =
1√

|N ′
s (u1)| |N ′

s (u2)|
eu2 , (7)

f (ei1 , ei2) =
1√

|N ′
s (i1)| |N ′

s (i2)|
ei2 , (8)

where eu1←u2 and ei1←i2 denote the user and item message (i.e., information to
be propagated) embeddings, and N ′

s(·) denotes the one-hop neighborhood in the
corresponding homogeneous graph. f(·) refers to the message encoding func-
tion, which takes embeddings of u1 and u2 as input. The backward aggregation
phase will further generate user (item) embeddings by aggregating neighborhood
features through a one-hop graph convolution layer and a sum aggregator:

S(l)
u =

∑
v∈N ′

s(u)

1√
|N ′

s(u)| |N ′
s(v)|

e(l−1)
v , (9)

S
(l)
i =

∑
j∈N ′

s(i)

1√
|N ′

s(i)| |N ′
s(j)|

e
(l−1)
j . (10)

Information Fusion. The information fusion phase combines user (item) embed-
dings from heterogeneous and homogeneous graphs by introducing the element-
wise sum:

e(l)
u = S(l)

u + h(l−1)
u ; e

(l)
i = S

(l)
i + h

(l−1)
i . (11)

With representations augmented by first-order connectivity modeling, we can
stack more multi-graph fusion propagation to explore the high-order connectiv-
ity information. Its excellent performance will be verified in Section 3.5.2 by
comparing it with other alternatives such as concatenation and attention aggre-
gators. Such high-order connectivities are crucial to encoding the collaborative
information and estimating the relevance score between a user and an item. In
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this way, MGRF cannot only highlight the intrinsic differences between users
and items but also explicitly encode the topological information between homo-
geneous nodes.

With dual information crossing interaction and multi-graph fusing propagation,
MGRF propagates messages alternately across heterogeneous and homogeneous
graphs and iteratively refines both user and item embeddings.

2.3 Prediction Layer

By stacking embeddings from the propagation layer, a user (or an item) is capable
of receiving the messages propagated from its l-hop neighbors. MGRF adopts the
holistic connection that combines the embeddings from multi-graph fusing propaga-
tion of all the iterations (including the initial embedding) as a node’s final feature
representation. Since embeddings from different iterations of multi-graph fusing
propagation contain information of different receptive fields, combining these em-
beddings is more informative and also effective for alleviating the over-smoothing
problem. The holistic connection is formulated as:

e∗u =
1

L+ 1

L∑
l=0

e(l)
u , (12)

e∗i =
1

L+ 1

L∑
l=0

e
(l)
i , (13)

where e∗u, e
∗
i denote the final embedding of user u and item i, respectively. Here

we use an element-wise average aggregator as the information fusion strategy for
the prediction layer. When composing the final embedding, different iterations of
the embedding have different importance and thus can be considered as manually
tuned hyper-parameters, or model parameters for automatic optimization. However,
existing studies [20] show that setting the importance uniformly to 1/(L+1) usually
leads to good performance, to avoid complicating model unnecessarily and to keep
its simplicity. Finally, we conduct the inner product ŷui as a score to estimate user
preference towards the target item:

ŷui = e∗u
T · e∗i , (14)

which is used as the ranking score for top-N recommendation.

2.4 Optimization

To learn model parameters, MGRF optimizes the pairwise Bayesian Personalized
Recommendation (BPR) loss [25], which has been intensively used in recommender
systems. BPR assumes that observed interactions, which are more reflective of user
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preferences, should be given higher values than non-observed interactions. We adapt
our model to forward and backward propagation for mini-batches of triplet pairs
{u, i, j}. To be more specific, we select unique user u and item {i, j} from mini-batch
pairs, and obtain low-dimensional embeddings of them after forward propagation.
Then, the predicted scores of user u for positive sample i and negative sample j
are calculated based on these embedding. Finally, the stochastic gradient descent
method was used to minimize the BPR loss for optimizing the recommendation
model. The objective function is as follows:

lossbpr =
∑

(u,i,j)∈O

− log σ
(
e∗u · e∗i − e∗u · e∗j

)
+ λ

(∥∥e∗u∥∥2

2
+
∥∥e∗i∥∥2

2
+
∥∥∥e∗j∥∥∥2

2

)
, (15)

where O = {(u, i, j) | (u, i) ∈ R+, (u, j) ∈ R−} denotes the training batch. R+ in-
dicates observed positive interactions. R− indicates sampled unobserved negative
interactions. We conduct regularization on both model parameters λ and generated
embeddings to prevent overfitting.

3 EXPERIMENTS

In this section, we conduct extensive experiments on three widely used datasets to
evaluate our recommendation framework and answer the following research ques-
tions.

RQ1: Compared with state-of-the-art models and frameworks, how does MGRF
perform?

RQ2: How do embeddings benefit from the dual information crossing interaction
and multi-graph fusing propagation of MGRF?

RQ3: How do different hyper-parameter settings (including sample number and
information fusion method) affect the results of MGRF?

3.1 Dataset Description and Evaluation Metrics

Dataset Users Items Interactions Density

Gowalla 29 858 40 981 1 027 370 0.000840
Yelp2018 31 668 38 048 1 561 406 0.001296
Amazon-Book 52 643 91 599 2 984 108 0.000619

Table 1. Statistics of the datasets

We use three benchmark datasets [18, 20]: Gowalla, Yelp2018, and Amazon-
Book, which are publicly accessible and released by baseline algorithms [22, 21, 20,
12]. The statistics of datasets are summarized in Table 1 with various domains, size
and sparsity. In our experiments, two widely used metrics are adopted to evaluate



MGRF 699

top-N recommendations: Recall@k and NDCG@k (normalized discounted cumula-
tive gain) [26]. Given that many state-of-the-art recommender models [7, 18, 20, 12]
exhibit their performance with Recall@20 and NDCG@20, we compare framework
with them and report the corresponding results of Recall@20 and NDCG@20.

3.2 Baseline Algorithms and Parameter Settings

We implement our MGRF framework in PyTorch. To demonstrate the effectiveness
of our proposed MGRF, we compare it with various types of the state-of-the-art
models, including MF-based models (MF-BPR [27], NeuMF [7] and ENMF [28]),
graph embedding-based models (DeepWalk [29], LINE [30] and Node2Vec [31]),
GCN-based models (GC-MC [16], PinSage [17], Multi-GCCF [12], NGCF [18], Light-
GCN [20], DGCF [21], and UltraGCN [22]). All models in experiments are optimized
by the Adam optimizer [32] with the Xavier initialization [33]. For all baseline mod-
els, the embedding size is fixed to 64 and the batch size is set to 2048. Grid search
is applied to tune the learning rate and the coefficient of L2 normalization in the
range of {10−5, 10−4, 10−3, 10−2, 10−1}.

3.3 Performance Comparison (RQ1)

Table 2 reports the results of the overall performance comparison. We obtain the
following observations:

1. Our proposed MGRF achieves the best performance for all metrics in all data-
sets. By crossing features between users and items, MGRF is capable of explor-
ing the fine-grained features and collaborative information in an explicit way.
This verifies the importance of capturing collaborative information in the dual
information crossing interaction. Moreover, compared with LightGCN (cur-
rently the state-of-the-art GCN-based recommendation model), MGRF fuses
multi-graph information to infer user preference while LightGCN merely consid-
ers the user-item bipartite graph. This demonstrates that MGRF can exploit
the latent fine-grained information by fusing multiple graphs and integrating
different embeddings.

2. For the recommendation task, viewing the user-item interactive relationship as
a heterogeneous bipartite graph can achieve better performance. This could
explain why graph embedding-based models have poor results. Traditional ran-
dom walk or heuristic mining strategies used in many graph embedding methods
can hardly capture collaborative information for effective recommendation. The
reason that LINE performs much better than DeepWalk and Node2Vec lies in
the random walk strategy of LINE is more similar to a BFS (Breadth-First-
Search) way, which could aggregate close-hop neighbors with more interactive
information between users and items.

3. Based on the user-item heterogeneous bipartite graph, further exploring the
homogeneous information can bring improvement in recommendation. As ob-
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Gowalla Yelp2018 Amazon-Book
Recall NDCG Recall NDCG Recall NDCG

MF-based Models

MF-BPR 0.1291 0.1109 0.0433 0.0354 0.0250 0.0196
NeuMF 0.1399 0.1212 0.0451 0.0363 0.0258 0.0200
ENMF 0.1523 0.1315 0.0624 0.0515 0.0359 0.0281

Graph Embedding-based Models

DeepWalk 0.1034 0.0740 0.0476 0.0378 0.0346 0.0264
LINE 0.1335 0.1056 0.0549 0.0446 0.0410 0.0318
Node2Vec 0.1019 0.0709 0.0452 0.0360 0.0402 0.0309

GCN-based Models

GM-MC 0.1395 0.1204 0.0462 0.0379 0.0288 0.0224
PinSage 0.1380 0.1196 0.0471 0.0393 0.0282 0.0219
Multi-GCCF 0.1595 0.1326 0.0667 0.0510 0.0363 0.0256
NGCF 0.1570 0.1327 0.0579 0.0477 0.0344 0.0263
LightGCN 0.1830 0.1554 0.0649 0.0530 0.0411 0.0315
DGCF 0.1842 0.1561 0.0654 0.0534 0.0422 0.0324
UltraGCN 0.1845 0.1566 0.0667 0.0552 0.0504 0.0393

MGRF 0.1857 0.1563 0.0681 0.0561 0.0537 0.0412

Table 2. Overall performance comparison on Gowalla, Yelp2018, and Amazon-Book (the
best one in bold and the 2nd best with underline)

served in Table 2, traditional deep recommendation models are not sufficient
to yield optimal embeddings because they consider only user and item features.
Most matrix factorization only considers user-item interactions when developing
embeddings, while GCN-based models could involve homogeneous interactions
when they contain two layers. User-user and item-item relationships are also
very important information, and two-hop neighborhoods in the bipartite graph
can capture these homogeneous information to some extent. This could ex-
plain why GCN-based models are better than most MF-based models. ENMF
achieves good results because it adopts a strategy of Efficient Non-Sampling to
modify the loss function and alleviate the imbalance of positive and negative
samples in the recommendation, thus improving its performance.

4. Fusing heterogeneous interaction and homogeneous information in an explicit
way can further improve the recommendation results. This could explain why
Multi-GCCF outperforms GM-MC, PinSage and NGCF. Though both consid-
ering higher-order user-item interactions, Multi-GCCF beats NGCF since it
integrates the proximal information by building and processing user-user and
item-item homogeneous graphs. Although Multi-GCCF is trained with addi-
tional information from different graph, it merely merges different embeddings
in the step of final embedding, without fully integrating the interactive informa-
tion of heterogeneous graph and topological information of homogeneous graphs,
resulting in limited performance improvement.
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In summary, iteratively fusing heterogeneous interactions with explicitly encoded
homogeneous information could effectively improve the recommendation quality,
which reveals the superiority of our proposed MGRF.

3.4 Ablation Analysis (RQ2)

Ablations
Gowalla Yelp2018

Recall NDCG Recall NDCG

Best baseline (LightGCN) 0.1830 0.1554 0.0649 0.0530
MGRF-C 0.1817 0.1527 0.0563 0.0459
MGRF-L 0.1812 0.1525 0.0607 0.0492
MGRF-I 0.1832 0.1554 0.0654 0.0532
MGRF-U 0.1836 0.1557 0.0664 0.0548
MGRF 0.1857 0.1563 0.0681 0.0561

Table 3. Ablation analysis on Gowalla and Yelp2018

To evaluate and verify the effectiveness of the components (i.e. dual information
crossing interaction and multi-graph fusing propagation) of our proposed MGRF
model, we derive four different models (namely MGRF-C, MGRF-I, MGRF-U,
MGRF-L) and conduct an ablation analysis on Gowalla and Yelp2018. Compared
with MGRF, MGRF-C only includes the proposed component of dual information
crossing interaction in the user-item bipartite graph. Based on MGRF-C, MGRF-
U and MGRF-I also include the proposed component of multi-graph fusing prop-
agation on the user side or item side, respectively. MGRF-L includes the pro-
posed dual information crossing interaction and multi-graph fusing propagation on
both user and item sides, but only applies the dual information crossing interac-
tion one-time in the step of final iteration. It is notable that if we replace the
element-wise weighted mean aggregator (cf. Equations (4) and (5)) in MGRF-C
with the weighted sum aggregator, we will obtain LightGCN, which thus serves
as our best baseline. Table 3 illustrates the performance of models with differ-
ent component combinations. The embedding size is 64 for all ablation experi-
ments.

In MGRF-C, topological relationships between user-user and item-item are im-
plicitly learned with user-item relationships through the same message passing lay-
ers. MGRF-C ignores the intrinsic difference between the two types of nodes and fails
to capture the relative importance of user-user and item-item relationships, result-
ing in poor performance. In contrast, MGRF-I and MGRF-U are not only capable
of explicit message passing so that we can separately learn item-item or user-user
relationships, but also enable us to manually adjust the relative importance of dif-
ferent relationships. Besides, we notice that the performance of MGRF-I is slightly
worse than MGRF-U, and both lower than MGRF. The reason may be that only
one side of the additional information (user-user graph or item-item graph) is fused
and the other side is ignored, resulting in the information collected from the other
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side being very sparse for most entities (users or items). It can be seen from Ta-
ble 1 that the corpus of items can be enormously large and always larger than users.
In MGRF-I, active users can get more information from the side of items, result-
ing in more biased embeddings and slightly worse performance. Though MGRF-L
keeps all the components, its performance is obviously worse than MGRF-U and
MGRF-I, implying that fusing the user-item heterogeneous graph with the other
two homogeneous graphs only one time is clearly not enough to obtain high quality
embeddings.

In summary, the combination of dual information crossing interaction and multi-
graph fusing propagation in MGRF is demonstrated to be effective. It can flexibly
and separately learn user-item, user-user and item-item relationships, and the iter-
atively fusing of different embeddings can effectively capture more comprehensive
information to improve recommendation performance.

3.5 Hyper-Parameter Studies (RQ3)

3.5.1 Sample Number

The forward sampling phase is designed to deal with the long-tailed nature of the
degree distributions in the user-item bipartite graph. In this subsection, hyper-
parameter experiments are carried out to study the effect of sample number, and
the corresponding results are shown in Table 4. We make the following observa-
tions: when the number of samples approaches the range of 10 ∼ 15, it achieves
better performance. One reason might be that filtering the low-quality messages of
target nodes’ neighbors makes the embeddings effectively not only aggregate the in-
formation of the important neighbors but also mitigate the noise of irrelevant nodes,
resulting in an optimal balance.

K
Gowalla Yelp2018

Recall NDCG Recall NDCG

5 0.1793 0.1499 0.0632 0.0504
10 0.1857 0.1563 0.0672 0.0543
15 0.1843 0.1559 0.0681 0.0561
20 0.1836 0.1557 0.0654 0.0532

Table 4. Effect of sample number K

3.5.2 Information Fusion Method

In this subsection, we compare different information fusion methods that summa-
rize set of embeddings into one single embedding vector. These information fu-
sion methods include element-wise sum, concatenation and self-attention mecha-
nisms.
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Table 5 shows the experimental results on Gowalla and Yelp2018. We make
the following observations: element-wise sum performs much better than concate-
nation and self-attention. The reason is described as follows: element-wise sum
generates an embedding of the same dimension as the component embeddings and
does not involve any additional learnable parameters. The additional flexibility
of self-attention and concatenation may harm the generalization capability of the
model.

Fusion methods
Gowalla Yelp2018

Recall NDCG Recall NDCG

Self-attention 0.1836 0.1557 0.0654 0.0532
Concatenation 0.1793 0.1499 0.0632 0.0504
Element-wise sum 0.1857 0.1563 0.0681 0.0561

Table 5. Effect of information fusion method

4 CONCLUSION

In this paper, we present a novel Multi-Graph Recommendation Framework
(MGRF) that iteratively incorporates multiple graphs to explicitly represent user-
item, user-user and item-item relationships. MGRF contains two key components:
dual information crossing interaction and multi-graph fusing propagation. Dual in-
formation crossing interaction ensures feature crossing between heterogeneous nodes
throughout the whole embedding process, while multi-graph fusing propagation
makes full use of homogeneous relationships to explicitly encode topological in-
formation. MGRF iteratively interlaces these two components until the optimal
embeddings are obtained. Therefore, MGRF can sufficiently integrate heteroge-
neous and homogeneous graphs to improve the quality of the final embeddings.
Extensive experiments on three real-world datasets demonstrate the effectiveness
of our proposed MGRF, and the ablation studies quantitatively verify that each
component in MGRF makes a necessary contribution. We now just explicitly cap-
ture homogenous information based on the existing similarity measurement method.
In future, we will extend MGRF to auxiliary information, such as temporal sig-
nals.
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