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Abstract. Facial expressions (FEs) spotting aims to split long videos into intervals
of neutral expression, macro-expression, or micro-expression. Recent works mainly
focus on feature descriptor or optical flow methods, suffering from difficulty cap-
turing subtle facial motion and efficient temporal aggregation. This paper proposes
a novel end-to-end network, named FESNet (Facial Expression Spotting Network),
to solve the above challenges. The main idea is to model the subtle facial motion as
local spatial discrepancy and incorporate temporal correlation by multi-scale tempo-
ral convolution. The FESNet comprises a local spatial discrepancy module (LSDM)
and a multi-scale temporal aggregation module (MTAM). The LSDM first extracts
the static spatial features from each frame by residual convolution and learns the
inner spatial correlation by multi-head attention. Moreover, the subtle facial mo-
tion of facial expression is modeled as the discrepancy between the first frame and
the current frame of the input interval, making frame-wise spatial proposals. Using
the local spatial discrepancy features and proposals as input, the MTAM incorpo-
rates the temporal correlation by multi-scale temporal convolution and performs
cascade refinement to make the final prediction. Furthermore, this paper proposes
a smooth loss to ensure the temporal consistency of the cascade refined proposals
from MTAM. Comprehensive experiments show that FESNet achieves competitive
performance compared to state-of-the-art methods.
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1 INTRODUCTION

Facial expression recognition plays a vital role in human-computer interaction and
security, and thus, there are many related works [1]. Most of these works have
one assumption that FEs frames or intervals have been segmented from the original
long videos. However, splitting a long video into segments of different facial features
is a challenging task called FEs spotting. One reason is that FEs spotting takes
unprocessed long videos as input. It is hard to capture the accurate boundary frame
between different expression content. Moreover, FEs spotting is a multi-classification
task. Frames in a specific interval are mapped to neutral, macro-expression (MaE),
or micro-expression (ME).

As a proverb goes, ’The face is no index to the heart.’ Gaining real insight into
others’ states of mind from facial expressions is unreliable, as macro-expressions
can be disguised [2]. Therefore, involuntary micro-expressions become crucial cues
to reveal the genuine states of mind that others try to conceal in high-risk tasks
such as negotiation, criminal investigation, and national security. MaE and ME
generally coexist with a lot of neutral frames in long videos, and it is necessary for
facial expression analysis to first segment macro-expression and micro-expression
intervals from long videos. However, as shown in Figure 1, with short duration and
low intensity, ME is highly similar to neutral expressions. It is almost impossible to
distinguish ME from neutral expressions with a single frame. Furthermore, spotting
ME in long videos with the naked eye is still challenging and labor-intensive, even
for experts after intense training. To segment MaE and ME intervals from long
videos, researchers have explored kinds of feature extraction methods, including
feature descriptor-based methods, optical flow-based methods, and deep learning-
based methods [2].

Early facial expression spotting methods primarily focused on optical flow or
other feature descriptors, relying heavily on the experience and observation of fa-
cial expression videos. Deep learning-based methods generally can automatically
extract high-level implicit features invisible to the naked eye. Therefore, recent
research utilizes deep learning methods to capture subtle facial motion. However,
numerous researchers have found that optical flow features are more suitable than
the original frames for deep learning models in achieving significant improvements.
This is probably because the orientation and amplitude of optical flow can explicitly
model the muscle movements [3, 4] associated with facial expressions. However,
optical flow contains noise caused by head movements, losing the details of the orig-
inal static distribution, as illustrated in Figure 1. Furthermore, nearly all current
mainstream methods are region-based [2, 5], by dividing the original frames into
regions or selecting specific regions based on facial landmarks to extract features.
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Figure 1. The original frames and their corresponding optical flow and latent features are
analyzed. The optical flow contains noise, which can easily be confused with subtle facial
movements. The latent features are focused on areas with significant differences, such as
reflections on the forehead and blinking of the eyes.

The current state-of-the-art facial expression spotting methods precisely compute
the optical flow of specific regions as input for the neural network [6]. Extract-
ing features from carefully selected facial regions alleviates the interference from
head movements and noise, achieving higher facial expression spotting accuracy.
This strategy is effective because facial expressions, especially micro-expressions,
are local facial motions; however, it does not account for the correlation between
regions.

This paper addresses the facial expression (FE) spotting task by proposing an
end-to-end network that comprises a Local Spatial Discrepancy Module (LSDM)
and a Multi-Scale Temporal Aggregation Module (MTAM). The LSDM employs
residual convolution to extract static spatial features at the frame level and learns
the inner spatial correlations using multi-head attention [7]. It then models the
subtle facial motions as discrepancies between the first frame and the current frame
of the input interval, generating spatial proposals based on these discrepancies. The
MTAM utilizes local spatial discrepancy features and spatial proposals as input,
incorporating temporal correlations to model facial expressions’ temporal motion
patterns and make the final prediction. As illustrated in Figure 2, ME and MaE
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exhibit fixed temporal motion patterns. Furthermore, it has been observed that
the first and last frames of facial expression (FE) intervals are invariably similar
to neutral frames, as discussed in [8]. Assuming the sliding window is positioned
near the first frame of an FE interval, the aggregated temporal features from the
MTAM will align with the corresponding temporal motion pattern of either MaE or
ME, leading to an accurate prediction. Conversely, suppose the sliding window is
positioned far from the first frame. In that case, a mismatch between the temporal
feature and its corresponding temporal motion pattern will result in the accurate
rejection of negative samples.
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Figure 2. The variation of spatial discrepancy during MaE and ME from the same indi-
viduals in CAS(ME)2. The estimation of spatial discrepancy is based on the similarity
between the spatial static features of the first frame and the current frame. It can be
seen that there is a significant difference between the temporal patterns of MaE and
ME.

The LSDM employs residual convolution to compact spatial features towards
the intersecting facial region of ME and MaE. FEs comprise multiple facial motions;
however, their inner spatial correlations are complex and defy explicit modeling.
Consequently, multi-head attention is utilized to learn the inner spatial correlations
from single frame-level features, yielding attention-weighted static spatial features.
In order to model the spatial discrepancy alongside obtaining static spatial features,
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the difference between the static features of the first frame and the current frame of
the input interval is calculated. The resultant discrepancy feature, being sparse, is
upsampled and integrated with the original static spatial feature to derive a com-
pact local spatial discrepancy feature, which serves as the basis for making spatial
proposals.

The MTAM employs multi-scale temporal convolution to aggregate temporal
correlations and model the motion patterns of FEs. By integrating spatial and tem-
poral proposals as input, MTAM models the temporal motion patterns and makes
the final prediction. Based on a pyramid structure, a temporal search strategy is
adopted to learn the local temporal patterns from local spatial discrepancy features.
MTAM aggregates local spatial discrepancy features across multi-scale temporal
ranges by varying the temporal receptive field. The aggregated features represent
the temporal motion patterns within the input interval and are utilized to generate
temporal proposals. Since neutral frames may suppress FEs features during aggre-
gation, MTAM incorporates spatial proposals to mitigate this effect and make the
final prediction.

Overall, the main contributions of this paper are summarized as follows:

• A novel end-to-end network for FEs spotting from long videos. The proposed
FESNet efficiently extracts spatial discrepancy features and performs multi-scale
temporal aggregation for FEs spotting. Moreover, FESNet surpasses state-of-
the-art methods, offering a novel solution for FEs spotting.

• An efficient LSDM is designed to extract FEs-related spatial discrepancy fea-
tures using residual convolution and multi-head attention. Besides, the LSDM
is constrained by a temporal local diversity loss to model the subtle facial move-
ment.

• A multi-scale MTAM is proposed to incorporate multi-scale temporal corre-
lations and model the temporal motion patterns of FEs. MTAM employs
multi-scale temporal convolution and cascade refinement processes to model
the temporal motion patterns of FEs accurately and make the final predic-
tion.

2 RELATED WORK

2.1 Feature Descriptor-Based Methods

Early FEs spotting methods mainly focus on designing effective feature descriptors
to model the subtle facial motions of FEs. Polikovsky et al. [9] first divided the
face into specific regions and then utilized a 3D-Gradient orientation histogram de-
scriptor to recognize the motion in the corresponding areas. They also considered
the K-Means algorithm and estimated specific ME characteristics in psychological
analysis [10]. Li et al. [11] first proposed to utilize the feature difference contrast
to spotting ME from long videos. They divided the face into 6 × 6 blocks based
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on three tracked facial feature points and then extracted LBP [12] and HOOF [13]
features to analyze the feature difference. All the above three works aim to detect
the onset, apex, and offset frames of ME from long videos. Yan et al. [14] used the
constraint local model to track feature points of the face and employed the LBP
feature from ROIs to measure the difference between frames and locate the apex
frame of ME. Similarly, Liong et al. [15] also utilized LBP from RoIs but com-
bined LBP with a binary search method to spot apex from long videos. Esmaeili
and Shahdi [16] proposed a new LBP-based feature descriptor named Cubic-LBP,
which computes LBP on fifteen introduced planes to grab the most vital informa-
tion and detect apex frame. Davison et al. [17] calculated the chi-square distance
of a 3D histogram of oriented gradients and detected the apex frame automati-
cally.

Diverging from the above methods focused on spotting key frames of ME, Davi-
son et al. [18] proposed a method based on the histogram of oriented gradients to
spotting ME intervals from long videos directly. Li et al. [19] introduced LTP-ML,
applying temporal PCA to windows of specific facial regions for detecting facial
movements associated with ME. Molianen et al. [20] initially divided the face into
block structures and calculated the dissimilarity between blocks of different frames
using chi-squared distance. Threshold-based peak detection was employed for spot-
ting ME intervals in videos. Xia et al. [21] utilized the geometric deformation of
facial regions as a feature descriptor and proposed a probabilistic framework for FEs
spotting. Considering the computational time for ME spotting, Soh et al. [22] pro-
posed a many-core parallel LBP-TOP [23] algorithm to leveraging compute unified
device architecture. Zhao et al. [24] leveraged improved face alignment methods,
more robust optical flow techniques, and superior facial landmark detectors. They
employed a Bayesian optimization hybrid approach for optimizing parameters typi-
cally set manually.

2.2 Optical Flow-Based Methods

Optical flow, a well-established motion estimation method, is widely studied for its
capability to model the subtle facial motions characteristic of ME. Shreve et al. [25]
introduced optical strain, derived from robust optical flow, to analyze FEs. They
further leveraged optical flow to calculate skin strain from non-rigid facial motions,
marking an initial attempt to detect both MaE and ME [26]. Patel et al. [27]
extracted the optical flow from local spatial regions and utilized the direction con-
tinuity to spot the onset and offset frames. To address the problem that optical
flow may be affected by noise, such as head motion, Liong et al. [28] extracted
pixel-wise optical strain magnitudes, generating a feature histogram for ME recog-
nition. Considering the magnitude and angle of optical flow, Guo et al. [29] pro-
posed a novel decision criterion focusing on the four most discriminative facial re-
gions for ME spotting. Similarly, Yan et al. [3] concentrate on the direction of
optical flow, applying a robust method on ROIs to extract the Main Directional
Mean Optical-flow (MDMO) feature. Xu et al. [4] introduced the Facial Dynam-
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ics Map (FDM) to accurately model subtle facial motions for estimating optical
flow between frames. Additionally, Shreve et al. [30] utilized optical strains to
represent non-rigid facial motions and visualize ME progression over time. Zhang
et al. [31], accounting for head movement, proposed a method to separate FE-
related local movements from the global optical flow field, constructing optical flow
sequences as spatial-temporal features for identifying FE intervals from extracted
SP-patterns.

2.3 Deep Learning Methods

Compared with traditional methods, deep learning-based FEs spotting methods
face significant challenges due to the limited available public datasets. Kim et
al. [32] pioneered using CNN to extract spatial features of MEs, leveraging ex-
pression states through objective functions. To elucidate the temporal relations of
ME frames, the extracted spatial features were integrated into Long Short-Term
Memory (LSTM) networks to derive temporal features. ELRCN [33], adopting
a similar strategy to Kim et al., innovated by training CNN and LSTM jointly
to ensure ME features’ internal consistency and to decrease computational time.
Nag et al. [34] introduced a joint network to extract discriminative temporal fea-
tures, distinguishing MEs from rapid muscle movements. Wang et al. [35] in-
troduced MESNet, which employs 2D convolution for spatial feature extraction
and 1D convolution for modeling temporal relations. Yap et al. [36] introduced
3D Convolutional Neural Networks (3D-CNNs) for the simultaneous extraction of
spatial features and analysis of temporal relations. ABPN [6] initially calculates
optical flow using a video encoding module to mitigate noise impact, extracting
temporal features through 1D convolution. The 1D convolution within ABPN’s
PEM module infers frame-level auxiliary probabilities, contributing to the final
prediction. Xie et al. [37] proposed AEM-Net, which extracts features at vari-
ous depths and identifies discriminative ME intervals through an attention mod-
ule.

STCAN [38] accounted for the inconsistency in duration and estimated the
weight of frame-level spatial features in the temporal domain for spotting MaE and
ME intervals within video sequences. Yang et al. [39] proposed using facial action
units (AUs) for MaE and ME spotting. They introduced the Concat-CNN model
to discern the relationships between AUs across distinct frames. LSSNet [40] lever-
aged the I3D [41] model to extract optical flow-related spatial features of a fixed
length, making the final prediction while suppressing location. Liong et al. [42]
approached ME spotting as a regression challenge, employing pseudo-labeling to
enhance learning. The proposed SOFTNet utilized optical flow from specific facial
regions, aggregating scores to detect the apex frame. DynGeoNet [43] aimed to
enhance ME spotting performance through hybrid feature engineering, extracting
robust features from geometric and appearance aspects.
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Figure 3. Illustration of our pipeline. The LSDM extracts the static spatial independent
features x′ and calculates the difference between f ′

0 and f ′
i to obtain x′′. The loss function

LLSDM is employed to guide the LSDM towards extracting distinctive features. Subse-
quently, the MTAM integrates the temporal discrepancy, refining proposals from previous
layers and the LSDM through multi-scale temporal convolution. The dilation parameters
of the multi-scale refinement process are gradually increased to maintain local consistency
and prevent overfitting in global prediction.

3 METHODOLOGY

3.1 Overview

This paper focuses on the task of FEs spotting, and the overall pipeline of the
proposed method is shown in Figure 3. Specifically, the FESNet is composed of
LSDM and MTAM. The LSDM employs residual convolution to circumvent feature
vanishing, modeling the subtle facial motions characteristic of ME as discrepancies
in spatial static features and generating spatial proposals. The MTAM aggregates
temporal correlations to align with ME patterns for temporal proposal generation.
Significantly, MTAM processes spatial proposals and merges them with temporal
proposals, executing final predictions through multi-scale temporal refinement.

3.2 Preprocessing

FEs videos usually contain background information, and the frame rate differs.
Therefore, we sample all original videos in SAMM [44] into 60 FPS (frames per
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second) while maintaining the original frame rate of CAS(ME)2 [45]. Specifically,
for the raw video, we first sample it to 60 FPS, then divide it into intervals of 32
frames according to the duration constraints in the definition of micro-expressions.
We then use these segments as inputs to FESNet. To avoid the interference of
background information and unrelated motion, we crop the face from the original
frames and make face alignment based on the face detection result of MTCNN [46].
We calculate a square box instead of a rectangle to crop the faces. The purpose of
using a square box is to avoid unnecessary interference, which may be caused by
the deformation of facial details during the resizing process before the cropped face
is fed to the network. The preprocessed frames are resized to 112 × 112 pixels as
shown in Figure 5 a).

Figure 4. Illustration of the proposed LSDM. Residual blocks obtain the residual feature
and will be fed into a multi-head attention module to model the inner correlation. With
a loss constraint, the facial motion modeling process will compact the residual map towards
the intersection of ME and MaE.

3.3 Local Spatial Discrepancy Module

As shown in Figure 5, although residual blocks can extract features from the eyes
and mouth, these layers have a low activation response to these regions. To this end,
we utilize a multi-head mechanism to extract the static spatial independent features
f ′
i from the ith frame fi of the input interval. It is worth noticing that f ′

i is not yet
spatial motion features since f ′

i is extracted from a single frame. The spatial motion
features f ′′

i of fi is modeled by the discrepancy between f ′
i and f ′

0. After rearranging
all f ′′

i along the temporal dimension, we obtain the local spatial motion features x′′

of the original x. The main idea of the proposed LSDM is shown in Figure 4. An
attention map models the inner correlation of the input RGB frames and obtains
a refined feature map that can describe FEs. However, MaE-related features will
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dominate the latent space, easily understood by facial intensity. Therefore, we make
the features compact by modeling FEs as the spatial discrepancy and adding loss
constraints, making the model focus on the intersection of the MaE and ME regions.
Such an operation aims to ensure that FEs (mainly ME) can be distinguished from
neutral FEs, and MTAM will distinguish MaE and ME by the temporal motion
pattern.

As shown in Figure 3, for each RGB image from the given interval x, we first per-
form a single convolutional layer and three residual blocks to obtain the unweighted
residual spatial features Xinit. To exclude redundant features in Xinit and enhance
FEs-related features, we construct a multi-head attention module of depth D with
the number of heads H. D and H are set to 4 and 8, respectively. With the
attention-weighted spatial features, XAtten, we first perform two residual blocks to
obtain the deeper features x′, and then repeat f ′

0 for N times to obtain x′
base:

x′′ = ReLU (BN (DeConv (x′ − x′
base)) +XAtten) , (1)

where DeConv(·) denotes deconvolution, ReLU(·) and BN(·) denote activation and
normalization, respectively.

a) Input b) Res-Block 1 c) Res-Block 2 d) Res-Block 3 e) x′ f) x′′

Figure 5. The original input frames of the proposed FESNet and feature maps from differ-
ent layers of LSDM. It can be seen from b), c), and d) that feature maps of residual blocks
cannot focus on crucial facial regions such as eyebrows and mouth. As for e) and f), these
feature maps are feature maps before and after calculating spatial discrepancy. It can be
seen that the salient regions (regions in red box) in x′′ are much smaller than that in x′.
We explain that the spatial discrepancy calculation excludes redundant facial features un-
related to FEs, making the network focus on specific areas and effectively improving the
accuracy of FEs spotting.
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3.4 Multi-Scale Temporal Aggregation Module

Although the LSDM can capture subtle facial motion, the process is temporal in-
dependent and thus cannot be directly used for FEs spotting. To efficiently spot
ME and MaE intervals based on the differences in temporal motion pattern, we
construct the multi-scale temporal aggregation module, extracting multi-scale tem-
poral correlation from x′′ and making final prediction based on spatial and temporal
proposals and multi-scale refinement.

As shown in Figure 3, the MTAM first aggregates the temporal correlation
by five 1D convolutions with the same kernel size but different temporal receptive
fields (the numbers in parentheses). The aggregated temporal correlation can be
seen as the temporal pattern of the input interval. It will match the ME pattern in
latent space, resulting in temporal proposals. To avoid the repression of FEs frames
caused by a large number of neutral frames in temporal proposals, the MTAM will
also consider spatial proposals and make the final prediction by multi-scale temporal
refinement. The refinement includes S basic blocks composed of 1D convolutional
layers with different dilation operations, where S is set to 2 in our experiment,
respectively. These basic blocks can be described as:

Xs
l =

W s
l ∗ softmax

(
Xs−1

4

)
+ bsl , l = 0,

ReLU
(
BN

(
W s

l ∗Xs
l−1 + bsl

))
, else,

(2)

where W s
l and bsl are the weights and bias vectors of 1D convolution, l ∈ [0, 4],

s ∈ [0, S), the dilation parameter of lth layers in basic blocks is 2l. With different
dilation operations, layers in basic blocks have different temporal local receptive
fields, and the max dilation parameters match the duration of ME with a frame
rate of 32. The gradual increase of the dilation parameters is to refine the proposals
of previous layers, and the smaller dilation parameters ensure local consistency,
alleviating the over-segmentation. Meanwhile, the larger dilation parameters ensure
that the receptive fields are wide enough to obtain the global pattern of the input
interval. Besides, each basic block refines the previous basic block’s output, given
input x = {f0, f1, . . . fn}, the lth 1D convolutional layer in Sth basic block of MTAM
will make frame-level proposal pS|l restored in PMTAM = {p0|0, . . . p0|l, . . . , pS|l}.

3.5 Loss Function

To make sure the LSDM can extract more discriminative spatial features and the
MTAM can make a more accurate and smoother prediction, we introduce LLSDM

and LMTAM in our method. For LLSDM , we calculate:

LLSDM = − 1

log
√∑

(x′′ −M(x′′))
, (3)
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where M(·) denotes the mean operation. The main purpose of LLSDM is to discard
redundant features to capture the subtle facial motions and reduce the deviation
within spatial static features, which is a trade-off. Irrelevant factors are more sig-
nificant than the subtle motion of ME, which will increase the deviation within the
spatial static features. This will cause a mix of ME and neutral FEs in the latent
space, leading to the failure of FEs spotting. We tried other solutions to make sam-
ples away from each other, but the scarcity and specificity of ME samples make deep
learning-based methods not applicable to solve this problem. Besides, a more com-
plex form of the LLSDM will lead to an unstable training process on some extreme
FEs samples.

For LMTAM , we use a weighted cross entropy loss LCE and a mean square error
based smooth loss Lsmooth. Given labels Y = {y0, y1, . . . yn} and final output O =
{o0, o1, . . . on}, LMTAM can be expressed as:

LMTAM = LCE + γLsmooth,

LCE = −
∑
n

3∑
c=1

wcyn log (on) ,

Lsmooth =
1

S

S∑
i

l∑
j

(
p
i|j
[1:n] − p

i|j
[0:n−1]

)2

,

(4)

where wc is the inverse of the proportion of neutral, ME, and MaE in the corre-
sponding dataset, γ is the weight of Lsmooth and is set to 0.15 empirically according
to our experiments, as shown in Table 4. The final loss function is:

L = LLSDM + LMTAM . (5)

4 EXPERIMENTS

4.1 Datasets

To evaluate the proposed method, we conducted a five-fold cross-validation on
CAS(ME)2 and SAMM. CAS(ME)2 contains 98 long videos with a frame rate of
30 FPS, including 57 ME and 300 MaE samples. SAMM contains 224 long videos
with a frame rate of 200 FPS, including 159 ME samples and 343 MaE samples. In
addition, we also sampled the videos in SAMM to alleviate the problem of significant
frame rate difference, and the frame rate of the sampled videos was 60 FPS.

4.2 Evaluation Metrics

In this paper, we report three evaluation metrics to prove the performance of the
proposed FESNet on the task of FEs spotting, including frame-wise accuracy Acc,
F1-score with IoU of 0.5 [47] and edit score Edit. Both Acc and Edit are calculated
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similarly as [48]. Given the input interval x = {f0, f1, · · · , fn} of n frames and
corresponding labels Y = {y0, y1, · · · , yn}, FESNet will make the final output O =
{o0, o1, · · · , on}, the frame-wise accuracy Acc can be formulated as:

Acc =
O ∩ Y

O ∪ Y −O ∩ Y
. (6)

The F1-score of FEs spotting is different from that of traditional classify tasks.
The true positive (TP) is determined based on the Intersection over Union (IoU) of
Y and O:

TPO,Y =

1, O∩Y
O∪Y ≥ Tthreshold,

0, otherwise,
(7)

where Tthreshold is set to 0.5 in our experiment. Given input of Rn FEs intervals and
prediction of Pn FEs intervals, the F1-score of FEs spotting is:

Recall =
TP

Rn

,

Precision =
TP

Pn

,

F1-score =
2× Recall× Precision

Recall + Precision
=

2T

RN + PN

.

(8)

In addition to Acc and F1-score, we also report edit score Edit to compare the
difference between FEs labels and the prediction of FESNet. Edit is a quantitative
measure of the difference between two strings and can be formulated as:

Edit = 100×
(
1− levGT,Pred(i, j)

n

)
, (9)

levY,O(i, j) =

max(i, j), if min(i, j) = 0,

minY,O(i, j), otherwise,
(10)

min
Y,O

(i, j) = min


leva,b(i− 1, j) + 1,

leva,b(i, j − 1) + 1,

leva,b(i− 1, j − 1) + 1(ai ̸=bj).

(11)

4.3 Results and Analysis

To the best of our knowledge, we are the first to report not only the F1-score but also
the edit score and frame-wise accuracy to further investigate the proposed method’s
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Methods
CAS(ME)2 SAMM

F1MaE F1ME F1Overall F1MaE F1ME F1Overall

Li et al. [19] (2019) – 1.79 – – 3.16 –
He et al. [49] (2020) 11.96 0.82 3.76 6.29 3.64 4.45
Zhang et al. [31] (2020) 21.31 5.47 14.03 7.25 13.31 9.99
MESNet [35] (2021) – 3.60 – – 8.80 –
DynGeoNet [43] (2021) – 5.01 – – 9.74 –
STCAN [38] (2021) 12.50 2.50 11.68 14.69 1.25 12.57
Concat-CNN [39] (2021) 25.05 1.53 20.19 35.53 11.55 27.36
SOFTNet [42] (2021) 24.10 11.73 20.22 21.69 15.20 18.81
LSSNet [40] (2021) 38.0 6.3 32.7 33.6 21.8 29.0
3D CNN [36] (2022) 21.45 7.14 16.75 15.95 4.66 10.84
ABPN [6] (2022) 33.57 15.90 31.17 33.49 16.89 29.08
Our Method 41.34 17.90 34.29 44.24 22.46 33.20

1. The best results are marked in bold font.
2. ‘–’ indicates that the corresponding metric is not reported in the original literature.

Table 1. Comparison with the state-of-the-art methods on CAS(ME)2 and SAMM

performance in FEs spotting. The proposed FESNet and state-of-the-art methods’
quantitative comparison is shown in Figure 1.

It can be seen that the F1-score of early FEs spotting methods needs to be
more satisfactory, and even some deep learning-based methods fail on ME spotting.
The failure of early FEs spotting methods is that these methods mainly focus on
feature descriptors to explicitly extract the motion patterns of ME. Besides, most
early FEs spotting methods rely heavily on empirically selected thresholds. Some
deep learning-based methods fail to spot FEs because the distribution of samples in
ME datasets is unbalanced. A few deep learning-based methods converge to neutral
FEs, failing MaE and ME spotting. Most deep learning-based methods can spot
MaE intervals but fail to distinguish ME from noise and neutral FEs.

The quantitative experiment shows that our method significantly outperforms
the existing methods, especially in the F1-score of MaE spotting, which is improved
by 8.7% to 23% on CAS(ME)2 and 31.7% to 32% on SAMM. Moreover, the spotting
performance of ME is improved by 12.6% on CAS(ME)2 and 33% on SAMM. It can
be observed that both Acc and Edit drop significantly on SAMM compared to that
on CAS(ME)2, while the F1-score of ME and MaE is relatively high. This is because
SAMM’s high-speed camera captures lots of MaE with low intensity. Although we
have sampled the raw sequences, many low-intensity MaE are still easily confusing
with ME. Besides, the raw videos in SAMM are much longer than that in CAS(ME)2,
which means there are more negative samples in SAMM, resulting in the low score
of Edit and Acc.

In order to evaluate the performance of the proposed FESNet more comprehen-
sively and avoid data coincidences, a five-fold cross-validation experiment was con-
ducted on CAS(ME)2 and SAMM. We found that dataset partitioning significantly
impacts FEs spotting and may even directly determine the overall performance of
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CAS(ME)2 SAMM
F1MaE F1ME F1Overall Edit Acc F1MaE F1ME F1Overall Edit Acc

Fold 1 40.04 15.87 34.08 88.50 90.53 55.49 18.26 42.34 52.72 59.80
Fold 2 45.30 13.81 39.89 87.33 91.12 40.82 21.19 26.52 42.91 50.51
Fold 3 34.99 22.85 25.58 74.72 82.31 45.03 26.31 35.32 44.16 49.57
Fold 4 45.82 13.83 38.05 78.47 84.72 47.35 29.60 35.75 65.98 71.08
Fold 5 40.54 23.11 33.85 70.71 76.66 32.48 16.96 26.05 57.75 63.14

Overall 41.34 17.90 34.29 79.95 85.07 44.24 22.46 33.20 52.71 58.82

1. The best result of each metric on each dataset is marked in bold font.

Table 2. Five-fold cross validation of proposed methods on CAS(ME)2 and SAMM

the corresponding method from the numerical level. The quantitative comparison
of the five reported metrics during the five-fold cross-validation experiment is shown
in Figure 2. It can be observed that all five reported metrics vary significantly with
different partitions of the dataset. We believe this is mainly caused by the distri-
bution of FEs intervals in different long videos. Since multiple FEs intervals exist
in a single original video, the dataset is divided according to the original video to
avoid sample duplication.

Furthermore, this may lead to differences in the proportion of actual samples in
the training and validation sets among different partitions. Moreover, even from the
same individuals, there is a significant difference between hard and easy samples,
and thus, we cannot ensure that these two kinds of samples are always balanced.
This also proves the necessity to conduct cross-validation in FEs spotting tasks.
Besides, the Edit and Acc on SAMM are relatively low. We believe that the higher
frame rate of SAMM causes this. Although the high-speed camera SAMM uses
can capture the fine-grained facial motions of FEs, the recorded frames will con-
tain more FEs frames, which are much more similar to neutral frames. Besides,
more negative samples are in SAMM, resulting in degraded FEs spotting perfor-
mance.

In addition, we found that there seems to be a game relationship among the
five indicators, as shown in Figure 6. We believe that the similarity between ME
and neutral frames causes this. When network weights are too biased towards
MaE, low-intensity ME is more likely to be classified as a neutral frame. On the
contrary, when the network weights are too biased toward ME, MaE with relatively
low intensity and neutral frames with local facial motion will be classified as ME.
Similarly, the classification weight of LCE also significantly impacts the performance
of FEs spotting. This is mainly due to the unbalanced distribution of neutral and
FEs frames in long videos. Moreover, ME with high intensity and MaE with low
intensity are also easily confused. Hence, the performance of FEs spotting is sensitive
to the weight of the loss function LCE .

Figure 8 shows the results of FESNet on the FEs spotting task, where it can
be seen that the ME and MaE intervals in ground truth are segmented into many
short intervals separated by neutral frames in the proposal of LSDM. The multi-
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a) CAS(ME)2 b) SAMM

Figure 6. Experimental records of the five metrics reported in this paper on CAS(ME)2

and SAMM

scale refinement of MTAM will aggregate the discrete short intervals into relatively
more complete FEs intervals. However, the refinement will also make short false
positive intervals more obvious. The neutral frames near false positive intervals in
the LSDM proposal are predicted as FEs in the final prediction. In addition, since
FESNet is mainly designed for ME spotting, MaE spotting is likely to fail when
there is a MaE with significant head movement in the original input, which is also
one of the limitations of FESNet.

F1-score
Edit Acc

MaE ME Overall

w/o LLTDM 49.83 15.88 38.24 46.37 53.79
w/o MTAM 47.24 9.35 36.62 54.78 58.11
FESNet 55.50 16.26 42.34 52.72 59.80

Table 3. Ablation studies on SAMM

4.4 Ablation Studies

We carried out ablation studies on SAMM to explore the effectiveness of LLSDM and
MTAM. The quantitative results are shown in Figure 3. It can be observed that the
FEs spotting performance drops obviously without the constraint of LLSDM . This is
because the constraint of LLSDM is to make the LSDM extract facial motion-related
features. With the absence of LLSDM , the LSDM will extract motion-irrelevant
spatial static features which interfere with FEs spotting, especially when there is
FEs-irrelevant motion in neutral frames.



474 B. Zhang, J. Lu, C. Wang, G. He

γ
F1-score

Edit Acc
MaE ME Overall

0.00 45.22 1.63 40.25 86.89 89.33
0.05 39.92 6.89 33.23 85.29 87.91
0.10 40.91 12.50 34.66 86.49 90.07
0.15 45.30 13.81 39.89 87.33 91.12
0.20 47.18 4.51 41.54 86.99 90.49
0.25 48.16 3.10 40.19 85.70 90.39
0.30 49.63 6.25 43.93 85.42 89.31

Table 4. Analysis of the impact of γ. Experiments were conducted on CAS(ME)2 to
analyze the impact of the weight of Lsmooth on the performance of FESNet.

a) residual blocks b) LSDM

Figure 7. TSNE visualization results of feature distribution obtained by residual blocks
and LSDM. Colors indicate different FEs: red for neutral FEs, green for MaE, and blue
for ME. As can be seen from the red box area, the class centers of LSDM features are
further apart, leading to a better result, especially for the classification of neutral FEs and
ME.

As shown in Figure 7, it can be found easily from the areas marked by red
boxes that the distribution of neutral FEs and ME from residual blocks are mixed,
which the proposed LSDM alleviates. The visualization results show that the pro-
posed LSDM can extract more discriminative spatial static features, especially for
ME and neutral FEs. In addition, the FEs spotting performance drops more
obviously in the absence of MTAM. As shown in Figure 8, the proposals from
LSDM for FEs spotting are unstable within the input interval, resulting in the
low-performance in Figure 3. Without the MTAM incorporating the multi-scale
temporal correlation, the final prediction depends on the independent spatial fea-
tures. Thus, the frame-wise classification results do not contain the correlation in
the temporal dimension. Therefore, the FEs spotting results will suffer from se-
vere over-segmentation, one of the main challenges in FEs spotting. Besides, we
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found a fascinating phenomenon: individuals’ identifying information will specif-
ically impact FEs spotting. As shown in Figure 7, multiple cluster centers ex-
ist for the same FEs. Each cluster center represents an individual in the latent
space.

…

Ground Truth

Proposals from LSDM

Final Prediction

Neutral ME MaE

… …

…

…

…

…

…

…

…… …

Figure 8. Visualization of the FEs spotting results of our method. Although there are still
failure cases in the final prediction, the over-segmentation has been effectively alleviated
compared with the proposals of LSDM.

5 CONCLUSION

This paper proposes an end-to-end FESNet network to extract efficient spatial and
multi-scale temporal features. Comprehensive experiments show that our method
can extract more discriminative spatial features and effectively model the temporal
motion pattern of FEs. Besides, the proposed FESNet significantly outperforms
existing state-of-the-art methods and supplies a new solution for FEs spotting. In
our future work, we will combine FESNet with 3D CNN to extract the spatial
features and simultaneously model the temporal motion pattern. In addition, we
also plan to introduce biological models and consistency loss constraints to achieve
better performance in ME recognition and generation.
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