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Abstract. In the realm of single-image super-resolution (SISR), generating high-
resolution (HR) images from a low-resolution (LR) input remains a challenging task.
While deep neural networks have shown promising results, they often require sig-
nificant computational resources. To address this issue, we introduce a lightweight
convolutional neural network, named BTAN, that leverages the connection between
LR and HR images to enhance performance without increasing the number of pa-
rameters. Our approach includes a target transform module that adjusts output
features to match the target distribution and improve reconstruction quality, as well
as a spatial and channel-wise attention module that modulates feature maps based
on visual attention at multiple layers. We demonstrate the effectiveness of our ap-
proach on four benchmark datasets, showcasing superior accuracy, efficiency, and
visual quality when compared to state-of-the-art methods.
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1 INTRODUCTION

Single image super-resolution (SISR) is a notoriously challenging problem in low-
level computer vision tasks because the high-resolution (HR) space is mismatched
with the low-resolution (LR) space [1]. Every LR image can potentially match
many HR image patches, leading to the problem of successfully restoring. Until
recently, many convolutional neural networks (CNN) based methods have been pro-
posed [2, 3, 4, 5, 6, 7, 8, 9], which provide an outstanding performance than the
conventional methods. For example, compared with the interpolated methods, the
recently transformer-based methods [10, 11, 12] show superior advantages in upsam-
pling accuracy. However, most accurate models are enormous in size and heavy in
processing time, which cannot meet the requirement of real-world applications. To
solve the SISR problem in a practical way, we need to consider both model accuracy
and model efficiency.

Deep learning makes big help to the model accuracy, SRCNN [13] using only
three convolutional layers has successfully improved the performance of SISR a lot.
Since then with the success of deep learning in many other computer-vision tasks,
many methods have been applied to SISR area, such as residual connection [14, 15],
hourglass structure [16], recursive learning [17, 18], dense connection [19, 20], atten-
tion mechanism [21], and transformer [10, 11, 12]. These methods which have been
proven in other computer-vision tasks can also be adopted in SISR. However, simply
applying these advanced technologies does not always promise better performance.
Stacking a deeper network can somehow receive an improvement in performance,
but a giant model immediately leads to the problem of hard training and time ex-
penditure. It seems that using more residual blocks can get a nice result; however,
there is still a limitation to putting that to an extremity. To address the problem
of gradient vanishing, adopting dense connection can enrich the pathways of the
network which finally help with the results. Channel attention and space attention
better utilize the extra channel and space information to help with upsampling from
an information-deficient LR image. All the above methods can contribute to the
model’s accuracy, but they mostly need to add some blocks or adopt some mech-
anism that will add an extra burden on the original model. Can we change the
network’s inner running state without the expense of adding more parameters?

Global residual learning has been proven to improve VDSR significantly [14]; it
forms a pathway to let input directly flow to the output and let the main network
learn the residual part of the LR and HR. The network backbone learning target
changes from HR to the residual of HR and LR. The network output takes the
sum of the backbone target and input, and we know that the output will be close
to HR through training. So we can formally define a way to reversely calculate
the network backbone target. Let T be the network backbone target, and when
there is no modification at the bottom of the network, the raw backbone target Traw

approximately equal to HR output, as

Traw ≈ IHR, (1)
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when input flow as a residual to the backbone target, the sum of both is approxi-
mately equal to HR, so the residual backbone target Tresidual can be expressed as

ILR + Tresidual ≈ IHR, (2)

Tresidual ≈ IHR − ILR, (3)

where ILR denotes the LR input, IHR denotes the HR ground truth.
Changing the network backbone learning target will not cost any extra param-

eters, and even, if found, a better target will lessen the burden of the network and
the network can have a better result. Kong and Fowlkes [22] proposed using the
predictive filter to address the problem of SR which generates a good result. In their
model, the network backbone learning target learns the quotient of HR and LR and
has a generally better result. Here the backbone target elementwise multiplies the
LR input, and finally approximately equal to the HR ground truth, expressed as

ILR ⊙ Tquotient ≈ IHR, (4)

Tquotient ≈ IHR/ILR. (5)

By observing these facts, we wonder if there may be a better relationship between
HR and LR to learn in backbone target. The above relationships between LR and
backbone target are depicted in Figure 1.

By exploring the above phenomena, we propose a network backbone target trans-
form attention dense network (BTAN) for lightweight super-resolution. We first
build a lean base network on a modified DenseNet [23]. The enriched pathways in
DenseNet help with ease of training and bring superior performance. Drawing inspi-
ration from the demonstrated efficacy of the Channel-Spatial Attention Mechanism
(CSAM) in enhancing feature representation and image reconstruction quality [24],
we have integrated this mechanism into our basic network architecture. This strate-
gic inclusion aims to synergistically leverage both channel-wise and spatial informa-
tion, significantly enhancing the network’s ability to discern and emphasize pivotal
features for improved super-resolution performance. And at the end of our network,
we experiment with different network targets which are different algebra equations
of HR and LR. Finally, we find a better network backbone target that has the best
performance on our base network. By changing the backbone target, we realize the
aim of improving model accuracy without adding extra parameters. In addition to
the BTAN model, we also discussed the effectiveness of using different patch sizes
in training an SR model, we found at a limitation, a larger patch size will guarantee
a better training result.

In summary, our main contributions are as follows:

• We propose a novel convolutional neural network called BTAN that incorporates
target transform and attention mechanism for image super-resolution.

• We design a target transform module that learns to adjust the output features
to match the target distribution and improve the reconstruction quality.
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• We introduce a spatial and channel-wise attention module that dynamically
modulates the feature maps according to the visual attention at multiple lay-
ers.

• We evaluate our method on four benchmark datasets and show that it out-
performs state-of-the-art methods in terms of accuracy, efficiency, and visual
quality.

a) raw target b) additive target c) multiple target d) exploring target

Figure 1. Different network backbone target

2 RELATED WORK

Recently, the deep learning techniques applied to Single Image Super Resolution
(SISR) make this area rapidly progress. The SISR focuses on restoring high-quality
images from low-resolution images, the prominent aim is to accurately learn the
mapping between these two. So we will first review the accurate deep learning-
based SISR in Section 2.1. Another requirement of SISR is efficiency, a good model
which has small parameters and calculations can better suit real-world applications.
We will review it in Section 2.2.
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2.1 Accurate Image Super Resolution

Super-resolution (SR) aims to generate a high-resolution (HR) image from a low-
resolution (LR) input image. Accurate image super-resolution is crucial for a wide
range of computer vision applications such as medical imaging, satellite imagery,
and surveillance. In recent years, several deep learning-based methods have been
proposed to improve the accuracy of super-resolution.

One of the earliest deep learning-based methods is SRCNN proposed by Dong
et al. [13] which utilizes a three-layer convolutional neural network (CNN) to learn
an end-to-end mapping from LR to HR images. Later, Kim et al. [14] introduced
a deeper model, VDSR, that includes 20 convolutional layers and residual connec-
tions to improve the accuracy of super-resolution.

One popular approach is the use of deep neural networks, such as the Residual
Dense Network (RDN) proposed by Zhang et al. [21]. RDN is a deep neural network
that uses densely connected residual blocks to extract and integrate multi-scale
features.

To further improve the accuracy, SRGAN proposed by Ledig et al. utilizes a gen-
erative adversarial network (GAN) [25] to generate realistic and sharp HR [26].
Similarly, ESRGAN proposed by Wang et al. enhances the SRGAN model by incor-
porating a residual-in-residual dense block and a perceptual loss function to produce
even more accurate super-resolved images [27].

Another approach to improve the accuracy of super-resolution is by incorporat-
ing attention mechanisms. For instance, RCAN proposed by Zhang et al. utilizes
a residual channel attention network to selectively focus on the most informative
image features during the SR process, resulting in a significant improvement in
accuracy [20].

In summary, accurate image super-resolution has been greatly improved by deep
learning-based methods that incorporate various techniques such as residual con-
nections, GANs, and attention mechanisms. Although these methods have achieved
state-of-the-art performance in terms of objective and subjective image quality met-
rics, they unavoidably introduce new structures at the expense of more new param-
eters.

2.2 Efficient Image Super Resolution

Lightweight image super-resolution is an important research area in computer vi-
sion, where the goal is to develop computationally efficient and parameter-reduced
methods that can generate high-quality high-resolution images from low-resolution
images. In this related work, we will discuss some of the recent developments in
lightweight image super-resolution methods.

Building a lean model for efficient image super-resolution can have three main
pathways, first is building a normal good model and then compressing the model
using model distil or model pruning, second is using the technique of recursive
learning, third is directly building a lean and impressive model.
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To address the computational cost issue, Shi et al. proposed an efficient sub-
pixel convolutional neural network (ESPCN) for image super-resolution [28]. The
ESPCN method utilizes sub-pixel convolutional layers to upsample low-resolution
feature maps, thus reducing the computational cost of the method while maintaining
high accuracy.

Another approach to lightweight image super-resolution is through the use of
deeper neural network architectures. Kim et al. proposed the Deeply-Recursive Con-
volutional Network (DRCN) for image super-resolution [17]. DRCN employs a deep
neural network architecture with recursive layers to learn the mapping between low-
resolution and high-resolution images. This method achieves the state-of-the-art
performance with a relatively small number of parameters.

Memory networks (MemNet) are another popular approach to the lightweight
image super-resolution [29]. MemNet employs a memory block architecture that can
learn complex mappings between low-resolution and high-resolution images while
maintaining a small number of parameters. This method achieves the state-of-the-
art performance on benchmark datasets with reduced computational cost and the
number of parameters.

Recently, several methods have been proposed that employ residual connections
to improve the accuracy of super-resolution. For example, the Deep Recursive Resid-
ual Network (DRRN) [18] employs a deep neural network architecture with residual
connections to learn the mapping between low-resolution and high-resolution images.
The method achieves state-of-the-art performance with a relatively small number of
parameters.

Some of these methods simplify the network structure by reducing the number
of layers or channels [30, 31], while others introduce novel modules or operations to
enhance the feature extraction or reconstruction ability [32, 33]. However, most of
these methods ignore the close relationship between LR and HR images, which can
be exploited to improve the SR quality without increasing the model complexity.

In conclusion, lightweight image super-resolution is an important research area
in computer vision. Recent developments in this field have focused on improving
the accuracy of super-resolution while reducing the computational cost and num-
ber of parameters. These methods have employed sub-pixel convolutional layers,
deeper neural network architectures, memory block architectures, residual connec-
tions, content-aware residual blocks, and attention mechanisms to achieve state-of-
the-art performance with reduced computational cost and the number of parame-
ters.

3 PROPOSED METHOD

3.1 Network Structure

As mentioned in Section 1, we propose one lightweight super resolution model,
BTAN, as shown in Figure 2, which mainly consisted of three parts, feature extrac-
tion (FE), Channel-Spatial Attention Dense Block Group (CADBG), and backbone



420 P. Wang, Z. Wu, Z. Ding, B. Zheng

output Transform (Trans). Our BTAN model is based on RDN [20]. We refined
the basic block of RDN with Channel-Spatial Attention Module (CSAM) as our
new basic block, CADB is shown in Figure 2 b). We stack a few of these CADB
blocks into a group to form our network backbone. Except for the backbone, we
use nearest upsampling to upsample our input, forming an algebra transformation
between backbone output and upsampled input.

Different from most other light-weight models, we choose to build our model
from a concise yet fine baseline model. We start from a very small model, this will
give us three folds of benefits, firstly it will simplify the model intro-relationship
and allow us to better explore the correlations of different parts, secondly it will
save the training resources including time resource and equipment resource, thirdly
by exploring all the other none-parameter-increasing techniques, if we can improve
the model performance, that will exactly echo with our proposed light-weight aim –
improving model accuracy without adding an extra parameter.

To explicitly express the network flow in BTAN, let ILR be the input and H be
a convolution function. Then we can define the extracted feature FFE as

FFE = HFE(ILR). (6)

And then, the extracted feature will flow into a group of CADBs, the feature will
pass through each CADB and then at the end concatenate all the previous features
and fuse into one share. Let F i as the ith CADB output feature, H i

CADB as the ith

CADB convolve function, then we have:

Fi = H i
CADB(Fi−1)

= H i
CADB

(
H i−1

CADB

(
. . .

(
H1

CADB(F1)
)
. . .

))
, (7)

finally, we let HGFF as the concatenate fuse function, expressed as

FCADBG = HGFF ([F1, F2, . . . , Fi]), (8)

where FCADBG denotes the output feature passed through CADBG block. Here
HGFF is a pointwise convolution operation which can shrink the concatenated chan-
nels into a normal number of channels. The global feature fusion will try to capture
each level of information, to form a more integrated global feature.

After extracting the global and local features from the LR space, we upsample
the backbone output to the same size of output with sub-pixel upsampling. And
then also directly upsample the raw input to the same size with a simple nearest
upsampling. Combined these two features, the backbone output feature and LR
feature, with some generic relationship, we formed the transformed output feature
Ftrans, expressed as

Ftrans = HnearUP (ILR) ∗HsubpixUP (FCADBG), (9)
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whereHnearUP denotes the nearest upsampling operation, HsubpixUP denotes the sub-
pixel [28] upsampling operation. The ∗ operation represents a form of a functional
relationship between these two upsampled features. And this is what we will explore
in our paper, to see the details of final chosen ∗ operation, please refer to Table 2.

And finally, with a last simple 3 × 3 convolution operation, we get our model
output ISR, expressed as

ISR = Hlastconv(Ftrans)

= HBATN(ILR), (10)

where Hlastconv denotes the last convolution operation, HBATN denotes the function
of our BATN.

3.2 Channel-Spatial Attention Dense Block

Now we present details about our proposed Channel-Spatial Attention Dense Block
(CADB) in Figure 2 b). It mainly consists of three parts, dense connection, local
feature fusion (LFF) and channel-spatial attention mechanism (CSAM). The intro-
duced dense connection can help fully extract the features that pass through the
network and also lessen the training difficulty. To maintain a consistent feature
channel, use a local feature fusion to reduce the enlarged feature channels caused by
dense connections. While the Local Feature Fusion (LFF) effectively amalgamates
the diverse features extracted, the CSAM elevates this process by offering more
adaptive and nuanced selection. It recognizes and emphasizes the distinct charac-
teristics inherent in different channels and spatial blocks through learned weighted
factors. This unique capability of CSAM, combined with LFF’s method of filtering
the most influential features, enriches the feature extraction process. Additionally,
the use of skip connections in our architecture ensures the retention of essential
original features, culminating in a robust and efficient super-resolution framework.

Let Fd−1 and Fd be the input and output of the dth CADB 3 × 3 convolution
function and both of them haveG0 feature maps. The output of Fd can be formulated
as

Fd = σ(Wd[Fd−1, . . . , F1]), (11)

where σ denotes the activation function. Wd is the weight of the dth Conv layer.
[Fd−1, . . . , F1] refer to the concatenation of feature maps produced by the previous
Conv layers. Each Conv layer accepts the previous concatenation feature maps and
outputs the same G0 feature maps. The dense connections help every Conv layer
connects to any previous Conv layer which results in a very deep feature extraction.

Local feature fusion is used to keep the output feature maps consistent with
outside CADBs. Concatenate the previous d Conv layers feature maps and the last
direct output of dth Conv layer, which results in (d+1)G0 feature maps. Apply the
function of LFF, the output feature FLFF can be expressed as

FLFF = HLFF ([Fd, Fd−1, . . . , F1, FD], (12)
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a) BATN

b) CADB

c) CSAM

Figure 2. Overview of the network architecture
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where the HLFF denotes the feature fusion convolution function, which is a 1 × 1
pointwise convolution. It mainly shrinks the concatenated feature map channels into
a smaller number of channels. Using this feature fusion can prevent the network grow
very huge and also can help filter out the redundancy feature maps.

The Channel-Spatial Attention Mechanism (CSAM) is shown in Figure 2 c). We
use this CSAM to help us capture channel-wise and spatial-wise information. This
mechanism is realized by two weight initialize functions Φc and Φs, using it we can
get the channel descriptor α and spatial descriptor β. And then applying these
weights to the input feature V , we get the weighted feature Vw as

α = Φc(ht−1, V ),

β = Φs(ht−1, fc(V, α)), (13)

Vw = f(V, α, β).

Specifically, to compute the spatial attention, we firstly apply average-pooling
and max-pooling operations across the channels axis and then the pooled features
will be concatenated and convolved by a standard convolution layer, finally by using
an activate function to form the 2D spatial attention map. The spatial descriptor β
can be formed as

β = Φs(V ),

β = σ(f 7×7([AvgPool(V );MaxPool(V )])),
(14)

where σ denotes the sigmoid function, f 7×7 represents a convolution operation with
the filter size of 7× 7 and V denotes the input feature.

The channel attention map is a one dimension channel-wise descriptor Mc ∈
RC×1×1. We first apply average-pooling and max-pooling to aggregate the spatial
information of a feature map, generating two one dimension spatial context descrip-
tors: F c

avg and F c
max. Here c denotes then number of channels. And then both spatial

context descriptors will be forwarded to a shared multi-layer perceptron (MLP) net-
work, this shared network only contain one hidden layer with a activation size of
RC/r×1×1, where r is the reduction ratio. After the forwarding of shared network, we
merge the output feature vectors using element-wise summation and finally by using
an activate function to form the 1D channel attention map. The channel descriptor
α can be formed as

α = Φc(V ),

α = σ(MLP (AvgPool(V )) +MLP (MaxPool(V ))),
(15)

where σ denotes the sigmoid function, MLP denotes the shared multi-layer percep-
tron network and V denotes the input feature.

Finally, we add a skip connection from the input to the CSAM output, restoring
some information lost and helping the gradient flow. The output of CADB FCADB
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expresses as
FCADB = FI + FCSAM , (16)

where FI denotes the input of the CADB, FCSAM denotes the output of CSAM.

3.3 Backbone Output Transform

As mentioned in Section 1, we try to perform a novel transform on the backbone
output, which can directly improve the model performance without adding more
expenditure. The most common transforms are

1. direct mapping the output to the target,

2. adding the original LR to form a residual connection,

3. multiplying the output with the original LR.

However, none of the studies seriously discussed the effects of these transforms and
had a real exploration of these transforms. Here, we first use the nearest upsam-
pling to upscale the LR input to the size of the backbone output, and then we let
the backbone output and the upscaled LR input have some arithmetic operations
between. The transformed output Ttrans expresses as

Ttrans = U(ILR) ∗ Tbackbone, (17)

where U(ILR) denotes the upsampled LR input, Tbackbone denotes the backbone
output and ∗ represents the arithmetic operations we use. And this is what we
will explore in our paper, to see the details of final chosen ∗ operation, please refer
to Table 2.

4 EXPERIMENTS

In this section, we present a comprehensive quantitative and qualitative evaluation of
our approach. We first discuss the setup and datasets employed in our experiments.
And then the detail of implementation and comparison with other methods are
covered. Finally, we will discuss the effectiveness of our method in the ablation
section.

4.1 Experimental Setup

Datasets and metrics. For training the proposed backbone target transform at-
tention dense network, we employed the widely used DIV2K [34] image dataset.
There are 1 000 high-quality images in the DIV2K dataset, where 800 images
are for training, 100 images for validation and the other 100 images for testing.
We select 785 images from DIV2K which the height and width is over 1024 pix-
els, this is because we use a large patch size in our experiment training. In the
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testing, four standard datasets, i.e., the Set5 [35], Set14 [36], BSD100 [37] and
Urban100 [38] were used as suggested by the EDSR paper [15]. Following the
setting in [33], we evaluated the peak noise-signal ratio (PSNR) and SSIM [39]
on the Y channel of images represented in the YCbCr (Y, Cb, Cr) colour space.

4.2 Implementation Details

Regarding the implementation of the BTAN network, we first increase the channels
from 3 to 16 using a 3 × 3 convolution operation, which will keep our network
small enough initially. And then again we use a 3 × 3 convolution layer to extract
the shallow features, maintaining the 16 channels. We set the 8 CADBs in CADB
group, and each CADB consists of 4 3 × 3 Conv layers. The channels of each
input and output of the CADB are always 16, cause we use feature fusion to reduce
the increased channels. Except the feature fusion layers use the 1 × 1 convolution
operation, all the other convolution kernel is set to 3 × 3. The Trans layer is an
arithmetic operation between input LR and the backbone output, which is ILR −
(X/2∗ILR). We also have tested some other Trans operations which will be compared
in Section 4.4.

Data augmentation is performed on the selected 785 training images, which are
randomly rotated by 90◦, 180◦, 270◦ and flipped horizontally. We use a batch size
of 16 and we use different patch sizes when we are training different scale models,
which is 838× 838, 558× 558, 128× 128 respectively to 2×, 3×, 4× upscale models.
And we will explain this in our Section 4.4. The entire framework was trained by
ADAM optimizor with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. We use L1 loss function
to converge our model. The initial learning rate is set to 10−4 and then decreases to
half every 2×105 iterations of back-propagation. We use BasicSR [40] to implement
our models with two Nvidia 3090 GPUs. The source code of the proposed method
can be downloaded at https://github.com/philopatrick/BTAN.

4.3 Comparison with State-of-the-Art Methods

In our evaluation of the proposed BTAN super-resolution models, we compared their
performance to state-of-the-art SR methods using commonly-used image quality
metrics, PSNR and SSIM. To represent the computational efficiency of the models,
we used the MultAdds metric, which measures the number of composite multiply-
accumulate operations for a single image, assuming the HR image size to be 720 p
(1 280 × 720). Figure 3 presents a comparison between our BTAN and various
benchmark algorithms on the Set14 × 4 dataset, based on the MultAdds and the
number of parameters. At the PSNR span of 37.6 to 37.8, our BTAN has the best
balance between model size and operations. Despite CARN, MemNet, DRRN all
having better PSNR performance than us, we have a more compact model size and
fewer operations yet achieve similar PSNR results. The CARN has slightly better
performance than us, but it has more than 7 times the model size than us. The

https://github.com/philopatrick/BTAN
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Figure 3. Trade-off between performance (measured in PSNR) and the number of opera-
tions and parameters used. The x-axis represents the number of operations (MultAdds),
and the y-axis represents the PSNR. The size of each circle on the graph corresponds to
the number of parameters used. The MultAdds value is calculated based on the assump-
tion that the resolution of the high-resolution (HR) image is 720 p.



Lightweight Super-Resolution with Target Transform 427

DRRN also has similar results to ours, but it has nearly 9 times of operations than
ours.

The performance comparisons over the benchmark datasets are presented in
Table 1. It firstly shows a difference of Params and MultAdds, typically the param-
eter size is correlated with the computation expense, the larger the parameter size,
the larger the computation expense will be. However, some of the models which
use recursive learning will have a small models size with a reversely large compu-
tation cost. The computation operation (MultAdds) value is calculated based on
the assumption that the resolution of the high-resolution (HR) image is 720 p. As-
sumed the upsampled target image size is same, then those post-upsample models
will have different input size with different upsample scales, and those pre-upsample
models will always have the same input size because they will preprocess the in-
put size to be the same size with the output size. With the different input size,
there will be different computation operations to these post-upsample models, and
because usually some models will change the upsample part when resolve different
scales, it will also have some minor differences in model parameters among different
scales.

Our comparative analysis in Table 1 focuses on recent lightweight SR mod-
els from the past two years, such as MOREMNAS-A, FALSR-C, AWSRN-S, and
SplitSR. MemNet is excluded due to its significantly higher parameter count. Our
BATN model, with only 213 k parameters for 2× and 223 k for 4× scaling, not only
demonstrates superior performance over models like CARN-M but also shows re-
markable efficiency. For instance, it outperforms FALSR-C in 2× scaling with fewer
MultAdds, and in 4× scaling, it surpasses AWSRN-S and SplitSR with lower com-
putational complexity and better PSNR and SSIM scores. Comparing with all the
recently light-weight SR models, our model has the best or second-best on all the
benchmark datasets in terms of PSNR and SSIM.

Figure 4 provides a visual representation of the qualitative comparisons for two
datasets (Set14, Urban100) at a ×4 scale. The figure clearly demonstrates that our
model outperforms the other models, as it is able to accurately reconstruct not only
stripes and line patterns but also complex objects like hands.

4.4 Ablation Study

Here we evaluate some effective settings of our proposed method, which is using
a bigger patch size, and adding the CSAM module and Trans module. A baseline
model is designed to test these settings, we build it with our BTAN which removed
the CSAM and Trans modules. It should be noted that in our CADB, the dense
connection and the local feature fusion (LFF) are not evaluated as for their effec-
tiveness here, because their effectiveness in super resolution are already proved by
RDB [20].

Effects of different patch size. We use different patch sizes to train our baseline
model, although the model and the training dataset remain the same. The
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Scale Model Params MultAdds Set5 Set14 B100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

2

SRCNN [13] 57 k 52.7G 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946
FSRCNN [16] 12 k 6.0G 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020
VDSR [14] 665 k 612.6G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
LapSRN [41] 813 k 29.9G 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100
DRCN [17] 1 774 k 9 788.7G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133
CNF [42] 337 k 311.0G 37.66/0.9590 33.38/0.9136 31.91/0.8962 –
DRRN [18] 297 k 6 796.9G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
CARN-M [31] 412 k 91.2G 37.53/0.9583 33.26/0.9141 31.92/0.8960 30.83/0.9233
MOREMNAS-A [43] 1 039 k 238.6G 37.63/0.9584 33.23/0.9138 31.95/0.8961 31.24/0.9187
FALSR-C [44] 408 k 93.7G 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187
BATN (ours) 213 k 98.5G 37.72/0.9596 33.25/0.9148 31.94/0.8967 31.24/0.9195

3

SRCNN [13] 57 k 52.7G 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989
FSRCNN [16] 12 k 5.0G 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080
VDSR [14] 665 k 612.6G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
DRCN [17] 1 774 k 9 788.7G 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276
CNF [42] 337 k 311.0G 33.74/0.9226 29.90/0.8322 28.82/0.7980 –
DRRN [18] 297 k 6 796.9G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
CARN-M [31] 412 k 46.1G 33.99/0.9236 30.08/0.8367 28.91/0.8000 26.86/0.8263
BATN (ours) 225 k 46.7G 34.04/0.9242 30.08/0.8374 28.90/0.8004 27.49/0.8384

4

SRCNN [13] 57 k 52.7G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221
FSRCNN [16] 12 k 4.6G 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280
VDSR [14] 665 k 612.6G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
DRCN [17] 1 774 k 9 788.7G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510
CNF [42] 337 k 311.0G 31.55/0.8856 28.15/0.7680 27.32/0.7253 –
DRRN [18] 297 k 6 796.9G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
CARN-M [31] 412 k 32.5G 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.63/0.7688
AWSRN-S [45] 588 k 33.7G 31.77/0.8893 28.35/0.7761 27.41/0.7304 25.56/0.7678
SplitSR [46] 174 k – 31.76/0.8882 28.29/0.7716 27.39/0.7291 25.46/0.769
BATN (ours) 223 k 26.6G 31.92/0.8909 28.38/0.7761 27.41/0.7314 25.56/0.7708

Table 1. Quantitative results of deep learning-based SR algorithms. Red/Blue text:
best/second-best.

comparison of training with different patch sizes is shown in Figure 5. We found
that using a bigger patch size will increase the model performance. Although
using a bigger patch size also requires larger device memory to run the training,
there will be a sweet point to training our model. By observing the Set14 line in
the graph, we found using a patch size of 128 is economic in terms of performance
and memory cost. And also conducted like this experiment, we tested that the
economic points of training 2 times and 3 times are 838 and 558.

The reason why enlarging the patch size will improve the performance is that
a bigger input patch will increase the possibility of capturing the context infor-
mation. However, a model’s capacity to process the information is limited, if we
increase too much the patch size, there will be a drop in performance. Because
the context information and detail information serve as opposites sometimes, if
you take care of too much context, you will lose the detail and vice versa.

Effects of CSAM and Trans. Table 2 shows the ablation study of CSAM and
different Trans. From the result, we can tell that using some Trans is better
than not using any operation, and Trans operation used by BTAN-NCA is the
outstanding one which has a margin of 0.22 PSNR improvement. And also
the CSAM module is effective to have a margin of 0.04 improvement over the
BTAN-NCA.

Using the equations like Equations (3) and (5), we can easily reversely deduct
the corresponding backbone output of different Trans operations. Suppose the
model output ideally converges with the ground truth, and then we can easily
visualize these backbone outputs like Figure 6 shows. We can see that by using
some Trans operations, the visualization of backbone output becomes much more
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21.69/0.5837
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Fig. 4: Visual qualitative comparison on 4 scale datasets

Table 2: E↵ects of the CSAM and Trans modules measured on the Set5 X4 dataset.
BTAN-NCA represents BTAN without CSAM. Base-multi represents Baseline model
using operation of ILR ⇤ X and Base-multiadd represents using operation of (ILR ⇤
X) + ILR, where ILR denotes LR input and X denotes the backbone ouput. Pure
means no Trans module, the backbone output directly outputs to the result.

Baseline Base-multi Base-multiadd BTAN-NCA BTAN
pure X

ILR ⇤ Tbackbone X
(ILR ⇤ Tbackbone) + ILR X

ILR � (Tbackbone/2 ⇤ ILR) X X
CSAM X
PSNR 31.66 31.76 31.80 31.88 31.92

Figure 4. Visual qualitative comparison on ×4 scale datasets

Baseline Base-multi Base-multiadd BTAN-NCA BTAN

pure ✓
ILR ∗ Tbackbone ✓

(ILR ∗ Tbackbone) + ILR ✓
ILR − (Tbackbone/2 ∗ ILR) ✓ ✓

CSAM ✓
PSNR 31.66 31.76 31.80 31.88 31.92

Table 2. Effects of the CSAM and Trans modules measured on the Set5 ×4 dataset.
BTAN-NCA represents BTAN without CSAM. Base-multi represents Baseline model using
operation of ILR ∗ X and Base-multiadd represents using operation of (ILR ∗ X) + ILR,
where ILR denotes LR input and X denotes the backbone ouput. Pure means no Trans
module, the backbone output directly outputs to the result.
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Fig. 5: Comparision of using di↵erent patch size when training model. Tested on
Set5 and Set14 with 4x scale.

output ideally converges with the ground truth, and then we can easily visualize
these backbone outputs like Fig 6 shows. We can see that by using some Trans
operations, the visualization of backbone output becomes much more noise free.
That means we lessen the burden of the backbone network and help it can better
finish the ”task” assigned to it.

(a) Trans using
none

(b) Trans using
add

(c) Trans using
multiadd

(d) BTAN Trans

Fig. 6: Visualization of the backbone output under di↵erent Trans operation.
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output ideally converges with the ground truth, and then we can easily visualize
these backbone outputs like Fig 6 shows. We can see that by using some Trans
operations, the visualization of backbone output becomes much more noise free.
That means we lessen the burden of the backbone network and help it can better
finish the ”task” assigned to it.

(a) Trans using
none

(b) Trans using
add

(c) Trans using
multiadd

(d) BTAN Trans

Fig. 6: Visualization of the backbone output under di↵erent Trans operation.

b) Tested on Set14 with 4× scale

Figure 5. Comparision of using different patch size when training model. Tested on Set5
and Set14 with 4× scale.

noise free. That means we lessen the burden of the backbone network and help
that it can better finish the “task” assigned to it.

5 CONCLUSION

In this paper, we proposed a new approach to improve the performance of lightweight
image super-resolution networks without increasing the number of parameters. Our
approach focuses on exploring the relationship between low-resolution images and
high-resolution images, rather than simply optimizing the network structure itself.
We found that this approach can significantly enhance the performance of lightweight
networks, achieving state-of-the-art results.
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a) Trans using none b) Trans using add c) Trans using multiadd d) BTAN Trans

Figure 6. Visualization of the backbone output under different Trans operation

Moreover, we examined the effect of using different patch sizes in training
a super-resolution network. Our experiments showed that using larger patch sizes
can improve the accuracy of the super-resolution model, but this comes at the cost
of increased computational complexity.

Based on our findings, we developed a novel network architecture, BTAN, that
incorporates our proposed approach and achieves state-of-the-art performance on
a variety of benchmark datasets. BTAN is not only lightweight but also highly
efficient, making it a promising solution for real-world applications that require fast
and accurate image super-resolution.

Although our approach has shown promising results in improving the perfor-
mance of lightweight image super-resolution networks, it is important to consider
its limitations. Firstly, our method focuses on exploring the relationship between
low-resolution images and high-resolution images rather than optimizing the network
structure itself. While this approach has proven effective, there may be alternative
network architectures or additional information sources that could further enhance
performance. Future research should explore these possibilities to push the bound-
aries of image super-resolution.

Secondly, it is important to note that our method is primarily designed for
resource-constrained devices such as mobile phones or embedded systems. The ap-
plicability of our approach to high-performance computing environments or large-
scale image processing tasks may require further investigation. It would be valuable
to assess how well our method performs in these scenarios and whether any modifi-
cations are necessary.

Additionally, we discussed the trade-off between accuracy and computational
efficiency when using larger patch sizes during training. However, other factors
such as the choice of loss function or data augmentation techniques could also im-
pact the model’s performance. These aspects should be carefully considered when
implementing our method in practical applications.

In conclusion, our research contributes to the field of image super-resolution
by providing a new perspective on this topic and offering a practical solution that
can address the challenges of resource-intensive deep neural networks. Our findings
have important implications for a wide range of applications, including medical
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imaging, remote sensing, and surveillance systems. Future work could explore the
generalizability of our approach to other image-processing tasks and investigate the
potential of combining it with other techniques, such as attention mechanisms and
adversarial training.
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