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Abstract. In this paper, we propose a lightweight dual-path convolutional neural
network for image super-resolution (SR). We introduce shift convolution and pro-
pose a shift-channel attention (shift-ca) mechanism to build an effective network.
Shift-ca produces an attentional map with a larger field of view, and its formulation
is similar to channel attention and spatial attention. In addition, we propose the
Local Shift-Channel Attention Feature Extraction (LCFE) module as the main part
of the Dual Path Shift Attention Block (DPSAB). Using the dual-path structure
allows us to reduce the network depth and retain more original features for the
subsequent up-sampling compensation operation. In the final HR reconstruction
module, we combine the nearest neighbor upsampling layer, convolutional layer,
and activation layer to form the compensated nearest neighbor upsampling module
(C-NUM) to improve the reconstruction quality with a small parameter cost. Our
final model is the Dual Path Shift Attention Network (DPSAN), and it achieves
similar performance to the lightweight network WMRN (36.38% for WMRN) with
only 195 k parameters. Applying our module to the EDSR-baseline also yielded
good results. The effectiveness of each proposed component was verified by an
ablation study.
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1 INTRODUCTION

Image super-resolution reconstruction (SRR) is a computer vision technique that
uses single or multiple low-resolution images (LR) and algorithms to generate high-
resolution images (HR) without changing imaging hardware conditions. It has many
applications, such as biometric recognition, image analysis, and monitoring. How-
ever, SRR is an ill-posed problem due to the countless corresponding high-resolution
images for a low-resolution image. To address this issue, researchers have proposed
deep learning-based image SRR algorithms.

In 2014, Dong et al. proposed SRCNN [1], the first super-resolution convolu-
tional neural network which used only three convolutional layers to extract internal
image features and significantly improves reconstruction performance. In 2016, Shi
et al. built on the basic model of SRCNN [1] to propose ESPCN [2] which extracted
features directly from the low-resolution image size and improved efficiency. In 2017,
Lim et al. introduced enhanced deep residual networks (EDSR) [3] by optimizing
the residual structure, achieving a network depth of 160 layers but with a parameter
size of 43MB. In 2018, Zhang et al. proposed a very deep residual channel attention
network (RCAN) [4] with an attention mechanism, reducing the parameter size to
16MB. However, these methods increased network depth to achieve satisfactory re-
sults which increased the computational cost and made them unsuitable for portable
devices such as mobile phones and cameras.

Figure 1. The performance and parameter comparison of our DPSAN with other
lightweight networks on set5 dataset for upscaling factor× 4

To reduce computational burden and memory consumption, various methods
have been proposed for image super-resolution. Cascading residual network
(CARN) [5] introduced a cascading network architecture but with poor hyper-
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segmentation performance. Information distillation network (IDN) [6] and its suc-
cessor, information multi-distillation network (IMDN) [7], improved performance
through information distillation. Residual feature distillation network (RFDN) [8]
proposed a lighter residual distillation network. However, these methods are not
lightweight enough, and performance can be further improved. In [9], the authors
propose a parameter-free, FLOP-free shift operation as an alternative to spatial
convolution. This kind of convolution achieves good results in the non-image super-
resolution domain. Meanwhile, DANv2 [10] and DCLS [11] have been proposed by
using different two-way networks. One path is introduced as an additional path to
the features of the estimation kernel to achieve excellent results in the field of blind
super-resolution.

The aim of this article is to enhance the existing dual-path attention module
DPCB by proposing a new dual-path shift attention block (DPSAB) that utilizes
displacement convolution to reduce model complexity. The DPSAB consists of two
shift-conv operations and a special attention mechanism module (LFE) to extract
local structural information effectively. Unlike previous approaches that use the
dual-path structure to connect the stretched kernel with blurred features, we pro-
pose to use basic blurry features as an additional path to compensate for artefacts
and errors introduced by the estimated kernel, resulting in a lightweight super-
resolution model called DPSAN. The DPSAN comprises multiple groups of DPSAB
that receive auxiliary and original features, and the feature is directly magnified,
convolved, and activated to obtain weights, which are then enhanced with the up-
sampled LR image for feature refinement before being combined with the main
feature. Our proposed method achieves a good balance between model complexity
and performance, resulting in a better-performing lightweight dual-path shift atten-
tion network (DPSAN) for fast and accurate image SR. Our contribution can be
summarized as follows:

1. We propose a simple and basic attention scheme shift-ca based on shift-conv
and design, a compensated upsampling dual-path network.

2. We have integrated shift-ca with dual-path conditional block to propose DPSAB,
which is efficient and constructive.

3. We use the mechanism of upsampling followed by dual-path compensation in the
high-resolution reconstruction process, which greatly reduces the parameters,
and few people study the subsequent operation of upsampling.

2 RELATED WORK

2.1 CNN-Based SR Methods

Deep neural networks have greatly improved the results of image reconstruction [12,
4, 13], but their high computational cost and a large number of parameters limit
their practical application. To address this issue, some researchers [14] have used
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the original low-resolution (LR) image as input instead of the upsampled image,
and others have proposed techniques such as group convolution [15], depth-wise
separable convolution [16], and self-attention convolution [17] to accelerate deep
models [5, 18]. These techniques have also been used in super-resolution (SR) mod-
els with promising results. For example, CARN-M [5] used group convolution to
achieve efficient SR, while IMDN [7] extracted hierarchical features step-by-step
and aggregated them using 1×1 convolution. In this work, we introduce a novel ap-
proach using a shift-conv scheme and a dual-path attention network in our DPSAN
model to achieve efficient and concise SR.

2.2 Attention Scheme

The attention mechanism has become a popular technique in computer vision tasks
such as object detection, classification, and image segmentation. Channel attention
was first introduced by Hu et al. [19]. In image classification tasks, which enhances
network representational ability by modelling the relationship between channels.
Non-local methods [20], such as those used in RCAN [4] and Liu et al. [21], capture
long-range dependencies by calculating the response of pixel positions as a weighted
sum of features of all pixel positions in the image. Other attention mechanisms, such
as second-order attention [22] and cross-scale non-local attention [23], have also been
proposed for image super-resolution. However, most of these methods require com-
plex attention modules to achieve better performance. In contrast, our approach
aims to learn effective attention with lower computational complexity and generate
3D attention features with 1×1 convolution layers. We incorporate attention mech-
anisms into our proposed framework to improve high-level feature representation.

2.3 Reconstruction Methods in SR Networks

In the early stages of super-resolution networks [24, 25], interpolation-based up-
sampling methods were used, while learning-based reconstruction methods, such
as pixel-shuffle [2], were typically implemented at the end of the network. How-
ever, in recent works, interpolation-based upsampling methods have also been used
at the end of the network to achieve good performance [26]. Therefore, the re-
construction module now essentially consists of upsampling (interpolation-based or
learning-based) and convolution layers. In the reconstruction method of DPSAN,
we use interpolation-based nearest neighbour upsampling, convolution layers, and
activation functions.

Moreover, previous works have shown that the compensation of reconstructed
images can be performed during the reconstruction process, but few researchers
have studied it during the reconstruction stage. Therefore, in this work, we use
a compensation operation similar to a dual path at the reconstruction stage to
achieve better reconstruction.
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Figure 2. The network architecture of the proposed DPSAN. a) The overall pipeline of
DPSAN, which contains the shallow range feature extraction module, depth feature ex-
traction module and high score image reconstruction module. b) The LCFE architecture.
c) Description of shift-conv, which consists of a shift operation and a 1 × 1 convolution.
d) Description of shift-ca. e) Description of DPSAB.



398 Y. Yang, P. Wang, Y. Wu

3 METHOD

In this section, we first introduce the flow of the dual-path shift attention network
(DPSAN) for SR tasks and then discuss in detail its key components, namely the
dual-path shift attention block (DPSAB) and the compensated nearest upsampling
module(C-NUM).

3.1 Network Architecture

As shown in Figure 2, our DPSAN network architecture consists of three modules,
namely the shallow feature extraction module, the DPSAB-based deep feature ex-
traction module, and the HR image reconstruction module. Prior to input into the
HR reconstruction module, there are multi-branch global shortcut connections from
the output of shallow feature extraction module to deep feature extraction module.
Specifically, for a given degraded LR image Xl ∈ R3×H×W , where H and W are the
height and width of the LR image, respectively, we first apply the shallow feature
extraction module denoted as HSF (·) , which contains only a 3× 3 convolution and
a channel halving operation, to extract the local bilateral features Xs ∈ RC×H×Wand
Xsr ∈ RC

2
×H×W :

(Xs, Xsr) = HSF (Xl), (1)

where C is the channel number of the intermediate features. Xs and Xsr enter the
depth feature extraction module, respectively, denoted by HDF (·) which consists of
M cascaded DPSABs. That is:

Xd = HDF (Xs, Xsr), (2)

where Xd ∈ RC×H×W denotes the output. Using Xd and Xs as input, the HR
image Xh is reconstructed as:

Xh = HRC(Xs +Xd), (3)

where HRC is the reconstruction module. There are several design options for the
reconstruction module [24, 14, 2, 3]. To achieve high efficiency, we also use a dual-
path reconstruction structure to build it. DPSAN can be optimized using commonly
used SR loss functions such as L2 [25], L1 [12], and perceptual loss [27, 28]. For
simplicity, given N ground truth HR images {Xt,i}Ni=1, we optimize the parameters
of DPSAN by minimizing the pixel-level L1 loss:

L =
1

N

N∑
i=1

||Xh,i −Xt,i||1. (4)

Adam optimizer is used to optimize our DPSAN because it has good performance
in low-level vision tasks.
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3.2 Shift Attention Scheme

Firstly, in order to adapt to our network model, we re-examine channel attention [19]
and spatial attention [29]. As shown in Figure 3, channel attention aims to obtain
a one-dimensional (C×1×1) attention feature vector, while spatial attention obtains
a two-dimensional (1×H×W ) attention map. In contrast, our shift attention is able
to generate a 3D (C ×H ×W ) matrix as an attention feature and using shift-conv
can provide a larger receptive field with almost the same computational complexity
as a 1× 1 convolution.

a) CA: Channel Attention

b) SA: Spatial Attention

c) Shift-CA: Shift Attention

Figure 3. Comparison of three different attention mechanisms

3.3 Deep Feature Extraction Scheme

As shown in Figure 2 a), we use five DPSABs and a final fusion convolution to
construct the Deep Feature Extraction module. Unlike previous works [30, 10], for
DPSAB, we use a reduced channel path as an additional path to control the param-
eters of our lightweight super-resolution network. This additional path compensates
for the introduced artefacts and errors during network training using the original
blurry features. The specific DPSAB is shown in Figure 2 e), where the left side is
the main path consisting of two groups of LCFE and one group of fusion LFE that
will merge the features from the compensatory path. It receives the shallow feature
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extraction module’s feature: Xs ∈ RC×H×W . The compensatory path on the right
side consists of only two groups of LCFE and receives the feature Xsr ∈ RC

2
×H×W

from the shallow feature extraction module. The specific LCFE is shown in Fig-
ure 2 b), consisting of two shift-conv and one shift-ca.

3.4 HR Image Reconstruction Module

Our reconstruction module incorporates a compensation-like mechanism, as illus-
trated in Figure 2 a). In previous super-resolution networks, the reconstruction
module primarily comprised upsampling and convolution layers, with little atten-
tion paid to compensation mechanisms during upsampling. In our approach, the
input features to the reconstruction module are split into two paths and upsampled
using nearest neighbour interpolation. The compensatory upsampling path involves
introducing the blurred HR image, obtained after nearest neighbour sampling, and
multiplying it with the compensatory path sigmoid to generate the compensatory
feature. The compensatory feature is then fused with the main feature to yield
enhanced super-resolution reconstruction outcomes. We used nearest neighbour
interpolation multiple times in the reconstruction module to reduce the parameter
cost. Our experimental findings reveal that incorporating compensatory upsampling
substantially boosts performance with minimal additional parameters.

4 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to quantitatively and qualitatively
validate the superior performance of our DPSAN for light-weight and classic SR tasks
on five SR benchmark datasets. We also present comprehensive ablation studies to
evaluate the design of our proposed DPSAN.

4.1 Datasets and Metrics

We use the DIV2K dataset as our training dataset. LR images are obtained by
bicubic downsampling of HR images. In the testing phase, five standard benchmark
datasets, Set5, Set14, B100, Urban100, and Manga109 are used for evaluation. The
widely used Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) on the Y channel are used as evaluation metrics. Additionally, all MultiAdds
are calculated by assuming that the resolution of the HR image is 720 p.

4.2 Implementation Details

During the training process, we use the DIV2K dataset to train our DPSAN. The
HR patch size is set to 256 × 256, and the batch size was 32. We use random
rotations of 90◦, 180◦, 270◦, and horizontal flips to augment the data. We use the
L1 loss function and Adam optimizer for model training. We train the model using
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the Adam optimizer with an initial maximum learning rate of 1e−4 and a minimum
learning rate of 1e−7 for a total of 250 epochs. The learning rate is multiplied by
0.5 at the 50th, 100th, 150th, and 200th epochs. The proposed algorithm has been
implemented in the PyTorch framework on a computer equipped with an NVIDIA
GTX 1080Ti GPU.

Figure 4. Visual comparison for upscaling factor× 4
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Module
Type

Params Mult-Adds
PSNR/SSIM

Set5
PSNR/SSIM

Se14
PSNR/SSIM

BSD100
PSNR/SSIM
Urban100

PSNR/SSIM
Manga109

EDSR-
baseline

1 370 k 126.55G 37.91/0.9602 33.53/0.9172 32.15/0.8995 31.99/0.9270 38.40/0.9765

EDSR-
baseline-C

1 222 k 112.96G 37.99/0.9605 33.60/0.9175 32.18/0.8999 32.08/0.9285 38.51/0.9769

RCAN 15 444 k 5 785.60G 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384 39.44/0.9786
RCAN-C 15 296 k 5 724.16G 38.10/0.9609 33.67/0.9185 32.24/0.9005 33.24/0.9380 39.28/0.9754

Table 2. Results of Substitution into C-NUM in different networks. We use the PSNR
values obtained on the five datasets as a scaling factor×2. We record the results in 1×106

iterations. Red/green text: the rise/fall of method.

4.3 Comparison with Lightweight SR Model

We compare the proposed DPSAN with commonly used lightweight SR models for
amplification factors × 2, ×3, ×4 and ×8, including SRCNN [1], FSRCNN [14],
VDSR [25], LapSRN [32], DRRN [31], MemNet [33], IDN [6], SREFBN-32 [34],
LW-AWSRN-SD [35], MADNet-L1 [36] and WMRN [37]. Table 1 shows the quanti-
tative results in terms of PSNR and SSIM for the five benchmark datasets obtained
by different algorithms. In addition, the number of parameters and Mult-Add of
the compared models are given. From Table 1, we find that our DPSAN has less
than 200 k parameters, but outperforms most state-of-the-art methods. Specifically,
WMRN [37] partially achieves similar performance to ours, but with nearly 556 k
parameters, which is about two and a half times more than ours. Compared to
SREFBN-32 [34], we can achieve higher PSNR on most datasets. On the amplifica-
tion factor× 8 we also get great performance with very small parameters.

Qualitative comparison. Then, we qualitatively compare the SR quality of dif-
ferent lightweight models. The ×4 SR results for the four example images are shown
in Figure 6. It can be seen that our model is able to reconstruct the stripe and line
patterns more accurately. For the image “ppt3”, we observe that most of the com-
pared methods produce significant artifacts and blurring effects, while our method
produces more accurate lines. For the building details in “img008” and “img048”,
DPSAN enables a reconstruction with fewer artifacts.

Module Type Params Mult-Adds PSNR

RB 222 k 81.16G 34.575 dB
LFE 194 k 71.98G 34.577 dB (↑ 0.002 dB)
RB-CA 228 k 81.16G 34.579 dB (↑ 0.004 dB)
RB-CBAM 223 k 82.05G 34.574 dB (↓ 0.001 dB)
LCFE 195 k 65.32G 34.604 dB (↑ 0.029 dB)

Table 3. Comparison of the number of parameters and average values of PSNR obtained
on five data sets for basic RB, LFE, RB-CA, RB-CBAM and LCFE with a magnification
factor× 2. We recorded the results for 5× 105 iterations.
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a) C-NUM: Compensation Nearest upsampling module

b) C-PSUM: Compensation Pixel shuffle upsampling module

Figure 5. Comparison of using the same compensation mechanism but with different up-
sampling methods

4.4 Comparison of Runtime and FLOPs

In this section we also compare the more specific parameters Runtime and FLOPs.
From Table 4, we can see that the FLOPs of DPSAN are only 33.4G and the
Runtime is only 37ms, while the other networks are much larger than the pa-
rameters of our network, thus better reflecting the effectiveness of our proposed
method.

4.5 Ablation Study

4.5.1 Comparison of Different Attention Schemes

To demonstrate the effectiveness of our shift-ca layer, we use DPSAN as the base
network with DPSAB as the basic module and replace the LCFE module with
residual blocks (RB), residual blocks with channel attention (RB-CA), and five
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a) RB b) LFE c) RB-CA d) RB-CBAM e) LCFE

Figure 6. Comparison of five different feature extraction modules. a) RB: Basic residual
block; b) LFE: Basic residual block with shift; c) RB-CA: Basic residual block with channel
attention; d) RB-CBAM: Basic residual block with spatial attention and channel attention;
e) LCFE: Basic residual attention block with shift attention.

residual blocks with spatial attention and channel attention (RB-CBAM). We also
compare the effects of shift convolution. The results are shown in Figure 4.

In Table 3, we compare the number of parameters, Multi-Adds and PSNR per-
formance for all methods. Note that all results are the average of PSNR calcu-
lated from 328 images on 5 benchmark datasets. It is observed that LCFE can
improve 0.029 dB on average but with much fewer parameters and Multi-Adds,

Model Params FLOPs Runtime
Set5
PSNR/SSIM

Bicubic – – – 33.66/0.9299
FSRCNN 12 k 34G 13ms 37.00/0.9558
SRCNN 57 k 144G 60ms 36.66/0.9542
IND 553 k 393G 138ms 37.83/0.9600
CARN 1592 k 503G 199ms 37.76/0.9590
SREFBN-32 310 k – – 37.80/0.9591
LW-AWSRN-SD 348 k 87G 76ms 37.86/0.9600
MADNet-L1 878 k 352.1G 156ms 37.85/0.9600
WMRN 452 k 102G 88ms 37.83/0.9599
DPSAN 195 k 33.4G 37ms 37.87/0.9600

Table 4. Comparison of Runtime and FLOPs for several different models on top of Set5×2
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while RB-CBAM is slightly worse than RB. This indicates that relying on spa-
tial attention and channel attention do not work well under my network model,
but shift-ca feature extraction is more effective than channel attention and spatial
attention.

4.5.2 Efficiency of the Compensation Upsampling Scheme

Our results are averaged over five data sets, and the validity of our method is verified
by conducting four experiments on two variables. Specifically, as shown in Figure 5,
we use the Pixel shuffle upsampling module (PSUM), which is used by most people,
as a baseline to compare the results after removing the Nearest upsampling module
(NUM) of the compensation module and replacing the upsampling part. As shown in
Table 5, we find that compared to PSUM, the NUM with only the upsampling part
replaced can greatly reduce the parameters, but the effect is also worse, while both C-
PSUM and C-NUM can improve the PSNR. In addition, C-PSUM is 0.02 dB better
than C-NUM compared to PSUM, but the parameters of C-NUM are only 72.5%
of C-PSUM. This shows that C-NUM can achieve more significant improvements
compared to the conventional Pixel shuffle.

Basic Module Params Diff Mult-Adds PSNR

PSUM 248 k 31.25G 28.684 dB
NUM 192 k (↓ 56 k) 17.02G (↓ 14.23G) 28.682 dB (↓ 0.002 dB)
C-PSUM 269 k (↑ 21 k) 34.33G (↑ 3.08G) 28.697 dB (↑ 0.013 dB)
C-NUM 195 k (↓ 53 k) 17.34G (↓ 13.91G) 28.695 dB (↑ 0.011 dB)

Table 5. Pixel shuffle upsampling module (PSUM) is used as the basic comparison model
where we compare C-PSUM with C-NUM and Nearest upsampling module (NUM) with
a magnification factor× 4. We recorded the results for 5× 105 iterations.

4.5.3 Comprehensive Comparison

We selected one of the LCFE and RB-CA modules and one of the PSUM and
C-NUM modules to combine to produce four results. We used RB-CA + PSUM as
a control group. Table 6 shows that the combined best results were achieved using
the combination of LCFE and C-NUM. The other two combinations LCFE+PSUM
and RB-CA+C-NUM were combinations that changed one variable each, and they
both improved the parameters and the results for the control group. All in all
whatever combination was chosen showed some enhancement over the control group.
It can be said that both our proposed components LCFE and C-NUM are effective.

4.5.4 Role of C-NUM in Other Models

We also investigated the effectiveness of C-NUM in networks with different model
sizes. For comparison, we chose two networks, EDSR-baseline and RCAN, which
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LCFE ✓ ✗ ✗ ✓
RB-CA ✗ ✓ ✓ ✗

PSUM ✓ ✓ ✗ ✗

C-NUM ✗ ✗ ✓ ✓
PSNR 34.592 dB 34.575 dB 34.579 dB 34.604 dB

Params 248 k 281 k 228 k 195 k

Table 6. Comparison of the number of parameters and average values of PSNR obtained
on five data sets for any two opposing modules with a magnification factor×2. We recorded
the results for 5× 105 iterations.

have 1 370 k and 15 592 k parameters, respectively. We then replaced the upsam-
pling with C-NUM in each of the two networks and named them EDSR-baseline-C
and RCAN-C, respectively. Since training larger networks takes more time, here
we record the results for 1 × 106 iterations. As shown in Table 2, for the lighter
network EDSR-baseline, replacing it with C-NUM brings an improvement in PSNR
(around 0.1 dB) and a reduction in parameters. However, C-NUM seems to degrade
the performance of the larger network (RCAN). For example, RCAN-C is worse
than RCAN, with a drop of about 0.2 dB in PSNR for various data sets. The exper-
imental results show that C-NUM can make the lightweight model EDSR-baseline
improve the effect and reduce the parameter, but it produces a bad effect for the
larger model RCAN. This may be due to the complexity of the neural network
structure. Changing a module in a large network may increase the complexity of
the network and make training more difficult. Large networks are already complex
in themselves, and adding a module may increase the number of parameters, in-
troduce more nonlinear relationships, and make it more difficult for the network to
learn, leading to performance degradation. On the other hand, for small networks,
replacing a new module may provide additional information and features that help
the model learn and generalize better. A relatively small network structure may be
easier to train and be able to utilize the information provided by the added module
more efficiently, so adding a module to a small network may lead to performance
improvement.

5 CONCLUSIONS

The present study puts forward a novel convolutional neural network designed for
image super-resolution that is lightweight yet efficient. Our proposed network in-
corporates a new shift-attention scheme, or shift-ca, which features only a few pa-
rameters but yields improved reconstruction outcomes. We also introduce a DPSAB
module based on the shift-attention scheme. To further enhance the performance
of the SR, we introduce a compensation module in the reconstruction branch con-
sisting of nearest neighbour upsampling, convolutional layers, and activation func-
tions. The framework not only enhances SR performance at a low parameter
cost but also improves the performance of other lightweight networks. The ex-
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perimental results demonstrate that our final model, DPSAN, achieves comparable
results to advanced lightweight networks while utilizing significantly fewer parame-
ters.
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