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Abstract. Low-light image enhancement (LLIE) enables to serve high-level vision
tasks and improve their efficiency. Retinex-based methods have well been recognized
as a representative technique for LLIE, but they still suffer from inflexible regular-
ization terms in decomposing illumination and reflectance. In this paper, we pro-
pose a new weighted fractional-order variational model based on the Retinex model.
First, the constructed weighted fractional-order variational model estimates piece-
wise smoothed and weakly pixel-shifted illumination by aware structures and tex-
tures. Then, to solve this problem accurately, we chose a semi-decoupled approach
and an alternating minimization method. Finally, the designed multi-illumination
fusion method accurately enhances the structure-rich dark regions of the image
through well-exposedness and local entropy weights, while realizing adaptive en-
hancement based on a naturalness-preserving parameter estimation algorithm. The
results of subjective and objective experiments on several challenging low-light
datasets demonstrate that our proposed method shows better competitiveness in
enhancing low-light images compared with the state-of-the-art methods.
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1 INTRODUCTION

With the rapid development of imaging technologies and electronics, the environ-
ment in which images are captured has become diverse. When the ambient lighting
is not ideal, especially in low-light conditions the imaging quality is affected severely,
resulting in degraded performance for high-level vision tasks, such as object detec-
tion, semantic segmentation, and autonomous driving [1]. Low-light image enhance-
ment techniques are widely employed to improve the contrast and visual quality
of captured images, and future computer vision applications will benefit from en-
hanced images to improve performance. As a result, low-light image enhancement
techniques have increasingly become the research focus [2].

Earlier image enhancement methods [3, 4] adjusted the histogram distribution
based on the low-light images properties, namely histogram equalization (HE). The
goal of HE is to expand the gray-scale distribution of pixels to improve the con-
trast [5, 6]. These methods take a global perspective leading to over-enhancement
and artifacts, and several HE-based methods have been proposed to overcome these
shortcomings [7, 8, 9, 10]. However, the HE-based approaches often lead to noise
amplification and color distortion.

Aiming to enhance low-light images naturally, Retinex theory [11] provides the
physical support for low-light image enhancement with the assumption that the
image can be decomposed into illumination and reflectance maps. Typically, single-
scale retinex (SSR) [12] and multi-scale retinex (MSR) [13] estimated the illumi-
nation by Gaussian filtering, but it is not accurate. To accurately decompose the
input image, various integer-order variational models [14, 15, 16, 17, 18, 19] are de-
signed to obtain smooth illumination and structure-rich reflectance, but they either
ignore noise or lose image structures. In contrast, the fractional-order variational
models [20, 21, 22] have wider range of constraints and can be set with different reg-
ularization terms for illumination and reflectance. Since the solution of the Retinex
model is a mathematically ill-posed problem, different priors and constraints lead
to significantly different results.

With the rapid improvement of computer hardware performance, low-light im-
age enhancement methods based on deep learning have developed rapidly in recent
years [23]. Methods represented by supervised learning strategy are LLNet [24],
Retinex-Net [25], KinD [26] and DeepUPE [27]. Other methods that do not rely
on paired training data include Zero-DCE [28], RUAS [29], EnlightGAN [30] and
SCI [31]. There is no denying that these deep networks have powerful fitting per-
formance. However, they are not robust, showing undesirable exposure and color in
real-world scenarios.

Inspired by [20, 22, 32], a novel weighted fractional-order variational model is
developed for low-light image enhancement. To estimate an accurate illumination
map in the Lp norm, the weighted Lp norm is designed for piecewise smoothing by
aware local structures. For this nonlinear optimization problem, we use an alter-
nating minimization scheme to find the optimum. To address the shortcoming that
Gamma correction loses the structures of local high-intensity regions, the multi-
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illumination fusion method uses adaptive parameter estimation to enhance the il-
lumination sequence, and the designed well-exposedness and local entropy weights
fusion to obtain illumination with appropriate exposure and contrast. Comparing
the state-of-the-art methods, subjective and objective experiments have proved the
superior performance of our method. Our main contributions can be summarized
as follows:

• The proposed decomposition model iteratively solutions the illumination and
reflectance through the weighted fractional-order variational model to obtain
piecewise smooth illumination while keeping its pixel intensities consistent with
the original image.

• The multi-illumination fusion method achieve adaptive enhancement of illumi-
nation sequence by integrating the image brightness distribution and the local
entropy that reveal hidden structures, ensuring excellent visibility in both bright
and dark regions.

• We validate the advances of the proposed method on six challenging low-light
datasets. Subjective assessment, no-reference metrics, and full-reference metrics
indicate our method has the competitive performance.

2 RELATED WORK

Various algorithms have been developed to improve the visibility of low-light images,
which can be generally classified as histogram equalization, Retinex decomposition
and deep learning.

2.1 Histogram Equalization

The methods based on histogram equalization that balance the histogram distribu-
tion are the fundamental image enhancement techniques that are computationally
efficient and simple to implement [3, 5, 6, 33]. However, the narrow histogram
distribution of low-light images often leads to brightness over-saturation and color
distortion [34]. To overcome this limitation, several optimization methods have been
proposed by scholars in recent years. For instance, Ibrahim et al. [8] developed a
method that preserves the mean brightness of the input image inside the output
image, resulting in an output image with mean intensity almost equal to that of
the input image. Lee et al. [35] proposed a contrast enhancement algorithm that
finds differences between two-dimensional histogram layers. Celik and Tjahjadi [36]
aimed to remap the histogram by finding a maximum grey-scale difference. Sujee
and Padmavathi [9] used histogram matching and the pyramid technique [37] to ex-
tract maximum information to achieve enhanced images. Although these methods
have simple algorithms and require small computational effort, their enhancement
results often suffer from over-enhancement, noise amplification, color deviation, and
detail loss [38].
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2.2 Retinex Decomposition

Retinex theory [11] is based on the human visual system, which assumes that an
image can be decomposed into an illumination map of light variations and a re-
flectance map that approximates an enhanced image. The early methods processed
only the illumination component and then obtained the reflectance component as
the enhancement result by element-wise division. SSR [12] and MSR [13] employed
Gaussian filtering to obtain the illumination. Xiao and Shi [39] applied a bilateral fil-
ter to improve halo artifacts. LIME [14] employed relative total variation (RTV) [40]
to solve for illumination, obtaining piecewise smooth illumination that is somewhat
representative of the brightness and darkness variations of the input image. It is
not rigorous to constrain only illumination in the Retinex decomposition. In or-
der to solve the illumination and reflectance simultaneously, various integer-order
regularization constraints [15, 16, 19] are designed to perform piecewise smooth-
ing of illumination and maintain structures on reflectance. Fu et al. [15] proposed
a weighted variational model to improve the distortion of the image gradient caused
by the logarithmic transform. STAR [19] introduced the exponential mean local
variance filter to extract the structures and textures maps. Although they constrain
illumination and reflectance, there is no optimization for noise. Considering the
noise inherent in low-light images, many optimization methods have been proposed
recently. The robust Retinex model (RRM) [17] and semi-decoupled decomposition
(SDD) [18] performed the denoising process in the overall image and the reflectance
map, respectively. LR3M [41] developed low-rank regularization to denoise partic-
ularly well. In contrast to integer-order variational models, fractional-order models
produce more flexible constraint effects. The hybrid variational models [20, 22]
employed fractional-order norm and L2 norm for illumination and reflectance re-
spectively, while the fractional-order variational model [21] employs fractional-order
norm for both illumination and reflectance. Since the decomposition of the Retinex
model is an ill-posed problem, the existing methods need to be more accurate for
the decomposition of illumination and reflectance and improperly handle noise.

2.3 Deep Learning

Low-light enhancement methods based on deep learning attract more attention due
to the excellent effect in robustness and accuracy. LLNet [24] designed a variant
of stacked-sparse noise reduction autoencoder, which can brighten low-light images
and reducing noise simultaneously. Lv et al. [42] developed a multi-branch low-light
enhancement network based on extracting features at multi-levels to reconstruct
images by multi-branch fusion. To improve the performance of the present mod-
els, some learning-based methods [25, 26, 43, 44] incorporate the Retinex theory
into their network. Wei et al. [25] proposed a Retinex-Net based on deep learning,
which includes a Decom-Net that decomposes the input images and an Enhance-Net
that adjusts the illumination to improve low-light images. Wu et al. [44] designed
a Retinex-based deep unfolding network (URetinex-Net), which cast the optimiza-
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tion problem into a learning problem. However, these methods are unsatisfactory
under complex conditions due to the usage of paired data. To solve this prob-
lem, the unsupervised learning methods without paired data were proposed. Li
et al. [45] developed a method called zero-reference deep curve estimation (Zero-
DCE++) to adjust the image by estimating curves. This non-reference network
has superior performance in optimizing problems of overfitting and generalization.
Ma et al. [31] proposed a self-calibrating illumination network (SCI), which utilizes
unsupervised training losses to improve the performance of the network. Besides,
some GAN-based methods [30, 46] have been successfully applied in the low-light
enhancement problem. However, GAN-based models require much more computing
time than others. Although the presented learning-based methods have a certain
effects to enhance low-light images, their enhancement results commonly suffer from
over-exposure, anomalous artifacts and color deviation.

3 PROPOSED METHOD

In this section, a novel weighted fractional-order variational model for low-light im-
age enhancement is proposed based on the Retinex theory. Firstly, the construction
of the weighted fractional-order variational model is introduced. Then, an alter-
nating minimization algorithm is employed to obtain the closed solution. Finally,
multi-illumination fusion method with improved visual quality maps is constructed
to obtain visually effective enhancement results.

3.1 Retinex Model

The traditional Retinex model can be described as:

I = L ◦R, (1)

where I is the input low-light image. L and R are the illumination and reflectance
maps, respectively. The operator ◦ denotes the pixel-wise multiplication.

The illumination map represents the brightness variation in different regions of
the input image, which we assume to be piecewise smooth. The intrinsic qualities of
the observed object are represented by the reflectance map, which is full of textures
and structures. A novel weighted fractional-order variational model is employed to
estimate the appropriate illumination and reflectance.

3.2 Weighted Fractional-Order Variational Model

Previous variational models [14, 15, 17, 18, 19, 41, 47, 48] adopted the L1 norm or
L2 norm to regularize the illumination and reflectance, respectively. In contrast, Lp

norm (0 < p < 1) has better sparse ability to achieve piecewise smoothness [22],
which can be performed on the illumination map to obtain more accurate results.
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Therefore, the proposed weighted fractional-order variational model can be formu-
lated as an energy minimization problem.

min
L,R

∥I − L ◦R∥22 + α∥W ◦ ∇L∥plpl + β∥∇R∥22, (2)

where I, L,R are the observed image, illumination map, and reflectance map, re-
spectively. α and β are the balancing parameters for regularizing different terms.
∥∗∥2 and ∥∗∥p represent the L2 norm and Lp norm, respectively. ∇ is the first-order
differential operator, including horizontal ∇h and vertical ∇v gradients. W is the
weight matrix to highlight the small structures.

a) Input image b) Illumination by L1 c) reflectance by L1 d) Illumination by Lp

e) reflectance by Lp f) Our Illumination g) Our reflectance

Figure 1. Comparison of illumination and reflectance maps for different norm decompo-
sition with the same smoothing parameters

Most of the existing studies performed integer-order norms on the gradient.
LIME [14] proposed the L1 norm for the relative total variance [40] of illumination.
JieP [16] proposed the L1 norm for the sparsity of the total variation in reflectance
and the weighted L1 norm for the illumination gradient. RRM [17] and LR3M [41]
simply adopted the L1 norm and L2 norm on the illumination and reflectance
gradient, respectively. SDD [18] designed the Gaussian total variation on the L1

norm to improve the edge-preserving filtering. STAR [19] developed a structure and
texture-aware Retinex model for the L2 norm. HVM [20] and PPRM [22] adopted
fractional-order norm to constrain the illumination, and L2 norm was still used for
the reflectance cannot handle single-point noise. Figure 1 shows the illumination
and reflectance maps decomposed by the integer-order and fractional-order norms.
The smoothing effect of L1 norm is not significant, and it is not flexible, as shown in
Figure 1 b), and it can be seen that our weighted fractional-order variational model
performs significantly. In addition, the simple Lp norm produces unnaturally sharp
edges in Figure 1 d). In contrast, the proposed weighted fractional-order variational
model has a natural and significant smoothing effect.
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3.3 Alternative Solution

The solution of Equation (2) is a non-convex problem, we adopt the semi-decoupled
method [18] to separate the solution of illumination from reflectance, and then
a block coordinate descent algorithm [49] is used to find the optimal solution. In-
spired by [20], to efficiently solve the Lp norm, we use an iteratively re-weighted
least squares method [50] to rewrite the Lp regularization term as:

∥∇L∥plpl = (∇L+ ϵ)pl−2∥∇L∥22, (3)

where ϵ is a small constant. In addition, Equation (2) can be rewritten as

min
L,R

∥I − L ◦R∥22 + αULW∥∇L∥22 + β∥∇R∥22, (4)

where UL = (∇L+ ϵ)pl−2. It is worth mentioning that each iteration treats UL and
W as known variables, which are all calculated from the variables of the previous
iterations, and then solves the two separate sub-problems sequentially.

To avoid the unknown variable R during the L estimation process, illumination L
is obtained utilizing the semi-decoupled approach [18]. Specifically, the illumination
L is estimated from the initial illumination map L̂. Similar to [14], L̂ is obtained
from the maximum of the RGB three channels of the input image.

L̂(x) = max
c∈R,G,B

Ic(x). (5)

3.3.1 Solution L Sub-Problem

Keeping the terms related to L, we have:

min
L

∥L− L̂∥22 + αULW∥∇L∥22. (6)

The illumination solution only involves quadratic terms, differentiating it with
respect to L and setting the derivative to zero can be translated into the following
problem:

(1+ α
∑

d∈{h,v}

Md)L = L̂, (7)

where 1 is the identity matrix, Md = DT
d ULWDd. In addition, L, L̂, UL, W

are the diagonal matrix representations of L, L̂, UL, W , respectively. D contains
horizontal Dh and vertical Dv, which are the Toeplitz matrices from the discrete
gradient operators with a forward difference.

3.3.2 Solution R Sub-Problem

By removing the term unrelated to R, we have the target function:

min
R

∥I − L ◦R∥22 + β∥∇R∥22. (8)
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Using a similar procedure to solve L, we have the following equation:

(L2 + β
∑

d∈{h,v}

DT
d Dd)R = LTI. (9)

The updates stop when the convergence condition ∥R(k+1)−R(k)∥F / ∥R(k)∥F < ϵ
or ∥L(k+1) −L(k)∥F / ∥L(k)∥F < ϵ is satisfied, or until the maximum number of iter-
ations K. To improve computational efficiency, a fast solver called preconditioned
conjugate gradient (PCG) [51] is used for speed up. In Figure 10, appropriate
illumination and reflectance can be obtained through 10 iterations. Further, the
parameters are set and fixed to ϵ = 10−2 and K = 10.

a) b) c) d)

e) f) g) h)

Figure 2. Comparison of estimated illumination with (w/) and without (w/o) weighting
matrix W . a) Input. b) Initial illumination map L̂. c) Weight W for illumination.
d) Illumination w/o W . e) Illumination of LIME [14]. f) Illumination of SDD [18].
g) Illumination of PPRM [22]. h) Our illumination.

3.4 Weight Matrix for Illumination

The major edges can be preserved by Lp norm regulating illumination, but the
smoothness of the internal structures still needs improvement [22]. As demonstrated
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in Figure 2 h), the weighted fractional-order variational model maintains fine struc-
tures and small overall pixel offsets, which means that the estimated illumination is
more accurate.

The matrix of weightsW is designed to adjust the smoothness of various regions.
To prevent the development of redundant structures, W detects the regional features
and improves minor structures. Each pixel in W is computed using two components,
WA(x) and ∥∇L(x)∥2.

W (x) =
√
(WA(x) ◦ ∥∇L(x)∥2). (10)

For each pixel x in L, WA(x) is based on the magnified illumination gradient.
In order to be aware of surrounding neighborhoods and decrease noise effects, the
Gaussian filter Gσ with kernel size σ when calculating:

WA(x) = e1−|∇(Gσ∗L)|. (11)

Furthermore, WA(x) is particularly sensitive to fine textures and structures.
∥∇L(x)∥2 can roughly identify the shapes and scopes of different objects. W (x)
combines two weights to maximize the utility of both terms.

Figure 2 shows the illumination obtained from different decomposition methods,
LIME cannot maintain the small structures between branches and the pixels are
heavily shifted. Without weights W and SDD show local connectivity when dealing
with branched structures, and PPRM fails to maintain some of the small structures
within the object. For contrast, the proposed weighted fractional-order variational
model efficiently preserves various small structures while the pixel intensities are
highly consistent with the input image, indicating that the estimated illumination
is more accurate.

a)

b) c)

d)

Figure 3. Example of the proposed multi-illumination fusion method. a) Input image.
b) Illumination sequence obtained with two different Gamma corrections. c) Fusion weight
maps corresponding to illumination sequence. d) Enhanced image.
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3.5 Multi-Illumination Fusion

The illumination map obtained from the decomposition is performed Gamma cor-
rection and combined with the reflectance map to obtain the enhancement im-
age [14, 17, 18, 19, 20, 22, 41]. We propose a new multi-illumination fusion method
that performs fusion of illumination sequence obtained from different Gamma cor-
rections, which is capable of producing high-quality enhancement results.

Figure 3 illustrates the specific flow of the proposed multi-illumination fusion
method. For the estimated original illumination L, two different Gamma corrections
are performed to obtain the enhanced illuminations (Lk

g = Lλk , k = {1, 2}). λ1 and
λ2 perform different levels of enhancement of the illumination L to obtain a wider
range of image brightness. Assuming λ1 + λ2 = 1 (λ1 < λ2), it can be known that
illumination L1 serves to enhance the dark regions of the image, while L2 maintains
the local high-intensity regions in the image. Therefore, the enhanced image is
represented as:

Î = h(L,R, λ) = R ◦
2∑

k=1

Ŵk
pL

k
g,p, (12)

where h(L,R, λ) denotes the final illumination obtained by performing two Gamma
corrections (λ1 = λ, λ2 = 1 − λ) on the estimated illumination and fusing them,

which is then combined with the reflectance to calculate the enhanced result Î. Ŵk
p

represents the fusion weights corresponding to the illumination sequence {L1
g, L

2
g},

as shown in Figure 3 c). The traditional exposure fusion algorithm [32] contains
three fusion weights of contrast, saturation and well-exposedness. In order to better
enhance the dark regions structures of the input image, we use two features of well-
exposedness and local entropy for fusion, which can be expressed as:

Wk
p =

(
Ek

p

)γe × (T k
p

)γt
, k ∈ {1, 2}, (13)

where k indicates the kth image in the illumination sequence. p represents a pixel
in the image. E and T are quantitatively measures for well-exposedness and local
entropy. γe and γt are parameters for controlling the influence of each measure,
which are set to 1 by default. Note, pixels with higher visual quality values are
more likely better exposed.

Figure 4 demonstrates the well-exposedness and local entropy weights corre-
sponding to the illumination sequence and the computation process, and it can be
seen that the proposed method prefers regions with good visual sense. As shown
in Figure 5 c), the visualization of the exposure fusion [32] results is unsatisfactory,
and it does not give enough exposure to the dark regions of the image. In order to
blend the illumination more rationally, in this paper, the well-exposedness weights
are constructed as follows:

Ek
p = exp

(
−10

(
Lk
g,p − 0.6

)2
σ

)
, (14)
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Figure 4. The proposed multi-illumination fusion method of the well-exposedness and
local entropy weights. a) Illumination sequence {L1

g, L
2
g}. b) First row: curves of Equa-

tion (14) and (15), Second row: normalized local entropy N (E). c) Well-exposedness
wigths {E1

p , E
2
p}. d) Local entropy weights {T 1

p , T
2
p }.

a) b) c) d)

Figure 5. Comparison of enhancement results obtained by different fusion methods on
illumination sequence. a) Input image. b) Gamma Correction. c) Exposure Fusion [32].
d) Ours.

where Lk
g,p represents the pixel p of the kth image in the {L1

g, L
2
g}.

For more rational fusion of illumination sequence, the regions with high local
entropy values and darkness in the input image should have a greater weight on
L1, while the high-intensity regions of the image itself should have a greater weight
on L2, and the weight T k

p of the illumination sequence is constructed as respectively:

T 1
p =

1

π
arctan

(
100

(
N (E)− 3.5

max(E)

))
, T 2

p = 1− T 1
p , (15)

where E represents the local entropy of the input image and N is the operator that
normalizes it to [0, 1]. The local entropy is highly robust to low-light images as
shown in Figure 4 b). The calculation of local entropy can be obtained by having
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the following equation:

E(x) = − 1

N

∑
y∈Ω(x)

Ig ln (Ig(y)) , (16)

where Ig represents the gray image of the input image. Ω(x) is a local patch centered
at x, and N is the number of pixels in the patch. To obtain a consistent result,
the two visual quality mappings corresponding to the sequence {L1

g, L
2
g} are then

normalized so that they sum to 1 at each pixel p:

Ŵk
p =

[
2∑

i=1

W i
p

]−1

Wk
p . (17)

Algorithm 1 LLIE via Weighted Fractional-Order Model

Input: The low-light image I.
Initialization: α = 2mean(|∇I|), ω = 0.001, pl = 0.9, K = 10.
for k = 0 to K do
Update L(k+1) via Equation (7);
Update R(k+1) via Equation (9);
if converged then
break;

end if
end for
Estimate λ̂ via Equation (18);
Estimate Ŵ via Equation (17);
Estimate Î via Equation (12);
Output: The estimated result Î.

It is a challenge to reasonably compute the parameter λ in Equation (12), for
which we design an optimization function. By making the enhancement results have
better naturalness, we minimize its NIQE metrics to estimate a suitable parameter:

λ̂ = min
λ

Q(h(L,R, λ)), (18)

where Q represents the operator that computes the image NIQE [52] metrics, and
The optimized λ can be solved by one-dimensional minimizer.

Figure 5 d) shows the enhancement results obtained from the improved visual
quality maps, where we obtain sharper images with better contrast and color. Given
an input low-light image, the whole process of our method to enhance the image is
summarized in Algorithm 1.
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4 EXPERIMENTS

In this section, we compare the proposed method to state-of-the-art methods in both
subjective and objective assessments. For fair comparisons, we fix the parameters
{α = 2mean(|∇I|), β = 0.001, pl = 0.9} in all tests. Furthermore, all comparison
methods are generated on the authors’ websites and use the default settings. We run
the experiments in MATLAB R2022a and PyCharm 2022 on a PC with Windows 10
OS.

4.1 Experiment Settings

We compare the proposed approach with several state-of-the-art methods, including
LIME [14], RRM [17], SDD [18], PCA [53], Zero-DCE++ [45], SCI [31], PPRM [22],
URetinex-Net [44] and PairLIE [54]. The test images are obtained from five public
datasets: DICM [35], Fusion [55], LIME [14], MEF [56], NPE [57]. The second test
dataset is SICE [58] with more than 100 images and ground truth, where we resized
the images to 25% of their original size owing to the memory usage limitations of the
different methods. Each test image is taken in RGB format and contains a variety
of dimensions and scenes.
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Figure 6. Average FSIMC, LOE, NIQE, and NTMQI results on six public datasets using
the proposed method with different regularization parameters

4.2 Parameters Study

In this section, we evaluate the role of the regularization parameters α, β, pl for
Equation (2). The objective results for different (α, β, pl) pairs on all test images
are given in Figure 6, where the range of α belongs to {0.1, 0.5}, β is chosen from
{0.001, 0.0001}, and the values of pl are set to {0.5, 0.9}, respectively. It can be
seen that (0.1, 0.001, 0.5), (0.1, 0.001, 0.9) and (0.1, 0.0001, 0.9) have higher FSIMC
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a) (0.1,0.001, 0.5) b) (0.1,0.001,0.9) c) (0.1, 0.0001,0.9) d) (0.5,0.001,0.9)

Figure 7. Examples of impact of (α, β, pl) pairs. First row: estimated illumination maps.
Second row: estimated reflectance maps. Third row: enhanced images. Default settings
are highlighted in bold.

and also lower values in LOE, NIQE and BTMQI, where (0.1, 0.001, 0.9) has highest
FSIMC and lowest LOE.

Figure 7 further demonstrates the effect of different α, β, pl on the illumina-
tion, reflectance and enhanced results. It can be observed that α affects the over-
all smoothness of the illumination, with the larger it is the smoother the illumi-
nation is. The parameter β serves to balance the noise and textures in the re-
flectance map. For parameter pl, it describes the ability of the illumination map
to smooth the textures. Different images contain different degrees of textures and
structures, and in order to adaptively obtain smooth illumination, in our experi-
ments, α is set to correlate with the mean value of the image gradient, and the
parameters are set to {α = 2mean(|∇I|), β = 0.001, pl = 0.9} for all test im-
ages.

4.3 Subjective Assessments

We compare the visual effects of the proposed method with the state-of-the-art
methods on different low-light images. The visual results of two common test images
are shown in Figures 8 and 9.

In Figure 8, The over-enhancement of LIME and URetinex-Net is impressive
and incompatible with human visual senses. SDD, PCA and PPRM have abnormal
contrast levels and show unnatural transition at the image edges. All three deep
learning methods, Zero-DCE++, SCI and URetinex-Net, suffer from color deflec-
tion, possibly due to poor generalization caused by the training dataset. As can be
seen in the sky regions, LIME and PPRM seriously amplify the noise, while massive
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a)

b) c) d) e) f)

g) h) i) j) k)

Figure 8. Comparison of enhanced results with state-of-the-art low-light image enhance-
ment methods. a) Input. b) LIME [14]. c) RRM [17]. d) SDD [18]. e) PCA [53].
f) Zero-DCE++ [45]. g) SCI [31]. h) PPRM [22]. i) URetinex-Net [44]. j) PairLIE [54].
k) Ours.

halo artifacts are present in URetinex-Net. PairLIE enhances dark regions, but there
are distortion artifacts at the edges and poor denoising. Although RRM denoising
is effective, it is accompanied by loss of image structures. Comparatively, the pro-
posed method successfully enhances the dark regions and preserves more textures
and details.

Figure 9 demonstrates the experimental results of a non-uniform brightness im-
age. The enlarged regions in Figures 9 b), 9 d), 9 e), 9 h) illustrate that there are
local regions of over-enhancement in LIME, SDD, PCA, and PPRM, which are un-
desired results. For clouds in the sky, LIME, RRM, SCI and URetinex-Net can
not maintain their structures, reducing images’ visibility. Similar to the results in
Figure 8, the Zero-DCE++ and SCI have a different tone than the input images
and the PCA suffers from a lot of black distortion. PairLIE will over-enhance the
entire image while resulting in significant texture loss and a poor overall visual sense.
In summary, the proposed method realizes visually clear outcomes while naturally
enhancing illumination. Furthermore, our method prevents over-enhancement and
color loss in bright regions.
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a)

b) c) d) e) f)

g) h) i) j) k)

Figure 9. Comparison of enhanced results with state-of-the-art low-light image enhance-
ment methods. a) Input. b) LIME [14]. c) RRM [17]. d) SDD [18]. e) PCA [53].
f) Zero-DCE++ [45]. g) SCI [31]. h) PPRM [22]. i) URetinex-Net [44]. j) PairLIE [54].
k) Ours.

Methods FSIMC ↑ LOE ↓ NIQE ↓ BTMQI ↓
LIME 0.7468 856.4784 3.7092 4.6911
RRM 0.8871 720.4061 3.8528 4.5795
SDD 0.8649 731.1883 3.4460 4.4939
PCA 0.7128 833.5304 3.6685 4.5613
Zero-DCE++ 0.8368 782.8061 3.3587 4.4066
SCI 0.7988 778.5065 4.0943 4.9942
PPRM 0.8042 792.9424 3.4434 4.4601
URetinex-Net 0.8261 775.7184 3.6065 4.5512
PairLIE 0.7687 831.0264 3.9192 4.5883
Ours 0.9015 666.5242 3.1799 4.4983

Table 1. Average FSIMC, LOE, NIQE and BTMQI results on the DICM [35], Fusion [55],
LIME [14], MEF [56] and NPE [57] datasets

4.4 Objective Assessments

To objectively evaluate the quality of the enhanced images, we use four represen-
tative image quality assessments (IQAs), including the feature similarity index for
color images [59], lightness order error (LOE) [57], naturalness image quality eval-
uator (NIQE) [52] and blind tone-mapped quality index (BTMQI) [60]. In general,
higher FSIMC values indicate better quality of image structures, smaller LOE values
suggest less distortion between the enhanced and input images, lower NIQE values
correspond to better image naturalness, and lower BTMQI values indicate better
image quality.
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Table 1 shows the specific data of the four assessment metrics on the five
datasets. The two best performances are marked in bold and underlined. RRM has
the second best FSIMC and LOE which indicates that it has less distortion in the
enhanced image. The second best NIQE and BTMQI performance is Zero-DCE++
indicating that it has natural enhancement results. LIME and PCA perform badly in
every aspect, proving that the enhancement results have obvious distortion and are
not natural. The four metrics of SDD are mediocre, and the enhancement effect can
be improved. SCI, PPRM, and URetinex-Net perform unfavorably in most metrics
due to the whitish tones of SCI, the amplified noise of PPRM, and the over-enhanced
loss of information in URetinex-Net. It can be seen that our approach achieves the
best on all four metrics. Comprehensively, the proposed method outperforms other
methods in terms of image sharpness, contrast and structural information.

Methods PSNR SSIM FSIMC LOE NIQE BTMQI

LIME 12.1340 0.4578 0.8024 731.1822 3.1490 5.0484
RRM 14.3789 0.4863 0.9062 710.8631 3.8578 4.1648
SDD 14.5236 0.4875 0.8690 703.8549 3.0494 4.1571
PCA 12.4634 0.4276 0.7712 729.9708 3.3623 4.9304
Zero-DCE++ 13.5381 0.3293 0.8700 723.6404 2.6244 4.2356
SCI 14.3624 0.4717 0.8282 728.9347 3.4398 5.0696
PPRM 11.5182 0.3075 0.8410 729.1265 2.8201 4.3987
URetinex-Net 13.3061 0.4192 0.8930 706.8212 3.0343 4.3165
PairLIE 11.7466 0.4147 0.8112 730.2447 3.7213 4.9394
Ours 15.3568 0.4892 0.9125 695.9043 2.6776 3.7950

Table 2. Average PSNR, SSIM, FSIMC, LOE, NIQE and BTMQI results on the SICE [58]
dataset

The PSNR and SSIM metrics are additionally added to the SICE dataset, and
all the results are shown in Table 2. The overall metrics of LIME, PCA, PPRM,
and PairLIE perform poorly due to the noise effects that usually accompany the
enhancement process and the presence of over-enhancement and aberration arti-
facts. SCI, RRM, URetinex-Net, and Zero-DCE++ similarly perform poorly on few
metrics, indicating that they are less robust and cannot take into account the com-
plex scene and noise distributions of low-light images. SDD obtains the second on
four metrics, proving its effectiveness in enhancing low-light images but still suffers
from structural loss in the denoising process. Comparatively, the proposed method
possesses the best results on five metrics, benefiting from the adaptive parameter
estimation, which is consistent with our subjective results. The experimental results
demonstrate the effectiveness of the designed weighted fractional-order variational
model for low-light image enhancement.
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Figure 10. Convergence curve of our model

4.5 Convergence Speed

For the convergence speed of the proposed model, we test it on more than 300 low-
light test images, and the average convergence curves of illumination and reflectance
are shown in Figure 10. As the number of iterations increases, the curves of illu-
mination and reflectance decrease rapidly and then tend to smooth. The average
convergence curves on more than 300 test images show that the proposed method
converges significantly faster and within 10 iterations.

For an image of size 480× 640× 3, the computational time for all the compared
methods are listed as follows: LIME 0.16 s, RRM 22.37 s, SDD 3.96 s, PCA 0.21 s,
SCI 0.48 s, PPRM 6.59 s, and Ours 3.72 s. The proposed method is faster than most
variational models and our results are the best in both subjective and objective
assessments.

4.6 Ablation Study

To evaluate the effectiveness of the proposed weighted fractional-order variational
model and the multi-illumination fusion method, Figure 11 shows the importance of
the two modules. For the input low-light image, Figure 11 b) shows the output image
obtained without using the weighted matrix, which enhances the image brightness
but the contrast is not well recovered. Figure 11 c) shows the output image obtained
without multi-illumination fusion (using normal Gamma correction enhancement),
it can be seen that some regions are low brightness and do not show the structures
of the image completely. Figure 11 d) shows the enhancement result obtained by the
proposed method, which has excellent brightness and contrast, high visibility and is
closest to the ground truth.
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a) Input b) w/o W c) w/o Fusion

d) Ours e) GT

Figure 11. Ablation studies on the framework. ’w/o W ’ denotes our method without
weighted matrix W introduced in Section 3.4. ’w/o Fusion’ denotes our method with-
out multi-illumination fusion method and uses Gamma correction of value 1/2.2 for
enhancement. We can observe that our framework is important for low-light enhance-
ment.

5 CONCLUSION

This paper introduces a novel weighted fractional-order variational model for low-
light image enhancement. Compared with the current Retinex-based methods, the
proposed model can precisely decompose the illumination and reflectance maps.
The decomposition model smooths the illumination component while avoiding the
loss of local brightness features by aware image’s primary structures. The con-
structed multi-illumination fusion method employs well-exposedness and local en-
tropy weights so that information-rich dark regions are adequately enhanced and
the brightness level of localized high-intensity regions is maintained. Subjective
and objective evaluation experiments on over 300 challenging low-light images are
conducted respectively, and the results demonstrate that the proposed method out-
performs the state-of-the-art methods. We believe that this work lays a solid foun-
dation for future enhancement research, and we plan to extend our approach to
video enhancement.
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