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Abstract. Existing deep-learning-based image steganalysis networks have prob-
lems such as large model sizes, significant runtime memory usage, and extensive
computational operations, which hinder their deployment in many practical ap-
plications. To address these challenges, we applied model compression techniques
to image steganalysis and designed a model called SASRNet, a slimming-assisted
steganalysis residual network. We observed that the trainable scale factor of BN
(batch normalization) layer in steganalysis network can be used as channel scaling
factor for pruning. The channel-level sparsity of convolutional layers is enhanced
by imposing L1 regularization on channel scaling factors and pruning less informa-
tive feature channels. With the goal of balancing performance and efficiency, the
iterative algorithm is used to further compress the network to obtain a slimming-
steganalysis detector. In contrast to many existing methods, our proposed method
can be directly applied to steganalysis network architectures by introducing a min-
imal overhead to the training process. We have conducted extensive experiments
on BOSSBase+BOWS2 dataset. Experiments show that, compared to the original
steganalysis model, this method can achieve comparable performance with less than
5% of the parameters, validating the feasibility and practicality of the new model.
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1 INTRODUCTION

Image steganalysis and image steganography are technologies that act against each
other and promote development of each other in gaming [1, 2, 3]. Steganalysis,
the opposite of steganography, has been proposed to detect whether an image is
embedded with secret information. The difficulty of image steganalysis is that the
steganalysis model cannot fully and effectively model the slight differences that occur
when the steganography operation embeds secret messages in an image. Figure 1
shows an example of image steganography, Figure 1 b) shows the cover image, and
Figure 1 c) shows the stego image, and Figure 1 a) shows the pixel-by-pixel difference
between the cover and stego images. It can be observed that Figures 1 b) and 1 c)
are difficult to recognize with the human eye. In addition to the detection accuracy,
running and training rate, the number of model parameters, and calculation cost, are
all important factors to be considered in the real application of image steganalysis.
At the same time, with the popularity of intelligent devices, image steganalysis is
applied more and more widely. Therefore, the deployment of image steganalysis
model has become a key problem worth studying.

Deep neural network (DNN) have recently become the primary method for com-
puter vision tasks. They exhibit excellent performance in object detection [4], image
classification [5], semantic segmentation [6], and other tasks. Image steganalysis
based on DNN have also been proposed to detect whether secret information is em-
bedded in an image. However, as the image steganalysis task complexity increases,
the number of steganalysis model parameters increase. Further, the number of layers
becomes deeper, resulting in a longer running time and more space overhead, which
limits the use of steganalysis model in terminals with limited hardware conditions,
such as applications on mobile phones and portable smart devices. For example, the
basic DNN model ResNet [7], which is widely used in image steganalysis, the 152-
layer ResNet has more than 60 million parameters, a significant resource burden for
embedded devices. In recent years, the continuous development of model compres-
sion technology has solved some difficult problems in DNN deployment [8, 9, 10].
After model compression, the number of network parameters and amount of calcu-
lation are significantly reduced, resulting in low computational and storage costs.
This significant reduction allows for performing complex imaging tasks with lim-
ited hardware conditions. Simultaneously, model compression can also efficiently
compress and execute DNN without compromising accuracy. The current model
compression methods can be divided into six categories: network pruning, param-
eter sharing, quantization, network decomposition, network distilling, and compact
network design [11]. Pruning has become an important research direction for com-
pressing and accelerating DNN because of its simple and effective characteristics in
directly reducing redundancy in DNN models.

In this paper, we proposed SASRNet, using model compression for image ste-
ganalysis. The method introduces a pruning algorithm into the existing steganalysis
model based on deep learning, thereby reducing the model parameters without sig-
nificantly reducing the detection accuracy of steganalysis. Simultaneously, it reduces
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a)

b) c)

Figure 1. Cover image from BOSSbase1.01 and the corresponding stego image: a) the
pixel-by-pixel differences between the cover image and stego image, b) cover image, and
c) stego image; difficult to recognize with the human eye

the difficulty of model deployment and enables diversified practical applications of
steganalysis research. Our method use a channel-pruning method to compress the
trained model. The unimportant channels were automatically identified and then
pruned to produce a compact model with considerable accuracy. Pruning unim-
portant channels may temporarily impair performance, but fine-tuning the pruned
network can compensate for this effect. Currently, the application of model com-
pression techniques to the field of image steganalysis is a challenging task. We have
considered the applicability as well as the efficiency of various algorithms for ste-
ganalysis models in our design as well as in our experiments. We also optimize and
improve the model compression scheme for the characteristics of image steganal-
ysis. Multiple experimental results showed that our method could accelerate the
model runtime and achieve the same or even higher accuracy while compressing the
model.
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The remainder of this paper is organized as follows. In Section 2, we review
state-of-the-art research related to our proposed method. Section 3 elaborates on
the proposed method in detail. The experimental results and analysis are presented
in Section 4. Finally, Section 5 concludes the paper.

2 RELATED WORKS

2.1 Image Steganalysis Based on Deep Learning

Image steganalysis has experienced a development process from traditional to deep
learning. The rich model proposed by Fridrich and Kodovsky [12] is a typical rep-
resentative of traditional steganalysis, which combines various functions and uses
an integrated classifier for training. In the JPEG domain, some modern schemes,
such as DCTR [13] and SCA-GFR [14], extract features from the residuals of the
decompressed JPEG images, achieving good results. However, these models also
face many difficulties. First, the algorithm design is complicated. Second, adjusting
characteristic parameters require a considerable amount of time and energy, leading
to low experimental efficiency.

In recent years, the development of deep learning has unified and automated the
two steps of feature extraction and classification in traditional image steganalysis,
enabling end-to-end methods and achieving satisfactory results. Qian et al. [15] pro-
posed a network structure with five convolutional layers, using the KV kernel as the
preprocessing layer to preprocess the images, allowing the model to directly learn the
residual images and reduce the interference of the image content in training. XuNet,
proposed by Xu et al. [16], used the KV kernel as a high-pass filter layer for image
preprocessing. The network used five convolutional layers, and the convolution ker-
nel size of the first two layers was 5 × 5. Subsequently, Xu [17] proposed a model
specifically for detecting JPEG steganography, referred to as J-XuNet herein. This
architecture relies on the fixed preprocessing of the DCT kernels in the first convolu-
tional layer and thresholding its feature maps. Ye et al. [18] proposed YeNet, which
uses a deeper ten-layer convolutional network structure and 30 SRM convolution
kernels as preprocessing layers to allow the model to learn more features. Chen et
al. [19] proposed PNetVnet, which modified XuNet for the steganalysis of JPEG im-
ages by splitting the feature maps into 64 parallel channels to make the architecture
aware of the JPEG phase the underlying grid of 8× 8 pixels. Boroumand et al. [20]
proposed the SRNet which comprises four convolutional layer modules with differ-
ent functions, effectively using the BN (batch normalization) layer [21] and residual
network. Further, it adds channel selection to improve the detection accuracy of the
steganography algorithms. Notably, this model provides state-of-the-art detection
accuracy for both the spatial domain and JPEG steganography. Zeng et al. [22] pro-
posed WISERNet for steganalysis of color images, which preserves strong correlation
patterns while damaging uncorrelated noise, effectively reducing the complexity of
model detection performance gains. Zhang et al. [23] proposed a new CNN network
structure that uses separable convolution to utilize channel correlation of residuals
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to compress image content and improve signal-to-noise ratio, while using data en-
hancement technology to improve detection accuracy of spatial domain steganalysis.
Fu et al. [24] considered that existing steganalysis models lack attention to regional
features with complex textures, which affects the detection accuracy of steganalysis.
They designed an image steganalysis model based on channel attention mechanism,
and guided the model to focus on useful features. In this paper, we focus on im-
proving the SRNet model because it is a classic, relatively pure end-to-end network
and is suitable for both spatial and JPEG domains. The structure of the SRNet is
shown in Figure 2.
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Figure 2. Structure of SRNet. The first type is to replace the traditional pre-processing
stage with convolution. The second type is responsible for extracting noise residual in
the image. The third type is mainly to reduce the dimension of the feature map. The
fourth type mainly uses a standard full connection layer and a softmax node to classify
the results.

SRNet is mainly composed of four parts. The first part (Layer Type 1) is
to replace the traditional pre-processing stage with convolution. The second part
(Layer Type 2) is responsible for extracting noise residual in the image. The third
part (Layer Type 3) is mainly to reduce the dimension of the feature map, and the
last part (Layer Type 4) mainly uses a standard full connection layer and a softmax
node to classify the results. SRNet is the first steganalysis network that does not
contain externally introduced modules. Although the pre-processing operations such
as constrained kernel, heuristic kernel initialization and quantization can effectively
extract favorable features in previous steganalysis studies, the application conditions
of steganalysis model are limited to some extent. SRNet has excellent performance
in both spatial and JPEG domains due to its pure end-to-end training mode. It also
provides an independent and instructive environment for the application of model
compression, which is why we use SRNet as the basic model to verify the availability
of model compression in this paper.
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2.2 Model Compression

DNN has become the most powerful tools in machine learning and have a wide
range of applications in artificial intelligence tasks. The high performance of DNNs
is achieved at the cost of high memory consumption and computational complexity.
The existing deep learning frameworks based on DNN, including the image ste-
ganalysis model, are parameterized and have high computational cost and storage
overhead. As a result, they are more likely to require large amounts of training data
to achieve good performance, which significantly affects their deployment in em-
bedded systems. Therefore, model compression has become an important research
topic in deep learning. It also helps with the deployment of DNN-based deep mod-
els, which enhances the usefulness of the models. Therefore, model compression is
proposed and widely used to save memory and speed up computation. Over the past
few years, numerous model compression techniques have been developed to optimize
and balance the relationship between memory and performance. Because network
pruning in model compression is most relevant to the research content of this paper,
this section focuses on network pruning.

Increasing network depth has become more complex recently, rendering network
pruning a research focus. To solve the challenge of deploying a large central neural
network with limited resources, Han et al. [25] discarded weights with small mag-
nitudes. Small weights were set to zero and masked out during retraining. Louizos
et al. [26] used hierarchy before pruning nodes nodes and posterior uncertainties
to determine fixed-point precision. Zhuang et al. [27] used additional classifica-
tion and reconstruction losses on intermediate layers to increase the intermediate
discriminative power and select channels. Lin et al. [28] utilized generative ad-
versarial learning (GAN) to derive a pruning generator. Liu et al. [8] proposed
an approach called network slimming, which accepts wide and large networks as
input models. However, during training, insignificant channels are automatically
identified and pruned afterward, yielding thin and compact models with compara-
ble accuracy. Considering the redundancy of convolution kernel and the influence
of kernel shape on the performance of CNN model, Liu et al. [29] designed a frame-
work for automatically searching the optimal kernel shape and performing strip
trimming, which achieved excellent performance in terms of compression ratio and
operation efficiency. In order to solve the problem of model underfitting, Jiang et
al. [30] proposed a new pruning method, MaskSparsity, which applied fine-grained
sparse regularization to a specific filter selected by pruning mask, and achieved
better computational accuracy. Unlike many existing approaches, the approach
proposed by Liu et al. [8] called network slimming imposes L1 regularization on
the scaling factors in BN layers, which makes it is easy to implement without in-
troducing any changes to the existing steganalysis model architectures. It is worth
noting that this approach does not require a special software/hardware accelera-
tor for the generated model. These characteristics are applicable to the running
and computing scenarios of image steganalysis model and can be pruned at a lower
cost.
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3 OUR PROPOSED SASRNET

3.1 Rationale of Our Proposed SASRNet

Considering the large network and complex training problems of image steganaly-
sis, our goal is to design a lightweight and simple method that can slim down the
steganalysis model without affecting its detection accuracy. SASRNet learning an
efficient steganalysis detector by performing channel-pruning on the convolutional
layers. Searching for a more compact and effective channel configuration of convolu-
tional layers can help reduce the trainable parameters and FLOPs. The whole idea
is to adopt training-pruning-finetuning scheme. Firstly, sparse training is carried
out on SRNet, a pre-training model with huge parameters, and then SASRNet is
obtained by channel pruning on the network. Finally, the network is fine-tuned. Af-
ter doing this once, we get a narrower network, which is not optimal. Therefore, we
iterated through the process to get the most compact and effective model possible.
Figure 3 shows how this scheme works.

When the depth of steganalysis network is large, the fine-grained sparse weight is
more flexible, but it may cause higher compression rate and longer running time and
requires special hardware accelerators to assist. Coarse-grained hierarchical sparsity
is easy to operate, but it does not achieve high performance. Therefore, in the pro-
posed scheme, we consider using channel sparsity to balance the relationship between
performance and efficiency, so as to achieve the purpose of “slimming”. However,
the application of steganalysis model has some challenges. Channel sparsity requires
the input and output associated with it to prune, while the weight value of ports is
generally not close to zero, so it is difficult to prune on the pre-training model. So
we introduced a simpler way to solve this problem. We introduced a scaling factor
for each channel and multiplied it by the output of that channel. Subsequently, we
jointly trained the network weights and these scaling factors and performed sparsity
regularization. Finally, we pruned those channels with small factors and fine-tuned
the pruned network, then obtained a model that can be deployed on the application
side. In the following section, we introduce specific implementation details of this
method.

Sparsity 
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Prune channels with 

small scaling factors

Deploy in 

applications

Performance
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Fine-tuning

Prune iteratively

SRNet
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Figure 3. Iterative procedure for learning an efficient steganalysis detector for SASRNet
through sparsity training and channel-pruning
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3.2 Detailed Algorithm of Our Proposed SASRNet

1) Sparsity Training. The sparsity training of deep models is helpful for channel
pruning and describes the number of less critical channels that can potentially
be removed afterward. We want to find a scaling factor for each channel to
describe it to facilitate channel pruning, where the absolute values of the scaling
factors denote the channel importance. As the convolutional network is designed
to be increasingly deeper, the network becomes increasingly difficult to train and
converge. This is because the influence of the parameters in the shallow network
is amplified in the deep network, changing the input distribution characteristics
of each layer. The BN layer solved this problem, and was used as a standard
method to achieve fast convergence and better generalization performance in
most modern CNNs. The BN layer follows each convolutional layer in the SRNet
to accelerate convergence and improve generalization. We adopted trainable
scale factors in the BN layers as indicators of channel importance. The BN
layer calculation formula is as follows:

y = γ × x− x̄√
σ2 + ε

+ β, (1)

where x̄ and σ2 are the mean and variance of the input features in a mini-batch,
respectively, γ and β denote the trainable scale factor and bias, respectively. We
performed channel-wise sparsity training to effectively discriminate important
channels from unimportant channels by imposing L1 regularization on γ. The
formula for sparsity training is as follows:

L = lossSRNet + α
∑
γ∈Γ

f(γ), (2)

where f(γ) = |γ| denotes the L1-norm and α denotes the penalty factor that
balances the two loss terms. We used the subgradient method to optimize the
nonsmooth L1 penalty term. Instead of resorting to group sparsity on convolu-
tional weights, our approach imposes simple L1 sparsity on channel-wise scaling
factors; thus, the optimization objective is considerably simpler.

2) Channel Pruning. After sparse training, many scaling factors in the SRNet
model were approximately zero, as shown in Figure 4. Subsequently, we pruned
the channels with a scaling factor close to zero by removing all incoming and
outgoing connections and their corresponding weights. We used a global thresh-
old across all the layers to prune the channel. The global threshold is defined
as the percentage of all scaling factor values. For example, the threshold was
set to 50% to trim the 50% channel with a lower scaling factor. Consequently,
SRNet has fewer parameters and fewer calculation operations, thereby reducing
the memory required at runtime.

In the SRNet, special processing is required for the shortcut layer. In this
network structure, the output of a layer may be considered as the input of
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multiple subsequent layers, wherein a BN layer is placed before the convolutional
layer. In this case, sparsity is achieved at the incoming end of the layer. The layer
selectively uses a subset of channels that it receives. To harvest the parameter
and computation savings at the test time, we placed a channel selection layer to
mask the insignificant channels. After pruning, the resulting narrower network
was substantially more compact with respect to model size, runtime memory,
and computing operations than the initial wide network.

Pruning a channel essentially corresponds to removing all channel incoming and
outgoing connections. Thus, we can directly obtain a narrow network with-
out resorting to any special sparse computing package, as shown in Figure 4.
The scaling factors act as agents for channel selection. Because network weights
jointly optimize them, the network can automatically identify insignificant chan-
nels and safely remove them without affecting the generalization performance
significantly.
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Figure 4. Schematic of channel pruning. Blue realizations represent important channels
that cannot be removed and red dotted lines represent insignificant channels that can be
removed.

3) Fine-Tuning. When the pruning ratio is high, pruning may cause a loss of
accuracy. However, this can be compensated by fine-tuning the pruned network.
In steganalysis tasks, detection performance is generally sensitive to channel
pruning. Therefore, fine-tuning is vital for recovering the pruned model from
potential performance degradation. In fine-tuning, we used the same training
hyperparameters as the standard training of SRNet to retrain SASRNet directly.

4 EXPERIMENTS

4.1 Experiment Setup

To assess the robustness of the detector, the datasets BOSSbase 1.01 [31] and
BOWS2 [32] were used for the performance evaluation, each containing 10 000
grayscale spatial images with a size of 512× 512. Their distributions were close. All
images were resized to 256× 256 pixels using the MATLAB function imresize. The
corresponding JPEG images were generated with quality factors (QFs) of 75 and 95.
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Four representative steganographic schemes, namely, HILL [33] and HUGO [34] for
the spatial domain and UERD [35] and J-UNIWARD [36] for the JPEG domain,
were attacking targets in the experiments. For spatial-domain steganographic al-
gorithms, the embedding payloads were set to 0.1 to 0.4 bits per pixel (bpp). For
JPEG steganographic algorithms, the embedding payloads were set to 0.1 to 0.4 bits
per non-zero AC DCT coefficient (bpnzAC). In all the experiments, we initialized
all channel scaling factors γ = 0.5, α = 10−4 to observe the benefits of network
slimming. To achieve the best performance of the model, the pruning rate was set
to 60% in the comparative experiments. All tests were performed using Tesla V100
and GeForce RTX3090 GPU cards.

In the experiment, 4 000 images were randomly selected as the training set,
1 000 as the validation set, and 5 000 as the test set. The stochastic gradient descent
optimizer Adamax was used with mini-batches of 16 cover-stego pairs. The training
database was shuffled after each epoch. In our dataset, the training was run for
400 k iterations with an initial learning rate of 0.001; subsequently, the learning rate
was decreased to 0.0001 for an additional 100 k iterations. During the comparison
experiment, the method and comparison method proposed in this paper used the
same training set, validation set, and test set, and the images of the three datasets
were not repeated. The performance was evaluated by testing the accuracy and
steganalysis error rates as follows:

PAccuracy = 1− PE, (3)

PE =
1

2
(PFA + PFN) , (4)

where PFA and PFN denote the probabilities of false positives and false negatives,
respectively. The probability of the results was expressed as a percentage.

4.2 Detection Performance

We compared the detection performance of the SASRNet and corresponding original
SRNet to verify the performance of the SASRNet. To experiment, we uniformly used
the J-UNIWARD steganographic image database; the quality factor was 75, and the
embedding rate was 0.4 bpnzAC.

It can be observed from Figure 5 that as the number of parameters is reduced,
the detection accuracy of SASRNet after model compression processing does not
show excessive fluctuations compared to the original SRNet. In addition, we found
in the experiment that the convergence effect of SASRNet in training was not as
good as that of the original SRNet. Probably because model representation learning
becomes more difficult after the parameters are reduced, leading to greater shocks.
This problem provides a direction for improvement in future research.

All detectors were trained using BOSSbase. Testing was performed on the test
set of BOSSbase and 5 000 randomly selected images of BOWS in JPEG and the
spatial domain to evaluate the performance of SASRNet in every situation. From
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(a) SRNet (b) SASRNeta) SRNet

(a) SRNet (b) SASRNetb) SASRNet

Figure 5. Comparison of SRNet and SASRNet training accuracy



306 S. Huang, M. Zhang, Y. Ke, F. Di, Y. Kong

the experimental results presented in Table 1 and Table 2, it can be seen that the
detection accuracy of SASRNet is not significantly affected after model compression.
It even surpasses SRNet in some cases, which we assume is because of pruning certain
irrelevant factors.

Dataset Steganography
Detection
Model

QF75 QF95

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
BOSSbase J-UNIWARD SASRNet 64.11 79.03 86.35 91.48 59.21 68.55 75.02 80.04
(Train&Test) SRNet 64.49 79.28 86.67 91.75 59.66 68.83 75.44 80.46

UERD SASRNet 81.2 89.47 94.32 96.66 67.29 78.11 85.39 89.03
SRNet 81.61 89.85 94.33 96.58 67.6 78.41 85.73 89.38

BOWS2 J-UNIWARD SASRNet 63.74 76.77 85.39 90.02 56.62 67.49 73.96 79.89
(Test) SRNet 64.13 77.08 85.77 90.34 56.84 67.69 74.28 79.88

UERD SASRNet 80.33 89.03 93.25 95.52 67.12 77.81 85.01 88.29
SRNet 80.77 89.48 93.6 95.43 67.55 78.03 85.34 88.69

Table 1. Comparison of the performance of SRNet and SASRNet in the case of data source
mismatch (JPEG domain) [%]

Dataset Steganography
Detection
Model

0.1 0.2 0.3 0.4

BOSSbase HILL SASRNet 65.17 73.22 79.74 84.34
(Train&Test) SRNet 65.53 73.41 79.72 84.25

HUGO SASRNet 71.02 80.11 86.09 90.6
SRNet 71.44 80.52 86.33 90.64

BOWS2 HILL SASRNet 62.29 71.56 78.41 82.3
(Test) SRNet 62.87 71.82 78.44 82.23

HUGO SASRNet 70.39 79.31 84.92 89.85
SRNet 70.53 79.66 85.01 89.88

Table 2. Comparison of the performance of SRNet and SASRNet in the case of data source
mismatch (spatial domain) [%]

4.3 ROC Curve

The receiver operating characteristics (ROC) curve is an essential indicator of the
steganalysis model. It reflects the model through the relationship between the true
positive rate (TPR) of the vertical axis and false positive rate of the horizontal axis.
The discriminative ability in the case of an uneven distribution of positive and neg-
ative samples in the dataset indicates the robustness of the model. The area under
curve (AUC) is the area covered by the ROC curve. The larger the AUC value, the
better is the model detection effect. Figure 6 shows the ROC curve, corresponding
AUC value of the SASRNet model proposed in this study, and comparison model
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SRNet with different embedding rates and adaptive steganography algorithms, with
an image quality factor of 75. As can be observed from the figure, the performance
of SASRNet is better than that of SRNet.

In Figure 6, we compare the detection performance of SASRNet and the cor-
responding original SRNet using the ROC curve. From Figure 6, we can observe
that SASRNet achieves comparable detection performance. When used to detect
a 0.2 bpp HILL spatial domain stego image dataset, SASRNet can achieve better
detection performance. Notably, all high-performance implementations of the SAS-
RNet rely on fewer parameters and require less computation time than the original
SRNet.

4.4 Mismatch Test

We conducted mismatch tests to investigate the transferability of the obtained SAS-
RNet architecture. The training and test sets often have distribution deviations in
an application environment, resulting in mismatch problems. The reason is as fol-
lows:

1. The cover data derived from different sources and different imaging devices cause
inconsistent noise distribution after cover quantization, which causes mismatch
problems in the classification process.

2. In the process of steganographic image generation, different steganographic
methods and embedding rates also cause mismatches.

A training model is generated from a training image library with a high embedding
rate. The detection result is mismatched when a steganalysis test is performed on
a test image library with a low embedding rate.

SRNet J-UNIWARD (Tested) UERD (Tested)

J-UNIWARD (Trained) 91.75 93.89
UERD (Trained) 78.59 96.58

SASRNet J-UNIWARD (Tested) UERD (Tested)

J-UNIWARD (Trained) 91.48 93.51
UERD (Trained) 79.63 96.66

Table 3. Comparison of the performance of SRNet and SASRNet in the case of steganog-
raphy algorithm mismatch (JPEG domain) [%]

Table 3 and Table 4 compare the detection performances of SASRNet and orig-
inal SRNet trained on one steganographic algorithm and tested on another. It can
be observed from the experimental results that when the target payload is the same
(0.4 bpp/bpnzAC), SASRNet can achieve a similar performance as that of the orig-
inal SRNet.
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(a) J-UNIWARD (b) UERD

(c) HILL (d) HUGO

a) J-UNIWARD

(a) J-UNIWARD (b) UERD

(c) HILL (d) HUGO

b) UERD
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Figure 6. Comparison of the ROC curves for different embedding rates and steganography
algorithms
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SRNet HILL (Tested) HUGO (Tested)

HILL (Trained) 84.25 80.95
HUGO (Trained) 75.1 90.64

SASRNet HILL (Tested) HUGO (Tested)

HILL (Trained) 84.34 80.47
HUGO (Trained) 74.88 90.6

Table 4. Comparison of the performance of SRNet and SASRNet in the case of steganog-
raphy algorithm mismatch (spatial domain) [%]

4.5 Slimming Analysis

After obtaining a model trained with sparse regularization, we must determine the
percentage of channels that needed to be cut from the model. If we delete an ex-
tremely small number of channels, limited resources are saved. However, running
many channels may damage the model, and we may not be able to restore accuracy
through fine-tuning. We trained an SRNet model on the J-UNIWARD stegano-
graphic image dataset with a payload of 0.4 bpnzAC and a QF of 75 to show the
effect of pruning different percentages of channels. In Figure 7, we show the variation
in test accuracy with respect to the pruning rate.

Figure 7. Relationship between detection accuracy and growth pruning rate

Figure 7 shows that the classification performance of the pruning or fine-tuning
model decreases only when the pruning rate exceeds the threshold. The fine-tuning
process can usually compensate for the possible loss of accuracy owing to trimming.
However, when the threshold exceeds 75%, the test error of the fine-tuned model
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begins to drop below the baseline model. In the experiment, we also found that
after sparsity training, even without fine-tuning, the performance of the proposed
model was better than that of the original model. This may be because of the
regularization effect of L1 sparsity on the channel scaling factors.

Model Pruned Accuracy Parameters FLOPs Time

SRNet – 96.58% 477.61× 104 5.94× 109 41 s

SASRNet 40% 96.67% 25.97× 104 3.45× 109 38 s
60% 96.66% 8.66× 104 2.97× 109 25 s
80% 93.34% 2.39× 104 0.83× 109 20 s

Table 5. Comparison of the impact of different pruned rates on the model

Finally, we compared the detection accuracies, parameter rate FLOPs, and test
times at different pruning rates on a UERD with a load of 0.4 bpnzAC and a QF
of 75 to reflect the optimal performance of the model, as shown in Table 5. Note
that in Table 5 we list one of our most successful experiments. As can be seen
from the table, as the pruning rate increases, the detection accuracy of the model
increases, and it can achieve better performance with less than 5% of the parameters,
while the running time is shortened. This is an exciting result, and we analyze
that it may be due to the fact that the model is more focused and efficient in
training after removing the redundant factors. However, we have to admit that the
performance of the model starts to decrease after the pruning rate reaches 80%.
Therefore, the appropriate pruning rate is also very important for different task
requirements.

Steganography Algorithm Model Accuracy (40%) Accuracy (80%)

J-UNIWARD XuNet 86.23%
SAXuNet 86.47% 85.93%

UERD XuNet 91.17%
SAXuNet 91.15% 90.87%

Table 6. Results of using slimming methods on XuNet

In this paper, we mainly improve on the SRNet model because of its advance-
ment and universality in the field of steganalysis. In order to further illustrate the
generalization of our proposed method on steganalysis models, we also try to deploy
it on the classical model, XuNet, the model SAXuNet was constructed. As shown
in Table 6, the feasibility and generalization of the scheme is verified with different
steganography algorithms and different pruning rates (40%, 80%).

5 CONCLUSIONS

With the increasingly complex structure of image steganalysis model, its huge num-
ber of parameters leads to more and more difficult deployment on mobile terminals.
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In this paper we propose SASRNet, a method using network slimming to the assisted
steganalysis residual model. The major contributions of this work are as follows:

• We have observed that the trainable scale factor of BN layer in steganalysis
network can be used as channel scaling factor for network slimming, which can
be easily implemented without changing the existing steganalysis network ar-
chitecture.

• We have proposed a slimming-assisted deep residual network architecture, which
uses a model compression technology to balance performance and efficiency of
the network without using a special accelerator.

• We have conducted extensive experiments on datasets with different circum-
stances. Moreover, we carried out mismatch test to verify practicability of our
method. The experimental results show the SASRNet can still achieve similar
performance with a few percent of the model size.

Our future work will focus on two aspects:

1. To design an adaptive compression algorithm based on different steganalysis
models so that the depth models can be easily deployed;

2. To futher explore the way how to improve the model detection accuracy and
operating efficiency under compression.
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