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Abstract. In recent years, some deep learning dehazing methods based on at-
mospheric scattering model mostly solve the dehazing results by using depth con-
volution neural networks (CNNs) to estimate the medium transmission map in
the model. However, these methods usually ignored the potential correlation be-
tween the transmission map and the atmospheric light in the atmospheric scattering
model, which can lead to colour distortion and incomplete dehazing in the dehazing
results. To address this problem, this paper first presents a novel Haze-Veil model
to increase the correlation between the model parameters by constructing an atmo-
spheric veil term. Then, based on the proposed model, a haze-relevant end-to-end
network (HRN) is designed to estimate the parameters of this model and directly
output the final clear image. In addition, a cost function is designed by defining
multi-object constraint cost functions to further establish the connections between
the statistical attributes of the hazy image and the out of HRN. Experiments on
benchmark images, which include synthesized and real images, show that HRN ef-
fectively removes haze and outperforms most of the existing and state-of-the-art
dehazing methods.

Keywords: Single image dehazing, deep learning, convolutional neural network,
multi-object constraints

Mathematics Subject Classification 2010: 68U10

1 INTRODUCTION

Haze is a natural atmospheric phenomenon in real-world scenarios. In the presence
of haze, the distant objects in the haze become blurred, and the colours of these
objects lose fidelity. This is because the irradiance received by the camera from
the objects is attenuated. Further, the incoming light of the camera blends with
light scattered by droplets, dusts and small particles suspended in the atmosphere.
As a consequence, the clarity of captured images can be deteriorated, as shown in
Figure 1. Additionally, the performance of many outdoor and automatic driving
equipment is also degraded. For these reasons, haze removal is highly desired in
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computer vision applications and has attracted a significant interest in the field of
image processing and computer vision in recent years [1, 2].

Single-image dehazing has made significant progress over the years, which can
be summarized as three types: image enhancement-based methods, model-based
methods and CNNs-based methods. Several image enhancement algorithms have
been proposed to remove haze from a single image over the years [3, 4, 5, 6, 7, 8].
For example, the early contrast-based method proposed by Tan [3] assumed that
the hazy images have lower contrast compared with clear images, and removed haze
by maximizing the contrast of per-patch. This method achieved compelling results,
especially in the dense haze regions, but the dehazed images often suffered from
halo artifacts and distorted colours due to the lack of physical information. An-
other contrast-based approach designed by Tarel and Hautière [4] removed haze by
assuming that the depth-map must be smoothed except in the region with large
depth jumps. Although this method has dramatically improved the edge contour
of a hazy image and achieved an effective computation, it is invalid to handle the
discontinuous scene depth regions and has obviously distorted the colour. Ancuti
and Ancuti [5] first proposed a fusion-based method to enhance the visibility of hazy
image. This method significantly improves the visibility of enhanced images, but the
over-enhancement problem often occurs when dehazing the dense haze. Recently,
Galdran [6] proposed a dehazing algorithm based on multiple-exposure image fusion
technology.

a) Input hazy image b) Dehazed result

Figure 1. Single image dehazing results by our method

This algorithm can effectively remove the haze even in bad weather situations. In
addition to above methods, the enhancement-based methods such as the histogram-
based method [7], and saturation-based method [8], have also obtained considerable
dehazing results. However, the common problem of the above methods is that the
degradation mechanism of the hazy image is ignored. Due to the lack of appropriate
physical information to constrain the statistical distribution of dehazed image, over-
enhancement, colour shift and distortion may emerge. To overcome these problems,
the model-based methods based on physical models have attracted much attention
in recent years.
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It is widely known that a hazy image can be regarded as a convex combina-
tion of scene radiance and atmospheric light. The combination coefficient is of-
ten called the medium transmission. Therefore, in the past several years, the key
issue of image dehazing has been extensively studied by estimating the medium
transmission. However, the medium transmission depends on the unknown scene
depth information in different positions, which leads to the estimation of trans-
mission and haze removal becoming challenging problems. In general, model-based
methods estimated the transmission by prior information and assumptions [9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The earliest method of Chavez [9] utilized
a subtraction method in the darkest object to address the atmospheric scattering
correction to remove haze. This method is effective for hazy images with homo-
geneous scenes. Fattal [10] proposed a dehazing method based on a generic reg-
ularity, where pixels of small image patches in natural images can exhibit a one-
dimensional distribution in the RGB colour space. Although the contrast of the
recovered image is extremely enhanced by this method, the accuracy of classifi-
cation in the patches cannot be guaranteed. In addition, it is invalid when the
statistical hypotheses fail. The dark channel prior (DCP) discovered by He et
al. [11] indicated that at least one-colour channel has some pixels with very low
intensity in patches of an image which does not contain the areas of the sky. It
was effective in transmission estimation and achieved prominent dehazing results
in non-sky regions. However, DCP loses effectiveness for the sky region and is
computationally expensive in the procedure of soft-matting [21]. It is worth men-
tioning that soft-matting could be replaced by a standard median filtering [12],
guided image filter [22] and guided joint bilateral filtering [13] to improve the com-
putational efficiency. Meng et al. [14] designed a regularization-based dehazing al-
gorithm that imposed a boundary constraint on the medium transmission. This
extension algorithm of DCP effectively improved the dehazing quality of the sky re-
gion and obtained considerable achievement for most types of hazy images. Nishino
et al. [15] proposed a probabilistic method based on Bayesian theory for dehazing.
This method regarded the scene albedo and depth as two statistically indepen-
dent latent layers and formulated a factorial Markov random field (MRF) of the
hazy image to jointly estimate the transmission and depth information. Recently,
Berman et al. [16] proposed a non-local haze-line prior in which the colours of a haze-
free image are well approximated by a few hundred distinct colour lines, and then
they employed the clustering algorithm based on the prior in RGB space to restore
the clear image. Huang et al. [17] proposed a haze removal method by adopting
the robust sparse representation algorithm to estimate the medium transmission,
and designed an adaptive illuminance transfer method to optimize the dehazed re-
sults.

Recently, researchers heuristically designed various feature maps and employed
probability-based methods to estimate the unknown parameters of the physical
model. Tang et al. [18] selected four haze-relevant features to establish the optimal
feature combination and applied random forests to estimate transmission. Jiang et
al. [19] designed a novel saturation, hue and value colour space-based feature, which
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was correlated well with the fog density. The feature was used to learn the refined
polynomial regression model for optical depth. Zhu et al. [20] proposed a novel lin-
ear model to estimate the scene depth information based on the colour attenuation
prior, and used a supervised method to learn the parameters of the model. In many
cases, the above methods based on priors or assumptions have achieved impressive
dehazing performance. However, the above model-based methods strongly depended
on the efficiency of the priors and assumptions, so these methods were often invalid
when the real-world hazy images did not meet the assumptions or priors.

For the challenging vision task of dehazing, the human brain can quickly and
accurately recognize the density and area of fog or haze without any extra infor-
mation. Inspired by this human behavior, the bio-inspired technology of convo-
lutional neural networks (CNNs) has been successfully used in single image de-
hazing works [23, 24, 25, 26]. Cai et al. [23] proposed a deep-learning network
that was an end-to-end system for medium transmission estimation. This method
proposed a creative nonlinear activation function BReLU to improve the quality
of the dehazed image. Li et al. [24] proposed cascaded CNNs to jointly estimate
the medium transmission and the global atmospheric light under two subnetworks.
Ren et al. [25] designed multiscale deep CNNs with coarse and refined networks to
extract features, and automatically learned the mapping of hazy images and the
corresponding transmission map. Another CNNs-based method [26] tried to by-
pass the estimation step and merge the parameters of an atmospheric scattering
model into one parameter called K(x) for dehazing. Recently, Zhang et al. [27]
estimated the transmission map by designing a new edge-preserving densely con-
nected structure and the generative adversarial networks (GAN) framework was
employed to evaluate whether the results are real or fake. Ren et al. [28] con-
structed a CNN by adopting a novel fusion-based strategy, and this network could
remove haze without estimating the parameters of any physical model. Wang et
al. [29] proposed an algorithm which is based on atmospheric illumination prior to
remove haze. The atmospheric illumination prior indicates that the haze mainly
affects the luminance channel in YCrCb colour space. The problem of brightness
and ambiguity in haze image could be well-handled by using the prior. Chen et
al. [30] proposed an end-to-end gated context aggregation network to directly re-
store the final haze-free image. The latest smoothed dilation technique has been
employed in this method to effectively remove the gridding artifacts. In addition,
a gated sub-network was designed to fuse the features from different levels to help
improve the dehazed result. Song et al. [31] designed a ranking CNNs to extend
the structure of CNN, so that the statistical and structural properties of hazy im-
ages can be captured at the same time. Yeh et al. [32] proposed a deep learning
framework based on multi-scale residual learning (MSRL) and image decomposition
for single image defogging. Yin et al. [33] created a colour-transfer image dehazing
model and designed a CNN based deep framework based on this model to real-
ize the hazy removal. Dong et al. [34] proposed a multi-scale boosted dehazing
network based on boosting and error feedback principles to solve the dehazing prob-
lem. Shao et al. [35] proposed a domain adaptation paradigm to address the issue
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that most existing dehazing methods are less able to generalize well to real hazy
images. Further, Wang et al. [36] proposed a variational single nighttime image
haze removal method, which adopts a new structure-aware variational framework
to simultaneously estimate the inverted scene radiance and the transmission in the
gray component. Yang et al. [37] proposed a progressive image dehazing network,
which realizes haze removal step by step by constructing the preliminary and fine
dehazing modules.

Zhang and Patel [38] proposed an end-to-end densely connected pyramid net-
work by embedding the atmospheric scattering model directly into the network. Li
et al. [39] proposed an unsupervised and untrained neural network for image dehaz-
ing, which uses three joint sub-networks to divide the hazy image into three potential
layers, namely scene radiance layer, transmission map layer and atmospheric light
layer. Li et al. [40] designed an encoder and decoder architecture, which is based
on the conditional generative adversarial network (cGAN) to achieve the end-to-end
image haze removal. To generate realistic dehazed results, the basic cGAN formu-
lation was modified by introducing the VGG features and adding an L1-regularized
gradient prior. In general, because the complex nonlinear mapping from the input
to the target can be sufficiently learned by fitting the massive training data, increas-
ingly progress has been achieved by these CNNs-based dehazing methods. Wu et
al. [41] propose a new contrast regularization method based on contrast learning,
which utilizes information from blurred images and clear images as negative and
positive samples, respectively. However, many CNNs-based methods do not fully
consider the correlation between parameters in the haze degradation model when
designing networks. This problem may result in the features extracted by CNNs be-
ing inadequate and inappropriate, and it will further lead to an undesirable dehazing
results in real-world images [42].

In this paper, to better explore the physical information of haze by means of
CNNs, we build a novel Haze-Veil model by modifying the regular atmospheric
scattering model to describe the degradation mechanism of a hazy image. Then,
a haze-relevant end-to-end network (HRN) based on the proposed Haze-Veil model
is designed to achieve the task of dehazing. HRN takes a hazy image as input, and
directly outputs the haze-free image without any manual parameter assignment. In
addition, to make HRN more closely related to the physical mechanism of haze,
a new cost function is also designed to constrain the learning of HRN. Extensive
experiments on benchmark images prove that the proposed HRN obtains better
performance over some the state-of-the-art methods. The main contributions of this
paper include:

1. A new Haze-Veil model based on the regular atmospheric scattering model is
built to describe the degradation mechanism of a hazy image. In the proposed
model, the parameter, i.e., atmospheric light is no longer estimated solely but
is replaced by estimating a more appropriate parameter called atmospheric veil.
The new Haze-Veil model enhances the correlation of model parameters without
changing the physical mechanism of the scattering model.
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2. A novel and effective dehazing network called HRN is proposed in this paper.
HRN jointly learns medium transmission and atmospheric veil, and directly
outputs the haze-free image. Further, HRN can realize information interaction
between the atmospheric veil and medium transmission, so as to achieve more
accurate learning.

3. We propose a new multi-object constraints cost function by defining several
constraints items, which are used to generate a constraint relationship between
the medium transmission and atmospheric veil. This multi-object constraints
cost function can effectively improve the quality of the dehazed results.

The remainder of this paper is organized as follows. In Section 2, the back-
ground knowledge is introduced briefly. In Section 3, the details of our proposed
dehazing algorithm are elaborated, and the designed motivations of our work are
analyzed. The experimental results and comparison are given in Section 4. Finally,
the conclusion is summarized in Section 5.

2 ATMOSPHERIC SCATTERING MODEL

The widely used haze model is called the atmospheric scattering model [11], which
is written as:

I(x) = J(x)t(x) +A(1− t(x)), (1)

where I(x) is the observed hazy image, J(x) is the scene radiance, and A is the
atmospheric light, which describes the global light intensity of the scene. x represents
the pixel location. t(x) is the medium transmission range of (0,1), which describes
the portion of light that directly reaches the camera and is not scattered. t(x) is
correlated with the scene depth and can be expressed as follows:

t(x) = e−βd(x), (2)

where d(x) is the scene depth and β is the atmosphere scattering coefficient. Equa-
tion (2) suggests that the medium transmission attenuates exponentially with the
scene depth d(x). The first term J(x)t(x) in Equation (1) is called direct atten-
uation [1], which describes the decay of J(x) in the medium. The second term
A(1 − t(x)) is called airlight [1], which results in the scattered light and generates
a white atmospheric veil in the degraded image.

The image dehazing could be regarded as recovering the scene radiance J(x)
from a haze image I(x) based on Equation (1). This requires that the unknown
parameters of the medium transmission t(x) and atmospheric light A are appropri-
ately estimated. Once t(x) and A are solved, the haze-free image can be recovered
by:

J(x) =
I(x)−A

max(t(x), δ)
+A, (3)

where δ is a small constant for avoiding the zero divisor.
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Figure 2. The dehazed results of the different epoch. The images in first row are the
visualized results by separately estimating the A and t(x). The images in second row are
the visualized results by using our proposed method.

3 THE PROPOSED METHOD

In this section, the proposed method is explained mainly in three aspects. We first
proposed the Haze-Veil model and analyze its performance. Then, the HRN which
is based on the Haze-Veil model is presented, and the design motivations of the
network structure are discussed. Finally, we introduce the proposed cost function
and analyze the effectiveness and significance of it.

3.1 Haze-Veil Model

Since we aim to design end-to-end CNNs, it means that all the parameters in the
atmospheric scattering model must be learned in the network. According to the
atmospheric scattering model introduced in Section 2, the unknown parameters
include the haze-free image J(x), atmospheric light A and medium transmission
t(x). An intuitive resolution is that the designed CNNs could recover J(x) by jointly
learning A and t(x). However, we find that the dehazed images are always too dark
or too bright, especially when the hazy image has a bad illuminance condition.
According to the analysis of Equation (1), it can be inferred that A and t(x) are
two independent variables, that is, there is no correlation between A and t(x). In
other words, the different values of A have no effect on t(x), so it will result in
different dehazed results in the end. Furthermore, the experiments prove that the
network is hard to obtain the satisfactory results when it trains the independent
parameters of A and t(x) at the same time. As seen from the first row in Figure 2,
when we separately train the A and t(x) at the same time, it is hard to obtain
desired dehazed results with the increase of epoch. To overcome this problem, we
will not separately estimate A and t(x) anymore but merge the factors in the second
term of Equation (1) into one factor to enhance the correlation of A and t(x). The
merged term is defined as:

V (x) = A(1− t(x)). (4)
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Figure 3. The geometrical relationship of the parameters of Haze-Veil model in RGB
space. I is the hazy image, J is the haze-free image, V is the medium transmission, and
A is the atmospheric light. V is the atmospheric veil.

The atmospheric veil V (x) includes the information of the atmospheric light A
and the medium transmission t(x). In this way, we do not train and estimate A
anymore, but estimate the more appropriate V (x), which not only includes infor-
mation of A but is also relevant to t(x). Therefore, according to Equation (1) and
Equation (4), the modified atmospheric scattering model can be written as follows:

I(x) = J(x)t(x) + V (x). (5)

Equation (5) is called Haze-Veil model, and I(x) and J(x) still represent the
hazy image and scene radiance, respectively. t(x) is the medium transmission. Phys-
ically, the intuitive meanings of V (x) could be explained as the haze density. In the
map of V (x), the regions with heavy haze have high intensity, and the regions with
thin haze have low intensity. In fact, it can be considered that there is a negative
correlation between t(x) and V (x). Geometrically, the vector V is parameterized
by (1 − t) and oriented by A. V and A are two collinear vectors, and the corre-
lation is illustrated in Figure 3. As seen, J is attenuated and shifted by t and V ,
so a clear image is degraded to a hazy image I. By the above analysis, the task of
dehazing is changed to recovering J(x) via estimating t(x) and V (x) from Equa-
tion (5). Because we no longer detachedly estimate the t(x) and A, the recovered
model is simpler than before and the network training becomes easier and is more
explainable.

3.2 HRN: The Haze-Relevant End-to-End Network

Based on the proposed Haze-Veil model, we design the HRN for removing haze. We
first aim to design a network to jointly estimate t(x) and V (x). Then, the dehazed
image can be obtained by computing the proposed Haze-Veil model. Therefore, the
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Figure 4. The framework of the proposed HRN structure. Different colour blocks mean
multi-scale operations.

proposed HRN is composed of two submodules: the parameters estimation module
which is used to extract the features and estimate the t(x) and V (x), and the
image recovering module which is used to output the haze-free image according to
Equation (5). The proposed HRN achieves the end-to-end operation without any
parameter assignment in the whole dehazing procedure. The network framework of
HRN is illustrated in Figure 4.

3.2.1 Parameters Estimation Module

Multiscale feature extraction has been proven to be effective and successful in single
image dehazing in recent years [23, 25]. It is widely accepted that the convolutional
operation in the low level could learn the basic features, such as edges and tex-
ture [43]. For the task of image dehazing, these basic features are very important
for recognizing the regions with a depth change. Therefore, to fully extract the ba-
sic features for both the medium transmission t(x) and atmospheric veil V (x), the
multiscale convolutional operations are set in the first shared hidden layer, which
is used to extract appropriate features from the input haze image. The sizes of
multiscale convolution filters are 1× 1, 3× 3, 5× 5, 7× 7, 9× 9, and the numbers
of these five different scale filters are all set to 4.

(The particular parameters set for each layer can be referred to Table 1 in
Section 4). To jointly estimate the t(x) and V (x), we set two parallel subnetworks
behind the shared hidden layer to effectively use the multiple features learned by
multiscale convolutional filters. The upper branch is for the t(x) estimation and
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Figure 5. The different feature maps of training datasets. The first row are the clear
images J . The second row is the random set atmospheric light A. The third row is the
synthetic atmospheric veil V . The fourth row is the synthetic medium transmission t.
The fifth row is the synthetic hazy images I. In this paper, I is the input of HRN, t and
V are ground-truth for training.

the lower branch is for the V (x) estimation. These two subnetworks exactly have
the same structure and include seven hidden layers for feature extraction in each
subnetwork. To ensure that the information is better flowing along each branch
and to speed up convergence of the network, the densely connected structure is
embedded into HRN. It leads the information of each layer flowing to the following
layers in a feed-forward fashion. In this way, the information of each layer has the
direct effect on the final estimation. Further, because the correlation exists in t(x)
and V (x), we infer that the correlation should also exist in the features of hidden
layers of t(x) and V (x). Thus, to interflow the information of t(x) and V (x), the
information interaction structure is designed between the upper and lower branch
by conducting the summation operation. Specifically, we sum the feature maps of
the same layer in the upper and lower branch. At the end of each subnetwork, the
t(x) and V (x) are obtained by the 1× 1 convolution operation.

3.2.2 Haze Removal Module

Once the parameters of t(x) and V (x) are estimated by the parameter estimation
module, the haze-free image could be recovered via solving Equation (5) and the
formula is re-written as follows:

J(x) =
I(x)− V (x)

max(t(x), δ)
, (6)
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where I(x) is the input hazy image, δ is a small constant for avoiding the zero divisor
(δ is set to 0.05 in this paper), and J(x) is the output dehazed image. Therefore,
the whole inference process of HRN in Figure 5 can be concluded as follows:

Step 1: Hazy image I(x) is input into the HRN, and the multiscale features are
extracted by the shared hidden layers.

Step 2: The shared multiscale features are input into the two subnetworks of HRN
for further feature extraction.

Step 3: After several times of features extraction in each subnetwork, and the in-
formation interaction between the two subnetworks, t(x) and V (x) can be esti-
mated by an appropriate training method, respectively. (The details of training
will be described in Section 4).

Step 4: By inputting t(x) and V (x) into Equation (6), the final recovered haze-free
image J(x) can be computed.

To further generate the constraints on the correlation parameters t(x) and V (x)
and accelerate the convergence of the HRN, an appropriate cost function is essential.
Thus, we propose a multi-object constraints cost function to assist the HRN to
obtain the better results, and it will be elaborated in the next subsection.

3.3 Multi-Object Constraints Cost Function

In the field of learning-based single image haze removal, the mean squared error
(MSE) cost function is often adopted to optimize the network and has achieved out-
standing performance. However, because the relevant parameters of t(x) and V (x)
are jointly learned by HRN in this paper, the effect of the correlation between t(x)
and V (x) cannot be fully used if there is only MSE in the cost function. To further
enhance the information interaction between t(x) and V (x), we intend to construct
a constraint between the t(x) and V (x) by adding the multi-object constraints cost
function about t(x) and V (x) on the regular MSE cost function. According to
Equation (4), t(x) can be expressed by V (x) as follows:

t = 1− V

A
. (7)

According to Equation (4) and Equation (7), t(x) and V (x) can be expressed by
each other. Hence, to take full advantage of the correlation, we can employ one’s
label to constrain the other’s output. Therefore, we define three constraints items
to yield the constraints in t(x) and V (x), and the constraints items are formulated
as follows:
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LC t =
1

WH

W∑
w=1

H∑
h=1

∥∥∥∥tGT − (1− Voutput

AGT

)

∥∥∥∥
2

, (8)

LC V =
1

WH

W∑
w=1

H∑
h=1

∥VGT − (1− toutput)×AGT∥2 , (9)

LC V t =
1

WH

W∑
w=1

H∑
h=1

∥Voutput − (1− toutput)×AGT∥2 , (10)

where Voutput and toutput are the outputs of HRN. VGT , tGT and AGT are the ground-
truth of V (x), t(x) and atmospheric light A, respectively. W and H are the width
and height of the input hazy images, respectively. WH is the dimension of the
input hazy image. Here, the LC t and the LC V are the constraints items designed
for t(x) and V (x), respectively. Thus, Equation (8) and Equation (9) mean one
of the outputs is constrained by the other’s label. Further, LC V t is designed for
constraining the HRN’s output of t(x) and V (x) by each other. In addition, the
MSE loss functions are also combined to jointly optimize each subnetwork and are
formulated as follows:

LMSE t =
1

WH

W∑
w=1

H∑
h=1

∥toutput − tGT∥2 , (11)

LMSE V =
1

WH

W∑
w=1

H∑
h=1

∥Voutput − VGT∥2 , (12)

where the LMSE t and LMSE V are the MSE loss functions of the output of t(x) and
V (x), respectively. Finally, by combining MSE loss and constraint loss, the final
cost function is defined as:

L = LC t + LC V + LC V t + LMSE t + LMSE V . (13)

As analyzed before, the final loss function achieves information interaction between
t(x) and V (x) during the process of learning.

4 EXPERIMENTS RESULTS

In this section, we demonstrate the effectiveness of the proposed method by extensive
experiments on synthetic and real datasets. First, we illustrate the datasets used in
this paper. Then, the parameter settings and training details are described. Finally,
we conduct subjective comparisons and objective quality assessments between the
proposed method and the recent state-of-the-art methods.
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4.1 Datasets

It is widely believed that one of the challenges existing in learning-based image
dehazing is how to collect a large number of training data. Recently, this problem has
been solved by creating the training and test datasets using the public depth dataset
of NYU-Depth [44], which includes indoor clear images J and the corresponding
depth maps d(x). These two terms are essential for synthesizing the hazy images.
The specific process is as follows. First, according to Equation (2), as referenced
in [24, 25, 26, 27], we randomly set 10 scattering coefficients β ∈ [0.5, 1.2], and the
medium transmission t(x) is synthesized by d(x) and β through Equation (2). Then,
we randomly produce 10 atmospheric light values A ∈ [0.7, 1], and the atmospheric
veils V (x) are generated by A and t(x) through Equation (4). Finally, the hazy
images are obtained by combining the transmissions t(x), the atmospheric veils
V (x) and the clear images J through Equation (5). In HRN, I is the input hazy
image, t(x) and V (x) are the labels for training. There are several samples of
the dataset as shown in Figure 5. The images in the first row are the haze-free
ground-truth images J , which are selected from the dataset of the NYU-Depth. The
images in the second row are the atmospheric light values A, which are randomly
set by us. The images in the third row indicate the atmospheric veil maps V (x),
which are synthesized through Equation (4), and the images in the fourth row are
the synthesized medium transmission maps t(x), which are synthesized through
Equation (2). In the last row, the synthetic hazy images are obtained through
Equation (5). In this way, the synthesized input images and the corresponding
labels are obtained.

It is noted that the heavy haze has a large value of β and that the thin haze has
a small value of β. A bright hazy image has a large value of A, and a dark hazy
image has a small value of A. Hence, there are various types of hazy images in our
training and test datasets. To further enhance and increase the training datasets,
the flip operations for up, down, left and right are conducted on hazy images and
the corresponding depth maps. As a result, 40 hazy images can be produced by
using a clear image and the corresponding depth map. Two thousand clear images
in the NYU-Depth datasets are selected in this paper, so we obtain 80 000 training
data in total. In this way, we can effectively improve the robustness of the algorithm
and avoid overfitting for training. For the test dataset, we directly use the dataset
called RESIDE [45, 46], which is a large-scale benchmark dataset consisting of both
synthetic and rea-world hazy images. To quantitatively evaluate our methods, 200
indoor and 200 outdoor synthetic test images are employed to conduct comparison
experiments. To further prove the validity of the proposed method, some real hazy
images are also used to conduct comparison experiments in this section.

4.2 Parameter Settings and Implementation

Since there are two parallel and same subnetworks in HRN for estimating the
medium transmission t(x) and atmospheric veil V (x), we consider that these two
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features have almost the same significance for dehazing. Thus, we set the identi-
cal parameters in each subnetwork. The parameters of each subnetwork are shown
in detail in Table 1. It should be noted that the Concatenation in Table 1 de-
notes the concatenate operation of the densely structure, and the Summation in
Table 1 denotes the information interaction structure between the two subnet-
works.

Layers Operation Input Size Filter Number Filter Size
4 1× 1
4 3× 3

Shared Layer Convolution/ReLU 224× 224× 3 4 5× 5
4 7× 7
4 9× 9

Concatenation
Hidden Layer 1 Convolution/ReLU 224× 224× 20 4 3× 3

Concatenation

Summation
Hidden Layer 2 Convolution/ReLU 224× 224× 24 4 3× 3

Summation

Summation
Hidden Layer 3 Convolution/ReLU 224× 224× 8 8 3× 3

Concatenation

Summation
Hidden Layer 4 Convolution/ReLU 224× 224× 16 16 3× 3

Concatenation

Summation
Hidden Layer 5 Convolution/ReLU 224× 224× 32 32 3× 3

Concatenation

Summation
Hidden Layer 6 Convolution/ReLU 224× 224× 64 64 3× 3

Output Layer Convolution/ReLU 224× 224× 128 128 1× 1

Table 1. The parameters setting of each subnetwork

The proposed HRN is trained on a NVIDIA 1080Ti GPU using the TensorFlow
framework. During the training process, Gaussian random variables (the mean value
is 0 and standard deviation is 1) are used to initialize the filters’ weights of each
layer. The ReLU method is used to activate the neurons. The ADAM [47] optimizer
is applied for decreasing the loss. We resize all inputs and labels to 224 × 224 and
use the batch size of 8 for training. The initial learning rate is set to 0.0001, and
we decrease it by testing the loss value and PSNR of the validation dataset, so the
training of the network is jointly supervised by two indexes in this paper. HRN
takes approximately 150 epochs to converge.
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4.3 Comparisons on Synthetic Datasets

The synthetic datasets consist of 200 indoor synthetic images and 200 outdoor syn-
thetic images. We evaluate these various methods by SSIM (structure similarity) [48]
and PSNR on the synthetic datasets. The higher value indicates that the dehazed
image is more similar to the haze-free ground-truth for each of the criteria. We
select five different popular dehazing methods for comparison which include: The
model-based method is the dark channel prior method (DCP) proposed by He et
al. [11], which is commonly used as the baseline method. The CNNs-based methods
are the DehazeNet proposed by Cai et al. [23], the DCPDN proposed by Zhang et
al. [42], the YOLY proposed by Li et al. [39], the multiscale convolutional neural
networks (MSCNN) which is proposed by Ren et al. [25], and the SLA proposed by
Liang et al. [49]. To verify the effectiveness of the proposed method, we conduct the
comparison experiments on the synthesized test dataset. Five synthesized indoor
image samples, which are named Indoor 1–Indoor 5, are shown in the Figure 6.
Images in the first row denote the hazy images of the indoor synthetic dataset, the
corresponding dehazed results of the compared dehazing methods are shown in the
second to sixth rows, and the dehazed results of the proposed method (HRN) are
shown in the seventh row. Because the dataset is synthesized, the ground-truth
clear images are available and are shown in the last row. For better observation,
this paper marks the typical areas in the images with red boxes. As revealed by
Figure 6, the dehazed results of MSCNN and YOLY have severe colour distortion,
e.g., the door colour of Indoor 2 is unrealistic, and the background colour of Indoor
5 is distorted. The dehazed results of DCP and DehazeNet obtained a realistic
colour, but due to the inaccurate estimation of transmission maps, there are still
hazes remaining in some areas, such as the blurry door of Indoor 2, the region near
the mirror of Indoor 3, and the region near the television of Indoor 4. The results of
DCPDN have the problem of over-enhancement. Compared to the results of other
dehazing methods, the advantages of our dehazed results are that the problems of
colour distortion and overestimation of haze are effectively avoided, so the dehazed
images yielded by the proposed method are closer to the ground-truth than other
results. As seen, our results in the seventh row are very close to the ground-truth
in the eleventh row both in colour and the clarity.

To further testify the proposed methods, we also display five synthesized outdoor
samples named Outdoor 1–Outdoor 5, as shown in Figure 7, to show the dehazed
results of outdoor images. The images in the first row denote the synthesized outdoor
hazy images, the corresponding clear ground-truth images are shown in the last row,
the second row to the sixth row show the results of the compared dehazing methods,
and the images in the seventh row are our results. It can be observed from Figure 7,
due to the inaccurate estimation of transmission maps, the problem of the unrealistic
colour cast still exists in the methods of MSCNN, e.g., the tone of the sky city is too
dark green in the Outdoor 2. In addition, the results of DCP and DehazeNet are
too dark since the medium transmission of them is overestimated, e.g., the contours
of buildings have disappeared in the Outdoor 4. Furthermore, Although DCPDN
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can remove the hazy in the image, the sky area in the dehazing results will have the
problems of over-enhancement. From the dehazing results obtained by YOLY, it can
be seen that the hazy in the distant areas is not completely removed, and some areas
in the foreground are darkened, causing some information to be hidden, such as the
areas in the red boxes in the Outdoor 1 and 3. In contrast, our method removes
haze clearly and restores the realistic colours visually. As seen from the results of
our method, the colours of the sky region of the Outdoor 1 and the Outdoor 5 are
closer to the ground-truth than other results, i.e., the colours of the images in the
tenth row are very close to the ground-truth.

To further evaluate the performance of the proposed method, the quantitative
comparison is conducted by testing the average PSNR and SSIM of the different
methods on the test datasets. As shown in Table 2, the red numbers present the
best values, and the blue numbers present the second-best values. From Table 2,
it can be observed that the PSNR value obtained by our method for indoor image
dehazing is higher than that of other comparison methods, and the obtained SSIM
value ranks third; the PSNR value of our method for outdoor image dehazing ranks
second in all the results, but the SSIM value is higher than that of other comparison
methods.

Datasets Evaluation DCP DehazeNet MSCNN DCPDN YOLY SLA Ours

Indoor PSNR (dB) 22.15 20.98 20.14 21.42 21.18 20.49 22.40
Images SSIM 0.753 0.779 0.701 0.876 0.752 0.858 0.805

Outdoor PSNR (dB) 21.16 26.83 23.92 18.97 24.33 24.33 26.47
Images SSIM 0.853 0.8703 0.929 0.875 0.887 0.932 0.932

Table 2. The average PSNR and SSIM of the comparison dehazing methods on indoor
and outdoor synthetic datasets

4.4 Comparisons on Real Images

To further demonstrate the effectiveness of the proposed method, we conduct the
comparison experiments on a series of real-world hazy images, and seven commonly
used and challenging images, which are named Railway, Pumpkin, House, City and
Girls are selected to display in Figure 8.

As seen from Figure 8, the comparison experiments of the proposed methods
and the previous five dehazing algorithms are displayed in each row. Images in the
first row are the hazy input image, the results of previous dehazed methods are
shown in the second row to the sixth row, and the results generated by HRN are
shown in the seventh row. Since there is no ground-truth for these real samples, we
analyze the experimental results subjectively. As shown in the second and fourth
rows, DCP and MSCNN can remove most of the haze, but the dehazed results suf-
fer from the over-enhancement effects, such as the distance region in the Pumpkin
and the plant areas in the House. Moreover, the results of MSCNN also suffer
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Figure 6. Comparison of different dehazing methods on the synthetic indoor images. The
different dehazed results are shown in each row.

from the undesirable colour cast problem. Note that the distant region of Pumpkin
image is changed into green, and the sky colour of the City image is distorted to
yellow. Similarly, DehazeNet can produce the realistic dehazed results, but some
hazes are left in some areas of the dehazing results caused by the inaccurate learning
of transmission maps, e.g., the wall of the House image and the sky region of the
City image have some remaining hazes. The results of DCPDN have the problem of
over-enhancement due to excessive dehazing. The dehazing results of YOLY have
the blurred phenomenon, such as the areas in the red boxes of Railway, Pumpkin
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Figure 7. Comparison of different dehazing methods on the synthetic outdoor images.
The different dehazed results are shown in each row.

and City. Compared with the eight dehazing algorithms, HRN adds the haze rel-
evant information to the nonlinear regression model to remove haze, and it helps
to generate more natural and clearer dehazing results, so the colour cast and the
most artifacts are suppressed, and there is a similar tone between the original input
images and our dehazed results. Furthermore, because the multi-object constraints
cost function effectively restrains the parameters of the Haze-Veil model, it avoids
outputting the overestimated dark results and obtains the moderately recovered
dehazed results.
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Figure 8. Comparison of different dehazing methods on the samples of real-world images.
The different dehazed results are shown in each row.

4.5 Ablation Experiments

4.5.1 Effectiveness of Haze-Veil Model

To prove that the proposed Haze-Veil could achieve much better dehazed results, we
have done a lot of comparison experiments between the traditional two-branch net-
work based on the atmospheric light scattering model and the proposed method, and
the results are shown in Figure 9. Specifically, the traditional two-branch network
is built based on the traditional atmospheric light scattering model, and is realized
by learning V and t(x). To be fair, the base parameters (e.g., the number of train-
ing epochs, the number of network layers, the number of feature maps, and the of
kernel size of each layer) of the traditional two-branch network are set same as our
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proposed network. As observed from Figure 9, with the increasing of the epochs, the
average PSNR of proposed method is higher than that of the traditional two-branch
network. The results presented here can confirm that the proposed Haze-Veil model
indeed helps to improve the dehazed result which is closer to the ground truth.

4.5.2 Effectiveness of Information Interaction Structure

To demonstrate the effectiveness of the information interaction structure (summa-
tion operation), five real-world hazy images are selected to conduct the comparison
experiments, as shown in Figure 10. Figure 10 a) shows the haze images. Fig-
ures 10 b) and 10 d) are the medium transmission maps t(x) and atmospheric veil
maps V (x) obtained by the network with the information interaction structure,
respectively.

Figure 9. The curve of average PSNR over the training process at synthetic database. The
blue curve presents the proposed network built to estimate t(x) and V (x). The orange
curve presents the network built to estimate t(x) and A.

Figures 10 c) and 10 e) are the medium transmission maps t(x) and atmospheric
veil maps V (x) obtained by the network without the information interaction struc-
ture, respectively. In Figure 10, the blue and red boxes mark the edges of the regions
with large and small depth jumps, respectively. Obviously, a large intensity differ-
ence and a clear edge can be observed in the corresponding regions in Figures 10 b)
and 10 d). However, the small intensity difference and a blurry edge exist in the
corresponding regions in Figures 10 c) and 10 e). Hence, it can be analyzed that the
t(x) and V (x) estimated by the network with the information interaction structure
can correctly reflect the depth changes, but the t(x) and V (x) estimated by the net-
work without the information interaction structure sometimes failed to accurately
address the depth information according to the above analysis.

We further employ the PSNR (peak signal-to-noise ratio) on the synthetic data-
sets to compare the performance by introducing the information interaction struc-
ture in HRN. Comparative experiments prove that the benefit of the summation
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a) b) c) d) e)

Figure 10. Real-world hazy images with large depth jumps. a) The hazy images. b) The
medium transmission map t(x) estimated by the network with information interaction
structure. c) The medium transmission map t(x) estimated by the network without infor-
mation interaction structure. d) The atmospheric veil map V (x) estimated by the network
with information interaction structure. e) The atmospheric veil map V (x) estimated by
the network without information interaction structure. The regions in blue boxes of the
first, third and last rows are with large depth jumps. The regions in red boxes of the
second and fourth rows are with small depth jumps.

operation is remarkable. As observed from Figure 11, with the increasing of the
epochs, there is a significant improvement in the average PSNR by the summation
operation. This finding means that the information interaction structure helps to
produce the better dehazed results with higher PSNR values.

4.5.3 Effectiveness of Multi-Object Constraints Cost Function

To prove the advantage of introducing the multi-object constraints cost function
in training, the experiments of the average PSNR on synthetic datasets are also
conducted. As seen from Figure 12, with the increasing of epochs, the network with
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Figure 11. The curve of average PSNR over the training process at synthetic datasets.
The blue curve presents the network with summation operation between the two sub-
networks. The orange curve presents the network with no summation operation between
the two sub-networks.

the multi-object constraints loss in the cost function has a higher average PSNR
score than the network only trained by the MSE loss function. In other words,
we can obtain the better dehazed image that is closer to the ground-truth. The
results also confirm that the defined multi-objective constraint cost function helps
to improve the dehazing results and make them closer to the ground-truths.

Figure 12. The curve of average PSNR over the training process at synthetic datasets.
The blue curve presents the network use the proposed multi-object constraints cost func-
tion. The orange curve presents the network only use the Mean Squared Error (MSE) as
the cost function.
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5 CONCLUSIONS

In this paper, we propose a novel effective Haze-Veil model, which is based on a re-
formulated atmospheric scattering model to express the degraded mechanism. In
this model, the medium transmission and atmospheric veil items are built to remove
haze. Then, we design an end-to-end haze-relevant network (HRN) to jointly esti-
mate the two parameters in the Haze-Veil model and directly output the recovered
haze-free image. The proposed information interaction structure between the two
subnetworks in HRN helps with accurate learning for those parameters. Finally,
to generate a constraint relationship between the medium transmission and atmo-
spheric veil, we define a three regularization items-based cost function to efficiently
improve the quality of the dehazed image. The experimental results prove that HRN
outperforms the state-of-the-art dehazing methods both in synthetic hazy images
and real-world hazy images. However, the proposed method is limited to the hazy
image with bad light conditions, which will be further researched and optimized in
our future work.
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