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Abstract. Process mining has received much attention in the field of business
process management. Event logs that are generated from information systems can
be correlated with the process models for conformance checking. The process models
describe event activities at an abstraction level. However, hierarchical business
processes, as a kind of typical complex process scenario, describe sub-processes
invocation and multi-instantiation patterns. As existing conformance, checking
approaches cannot identify sub-processes within hierarchical process models, they
cannot be used for conformance checking of hierarchical process models. To handle
this limitation, a definition of hierarchically alignment sequences is presented in this
paper. Meanwhile, a novel conformance checking approach for hierarchical process
models and event logs is proposed. The proposed method has been implemented
within the ProM toolkit, which is an open-source process mining software. To
evaluate the effectiveness of the proposed approach, both artificial and real-world
event logs are utilized in a comparative analysis against existing state-of-the-art
approaches.

Keywords: Hierarchical process models, Petri nets, event logs, hierarchical align-
ment trees, conformance checking

1 INTRODUCTION

As a new and emerging research area within the field of business process manage-
ment [1], process mining aims to build a bridge between traditional model-driven
methods and new data-driven methods [2]. Rounded and efficient business process
management models can be built by process mining. The main scenarios of process
mining include process discovery, conformance checking, and enhancement. Based
on event logs, process models can be produced by process discovery. Conformance
checking is employed to verify whether the actual behavior recorded in event logs
is consistent with the model, and vice versa. The information about the actual
process recorded in the event logs is used to extend or improve an existing process
model, which is the idea of enhancement. The primary focus of this paper is on
conformance checking.

Conformance checking is an important part of process mining, which is used to
detect the matching degree between the process models and event logs. To check
to what extent the model can replay the logs related to the process. The purpose
of conformance checking is to identify potential risks and problems in the business
processes, such as violations of laws and regulations, security hazards, operational
errors, etc. Conformance checking helps organizations assess the risks and establish
a sound management model. The management model can guarantee the compliance
and effectiveness of the business processes, and reduce the risks and costs of the
organizations. The performance and competitiveness of the organizations can also
be improved by conformance checking.
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Current process mining techniques generally assume that the events are as-
sociated with activities in the process models, with these activities being at the
same level of abstraction [3]. Nonetheless, this assumption may not always hold,
particularly for complex processes where activities take place at varying levels of
abstraction. An example of this is seen in business process outsourcing scenarios,
where a company may contract out a portion of its business to another organization,
creating a hierarchical relationship in which the outsourced process is considered
a sub-process of the original process. The relationships between these activities
and events are complex and are not easily identified by the current process mining
techniques.

To address this limitation, the concept of hierarchical process models is proposed
in [3]. A new process discovery technique is also proposed to mine hierarchical pro-
cess models by the event logs with a life-cycle. The hierarchical process models can
describe the complex relationships between events and activities on different ab-
straction levels. The sub-processes and multi-instance markers can be represented
by hierarchical business processes. Different from the traditional flat process model,
the hierarchical process model can divide the models into multiple levels, and each
level represents a different abstraction level. The understandability and maintain-
ability of the models can be improved by the hierarchical structure, and the com-
plexity of modeling can also be reduced. Employing hierarchical process models can
aid organizations in comprehending and handling intricate business processes. With
the discovery approaches of hierarchical process models proposed, the corresponding
conformance checking techniques are not mature enough.

To measure the quality of the hierarchical process model, the nesting relation-
ships within the hierarchical model should be mined. For the conformance check-
ing of hierarchical process models, the nesting relationships within different levels
should be considered. The relationships between each level need to be identified
in the conformance checking. Present conformance checking methods are primarily
developed for flat process models and event logs, such as replay, alignment, and
footprint comparison, which do not apply to hierarchical process models with hier-
archical structures. The concept of hierarchical structure brings new challenges to
the conformance checking of hierarchical process models. To address this challenge,
a method of conformance checking based on alignment for hierarchical process mod-
els is proposed in this paper. The method aims to explore and provide the following
contributions.

• First, the method is specifically designed for hierarchical process models.

• Second, the nested relationships between tasks can be distinguished and mined
from the hierarchical process model.

• Third, the hierarchical event logs are constructed by the nested relationships of
tasks.

• Lastly, conformance checking of hierarchical process models and hierarchical
event logs is investigated, to obtain the corresponding alignment sequence tree.
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Based on the simulation logs and real logs, the method of conformance checking
for the hierarchical models is compared with the current methods for the flat mod-
els. Experiments are carried out to demonstrate the effectiveness of the proposed
approach for hierarchical process models.

The paper is further structured as follows: Section 2 provides an overview of
related works, while Section 3 revisits fundamental concepts such as Petri nets,
hierarchical process models, and event logs. In Section 4, we present our proposed
conformance checking method for hierarchical process models and hierarchical event
logs. The effectiveness of our approach is demonstrated through experiments in
Section 5. Finally, Section 6 concludes the paper and discusses potential directions
for future work.

2 RELATED WORKS

Conformance checking primarily concerns the quantification of the degree to which
the execution sequences of models, as recorded in the logs, match their actual ex-
ecutions. Conformance checking methods detect deviations in execution processes
from their prescribed behavior by comparing the actual execution processes against
the prescribed ones. Therefore, conformance checking can determine whether orga-
nizations are operating as expected. It can also help organizations identify process
problems and risks. Thus, organizations can take timely measures for improve-
ment.

Conformance checking is a technique that links process models with process data.
A conformance checking method based on event logs is proposed by Rozinat et al. [4].
This method can automatically compare the event logs with the process models to
find deviations in the execution. In [5], a conformance checking method based on
comparing process models and event logs is proposed. The method transforms the
process models into Petri nets and transforms the event logs into “process traces”.
Several comparisons are made to evaluate the consistency between the actual exe-
cution processes and the models. In [6], the explicit and implicit disparities that
exist between the process models and the event logs are captured. These differences
can be utilized to perform automated analysis and optimization of the processes.
An online conformance checking approach is proposed in [7], which can detect in
real-time whether the process execution conforms to the prescribed behavior.

Conformance checking techniques include replay, alignment, and footprint com-
parison. Carmona et al. [8] and van der Aalst [9] describe two conformance checking
approaches, namely log replay and trace alignment. The recorded event logs and
the simulated processes of process models are used in log replay. The differences
between the simulated processes and the actual processes are used to analyze the
conformance and quality of the process models. In token-based log replay [10], the
remaining tokens in the model after replay are aggregated. The conformance of the
process model is determined by the sum of all redundant and generated tokens. The
differences between the actual execution traces and the expected traces are com-
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pared in alignment. The differences are used to identify the specific deviations and
anomalies. Most of the literature uses trace alignment algorithms to assess the con-
formance of process models. Therefore, trace alignment algorithms are considered
as the present standard for conformance checking techniques [11]. A similar frame-
work of alignment is proposed by Bose et al. [12] and Prabhakara et al. [13]. The
differences between the models and the executed processes are detected by aligning
the process models with the event logs of the actual execution in this framework.
The optimal alignment of the model to the logs can be calculated by extending the
basic alignment method [11].

Finding the optimal alignment [14] between models and traces is essentially
an optimization problem. By using the A* algorithm, the task of computing an op-
timal alignment between a model and a trace can be converted to solving the shortest
path problem [15]. In addition to the method of obtaining the optimal alignment by
calculating the cost function, there is also an alignment algorithm based on insertion
planning [16]. The alignment process is transformed into a planning problem. To
find the optimal alignment, the insertion planning language is used to define the
planning domain. To find the optimal alignment, an integer linear programming al-
gorithm is proposed in [17]. The alignment cost function is expanded to incorporate
dimensions such as time, data, and resources.

A decomposition technique for alignment is proposed in [18], which can reduce
the calculation time. Petri net decomposition is used to decompose the process
models into subnets [19]. The subnets are aligned with the corresponding traces
in the event logs. The concept of single-entry, single-exist (SESE) [20] is used in
Petri net decomposition. Complex event logs can be decomposed into simple sub-
logs by SESE. Thus, the conformance checking of large event logs and large process
models can be handled. An alignment method based on heuristic is proposed by
Song et al. [21]. This method can automatically identify the defects and discrepan-
cies of industrial-scale process models. for repairing industrial-scale process design
models. The defects and discrepancies can be used to repair the models. Although
most alignment methods are dedicated to process modeling languages, declarative
process modeling languages [22] can also be used to create alignments. In [23], an
aligning method for event logs and declarative models is proposed. The location and
severity of the deviations can be diagnosed by this method. Existing conformance
checking approaches are defined on the flat process models, which are not suitable
for hierarchical models with sub-process.

For the hierarchical process model, the conformance checking method Acorn
based on BPMN is proposed in [24]. The semantics of complex patterns such as
sub-processes and multi-instances are analyzed based on BPMN [25]. The alignment
algorithm is designed and optimized. And the calculation method of fitness is also
given in the final. A method to transform hierarchical models with sub-processes
into flat models is presented in [26]. However, this transformation rule does not
apply to event logs with multi-instance behavior in sub-processes. An approach to
transforming hierarchical models with multi-instances into flat models is proposed
in [27]. Thus, the current methods can be employed to assess the quality of models.
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Usually, the event logs and models are large in reality. The transformation methods
for conformance checking consume a lot of time and memory. Moreover, the existing
conformance checking methods of the hierarchical process models are either only for
special process models [24] or transform the hierarchical process model into a flat
model and then apply the existing conformance checking approaches to flat process
models [26, 27]. There is no approach to obtaining the conformance of hierarchical
process models by analyzing the relationships of the hierarchical structures.

This paper proposes a conformance checking approach for hierarchical process
models to address the aforementioned issues. The conformance checking of hierarchi-
cal models can be stratified. Then the hierarchical segmented alignment sequences
are integrated into an overall alignment sequence. Then the hierarchical process
model can be measured by using conformance evaluation indexes of the flat process
model. Experimental results show that the method can greatly save time to align
logs and models.

3 PRELIMINARIES

This section provides a brief overview of Petri nets and Petri nets with nested
transitions, as well as introduces the notations used for event logs.

Definition 1 (Petri net [28]). Let Ne = (P, T ;F ) be a Petri net, where

1. P is a finite set of places;

2. T is a finite set of transitions with P ∪ T = ∅ and P ∩ T = ∅; and
3. F ⊆ (P × T ) ∪ (T × P ) is a set of arcs.

Definition 2 (Labeled Petri net [2]). Let PN = (Ne, A, l) be a labeled Petri net,
where

1. Ne is a Petri net;

2. A is a finite set of activities; and

3. l := T → Aτ is a function, where Aτ = A∪ τ and τ /∈ A represents the labels of
all invisible transitions.

Definition 3 (Petri nets with nested transitions [26]). Let PNN = (PN , N) be
a Petri net with nested transition, where

1. PN = (Ne, A, l) is a labeled Petri net;

2. N : T → {A,N} is a nested transition function, where ∀t ∈ T,N(t) = A is
a normal transition, N(t) = N is a nested transition.

PNN is a Petri net with nested transitions. Ta = t ∈ T | N(t) = A is a set of
normal transitions, and Tn = t ∈ T | N(t) = N is a set of nested transitions. Ta0 is
a normal transition in the top Petri net PNN0 of PNN . Tn0 is a nested transition
in the top Petri net PNN0 of PNN . Figure 1 displays the representation of a nested



Alignment-Based Conformance Checking of Hierarchical Process Models 155

Figure 1. A Petri net with a nested transition pnn

transition (e.g., a) using a double-line rectangle, and an ordinary transition (e.g., b)
using a single-line rectangle.

Definition 4 (Hierarchical process models [26]). LetHPN = (PNN0,HPN (PNN0))
be a hierarchical process model, where:

1. PNN0 is a root node, i.e. the top-level Petri net with nested transitions;

2. HPN (PNN0) is the sub-model of PNN0, such that:

• HPN (PNN0) = ∅ if TN0 = ∅; otherwise
• HPN (PNN0) = {(ti,PN ni,HPN (PN ni)) | ti ∈ Tn0}, where PN ni is a Petri
net with nested transitions that are nested by ti.

An instance of a hierarchical Petri net is illustrated in Figure 2. One nested tran-
sition and three normal transitions are contained in the top-level hpn, which refers
to a Petri net. To be more precise, a is a nested transition, which refers to PNN1.
A nested transition is contained in PNN1, denoted as b, which refers to a sub-process
PNN2. As no one nested transition is contained in PNN2, the recursive definition
terminates at this level.

Figure 2. An instance of hierarchical Petri net hpn

Definition 5 (Event, Attribute [2]). Let ξ be the event universe, i.e., the set of all
possible event identifiers, UA be the activity universe, and UT be the time universe,
UL be the transaction type universe. For any event e ∈ ξ, ♯n(e) is the value of
attribute n for event e. The following standard attributes are involved: (1) ♯act(e) ∈
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UA is the activity name of e; (2) ♯time(e) ∈ UT is the timestamp of e; (3) ♯trans(e) ∈
UL is the transaction type of e.

In this paper, we solely focus on two types of lifecycles: star and complete.

Definition 6 (Classifier [2]). A classifier is a function C : ξ −→ UA × UL that
assigns a representative name to each event for the purpose of analysis. For all
events, e ∈ ξ, C(e) = (♯act(e), ♯trans(e)), i.e. e represents the name of the event.

In the following, the standard classifier of events is represented as the pair of
activity name and transaction type, i.e., e ∈ ξ, e = C(e) = (♯act(e), ♯trans(e)).
With the help of the classifier, we define an event log as a combination of activity
name and lifecycle that represents an event in a simple manner. That is (b, start)
can be written as bs, and (b, complete) can be written as bc.

Definition 7 (Lifecycle Event Log). A lifecycle event log L ∈ B((UA × UL)
∗) is

a multi-set of traces, and a trace σ ∈ (UA × UL)
∗ is a sequence of activities with

lifecycle information.
For example, L = {⟨as, cs, ac, bs, bc, cc⟩3} denotes an event log of three traces,

and each trace has six events.

Definition 8 (Alignment [29]). Let A ⊆ UA be a set of activities, and σ ∈
(UA × UL)

∗ be a trace, HPN = (PNN0,HPN (PNN0)) be a hierarchical process
model. (ei, ai) ∈ (A≫ × T≫) \ {(≫,≫)} represents a movement. An alignment,
denoted by γ = (e1, a1)(e2, a2) . . . (eK , aK) between σ and HPN refers to a valid
sequence of movements that satisfy the following conditions:

1. π1(γ)|A = σ, and

2. Min[π2(γ)|T ⟩Mfi.

The alignment between σ and HPN is shown in Table 1. In the alignment,
the top row corresponds to the trace σ, while the bottom row corresponds to a full
firing sequence of the hierarchical process model. Each activity in σ is matched with
a transition that has the same label.

σ e1 e2 . . . ei
firing sequence of HPN a1 a2 . . . ai

Table 1. Alignment matrix

1. If e ∈ UA and a =≫, (e, a) is a movement on a log;

2. If e =≫ and a ∈ T , (e, a) is a movement on a model;

3. If e ∈ UA and a ∈ T , (e, a) is a synchronous movement; and

4. Illegal movements otherwise.

In the remainder of this paper, we consider movement on a log, movement on
a model and synchronous movement being the legal movements.
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4 CONFORMANCE CHECKING OF HIERARCHICAL
PROCESS MODELS

The conformance checking of the hierarchical process models starts from hierarchical
models and lifecycle event logs. Finding corresponding hierarchical event logs and
hierarchical alignments of the hierarchical models is the key to the approach. The
framework of the conformance checking approach is depicted in Figure 3, which
encompasses the following steps:

Figure 3. A Petri net with a nested transition pnn

Phase 1: Nesting Transition Relationships Detection. Given a hierarchical process
model hpn as input, we first detect nesting relations among the models. The
output is a nested transition relations tree ang, which describes all possible
nesting relationships in the hierarchical process model.

Phase 2: Hierarchical Event Log Construction. Given a lifecycle event log xlog and
the nested transition relations tree ang as input, the nesting relations within the
model are utilized to construct a hierarchical event log hlog recursively.

Phase 3: Nesting Relation Alignment Tree Construction. Given hierarchical event
log hlog and hierarchical process model hpn as input, we recursively examine
the conformance of the hierarchical structure to construct a nesting relation
alignment tree hat.

Phase 4: Hierarchical Alignment Trees Merging. The nesting alignment relation
tree can be merged to obtain the final result.
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4.1 Nesting Relationships Within the Hierarchical Process Model Detect

A hierarchical process model can express multiple complex patterns such as multi-
instance and sub-process, which can better describe the possible system state. In
order to evaluate the quality of the hierarchical process model, it is necessary to
extract the nesting relationships inherent within the model. The nesting transition
relation trees and the hierarchical event logs can be constructed by the nesting
relationships. (Then the hierarchical event logs can be obtained by the nesting
relation trees.) The definition and the method for mining the nesting relationships
within the hierarchical model are given as follows.

Definition 9 (Hierarchical Transition Nesting Relation Tree). Let HPN =
(PNN0,HPN (PNN0)) be a hierarchical process model, Tn0 is the set of the top-level
nested transitions. HNT = (Tn0,HNT (Tn0)) is the hierarchical transition nesting
relationship tree of HPN , where:

1. Tn0 is the set of the root node, i.e. the set of nested transitions in the top-level
Petri net;

2. HNT (Tn0) is the corresponding sub-process of nested transitions in Tn0, such
that:

• HNT (Tn0) = ∅ if Tn0 = ∅; otherwise,
• HNT (Tn0) = {ti, Tni,HNT (Tni) | ti ∈ Tn0}, where Tni is the set of nested
transitions in the corresponding nested models of ti.

Algorithm 1 shows how to get a hierarchical transition nesting relation tree. The
idea is by a hierarchical process model as input, to detect all the nested models in
the hierarchical model. All the nested transitions in the nested models should also
be located. That is, to find the nesting relationships and recursively construct the
hierarchical transition nesting relation tree.

Algorithm 1 TransitiveNestingTree()

Input: hierarchical process model hpn
Output: hierarchical transition nesting relation tree ang
1: activityNestedSet [] −→ ∅
2: activityPariSet [] −→ ∅
3: ang = new TransitionNestingGraph();
4: if hpn ̸= ∅
5: activityNestedSet [] = getActivityNestedSet(hpn);
6: activityPariSet [] = getActivityPair(hpn);
7: ang = ActivityGraphConstruction(activityPariSet);
8: return ang .

In Algorithm 1, the variables are initialized (Lines 1–3). The function getAc-
tivityNestedSet() is employed to recognize the set of nested transitions that exist
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within the hierarchical model. And the function getActivityPair() is used to mine
the set of nested transition association pairs (Lines 5–7). By the nested transition
association pairs, the algorithm ActivityGraphConstruction() (Algorithm 4) can be
utilized to construct the transition nesting relation tree ang. The algorithm tra-
verses all activities of each layer in the hierarchical process model. Assuming the
hierarchical process model has n layers, with the number of activities in each layer
being L1, L2, L3, . . . , and Ln, respectively. Therefore, the computational complexity
is O(n×max(Li)), for 1 ≤ i ≤ n.

The function getActivityNestedSet() is called in Algorithm 1, which is used to
return all the nested transitions in the hierarchical mode. The details are described
in Algorithm 2.

Algorithm 2 getActivityNestedSet()

Input: hierarchical process model hpn
Output: the set of nested transitions activityNestedSet []
1: t = new Transition();
2: if hpn ̸= ∅
3: for (Transition t : pn.getTransitions())
4: if (!nestedTransitionLabels.contains(t.getLabel()))
5: t −→ activityNestedSet [];
6: getActivityNestedSet(hpn i);
7: return activityNestedSet [].

Algorithm 2 recursively traverses the top-level Petri net to find the nested tran-
sitions. And all the nested transitions are stored in the set activitySet[]. The
algorithm traverses all nested transitions of each layer in the hierarchical process
model. Assuming the hierarchical process model has n layers, with the number
of nested transitions in each layer being M1, M2, M3, . . . , and Mn, respectively.
Therefore, the computational complexity is O(n×max(Mi)), for 1 ≤ i ≤ n.

The function getActivityPair() is called in Algorithm 1, which is used to return
all the nested transition association pairs in the hierarchical model. The details are
described in Algorithm 3.

Algorithm 3 recursively traverses the hierarchical model nested in the nested
transition t. The nested transition t is extracted from activityNestedSet [] (Line 1).
The nested transition t is assigned to source (Line 2). The hierarchical model
hpn i nested in t will be found (Line 3). The set of nested transitions in hpn i

will be obtained and stored in target. The nested transition association pairs
(source, target) are stored in the set activityPairSet []. The algorithm traverses the
set activityNestedSet [], which stores the nested transitions. Therefore, the compu-
tational complexity is O(n×max(Mi)), for 1 ≤ i ≤ n.

The function activityGraphConstruction() is called in Algorithm 1, which is used
to return the hierarchical transition nesting relation tree in the hierarchical model.
The details are described in Algorithm 4.
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Algorithm 3 getActivityPair()

Input: hierarchical process model hpn
Output: the set of nested transition pairs activityPairSet []
1: for (Transition t : activityNestedSet [])
2: source = t;
3: hpn i = HPN (PNN0);
4: if hpn i ̸= ∅
5: target = getActivityNestedSet(hpn i);
6: (source, target) −→ activityPairSet [];
7: getActivityPair(hpn i);
8: return activityPairSet [].

Algorithm 4 activityGraphConstruction()

Input: the set of nested transition association pairs activityPariSet []
Output: hierarchical transition nesting relation tree ang
1: ap = new TransitionPair();
2: ang = new TransitionNestingGraph();
3: for (ap : activityPairSet [])
4: ap.getSourceActivity() −→ ang .vertex ;
5: ap.getTargetActivity() −→ ang .vertex ;
6: (ap.getSourceActivity(), ap.getTargetActivity()) −→ ang .edge;
7: and Constructing nested transition relation tree: ang ;
8: return ang .

Algorithm 4 recursively traverses the nested transition association pairs. The
nested transition association pairs ap is extracted from activityPairSet [] (Line 3).
The node and edges of ap are stored in ang (Lines 4–6). The algorithm traverses
the set activityPairSet [], which stores the pairs of nested transitions. Therefore, the
computational complexity is O(n×max(Mi)), for 1 ≤ i ≤ n.

By Algorithms 1, 2, 3, and 4, we can obtain the hierarchical transition nesting
relation tree ang of hpn, which is shown in Figure 4. In the tree, (1) a, c is the
root nodes; (2) b is nested in a and d is nested in b. The transition nesting tree is
Tr = {Tn0, Tn1, Tn2} = {a, c, b, d}.

4.2 Hierarchical Event Log Construction

By the hierarchical transition nesting relation tree, the event logs with lifecycle can
be layered. The hierarchical event log is constructed by event logs with lifecycle
and hierarchical transition nesting tree. The definition of a hierarchical event log is
given as follows.

Definition 10 (Hierarchical Event Log). Let HPN = (PNN0,HPN (PNN0)) be
a hierarchical process model, Tr = {Tn0, Tn1, . . . , Tnn} is the set of nested tran-
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Figure 4. Hierarchical transition nesting relation tree ang

sitions, HNT = (Tn0,HNT (Tn0)) is the hierarchical transition nesting relationship
tree of HPN . HL = (rootLog ,HL(rootLog)) is the hierarchical event log of HPN ,
where:

1. rootLog is the root event log of HL; and

2. HL(rootLog) is the sub-logs of rootLog , such that:

• HL(rootLog) = ∅ if NA(rootLog) = ∅; otherwise,
• HL(rootLog) = {(na,NLogna, HL(NLogna)) | na ∈ NA(rootLog)}, where
NLogna is the sub-log of HL nested by na.

The nested transition relation tree ang and a lifecycle event log xlog are taking
as input, a hierarchical event log hlog is recursively constructed. The details are
described in Algorithm 5.

Algorithm 5 constructHierarchicalLog()

Input: the nested transition relation tree ang and the lifecycle event log xlog
Output: the hierarchical event log hlog
1: for (n : getAllNestedActivities(ang))
2: n −→ allNestedActivities [];
3: rootActivities = getAllRootActivities(ang);
4: topLevelActivities = getTopLevelActivitySet(ang);
5: hEventLog .setMainLog(mainLog);
6: for (String rootNestedActivity : rootActivities)
7: hEventLog .setSubLogMapping(subLogMapping);
8: subsubLogMapping .put(eventClassActivity , constructHierarchicalLog());
9: return hlog .

In Algorithm 5, the nodes are extracted from ang, and stored in allNestedActivi-
ties [] (Lines 1–2). The root event logs and the sub-logs nested in root logs are con-
structed by ang and xlog (Lines 3–4). The structure of the hierarchical event log is
assigned to mainLog (Line 5). The algorithm recursively traverses the nested activi-
ties in root logs and assigns them to the hierarchical event log structure submainLog
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(Lines 6–8). The algorithm traverses each node of the nested transition relation
tree and perform the corresponding operations on each node. The depths of the
nested transition relation tree are n. The maximum number of nodes in each
layer is max(Mi). Therefore, the computational complexity is O(n × max(Mi)),
for 1 ≤ i ≤ n.

By Algorithm 5, take hpn1 (Figure 5) and L1 = {⟨as, bs, bc, ac⟩90, ⟨as, bs, ac, bc⟩1}
as input, we can obtain hierarchical event log hl1, which is shown in Figure 6. The
root log is rootLog = {⟨as, ac⟩91}, and the set of nested activity is NA(rootLog) =
{a}. The corresponding sub-logs of a is NLoga = {⟨bs, bc⟩90}.

Figure 5. Hierarchical process model hpn1

Figure 6. The nested relationship of hierarchical event log hl1

4.3 Conformance Checking Based on Alignment

As the hierarchies in the hierarchical models and the hierarchical logs, the sub-
models at each level need to be traversed. Conformance checking of sub-models and
the corresponding sub-logs can be investigated. In theory, we can use the existing
technology to take the conformance checking between the sub-models and sub-logs.

4.3.1 The Idea of Hierarchical Align

The A∗ algorithm can be used to align the sub-models and the corresponding sub-
logs at every level. A nesting relation alignment tree can be recursively constructed
by the alignment of the sub-models and the sub-logs, which formal description is as
follows:
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Definition 11 (Hierarchical Alignment Tree). Let HPN = (PNN0,HPN (PNN0))
be a hierarchical process model, Tr = {Tn0, Tn1, . . . , Tnn} is the set of nested tran-
sitions, HNT = (Tn0,HNT (Tn0)) is the hierarchical transition nesting relationship
tree of HPN , HL = (rootLog ,HL(rootLog)) is the hierarchical event log of HPN .
HAT = (rootA,HAT (rootA)) is the hierarchical alignment tree of HPN and HNT ,
where:

1. rootA is the root alignment of HAT , i.e. the alignment of PNN0 and rootLog ;
and

2. HAT (rootA) is the nested alignment of rootA, such that:

• HAT (rootA) = ∅ if Tn0 = ∅ ∧ NA((rootLog) = ∅; otherwise
• HAT (rootA) = {(ti, na,NAlignna,HAT (NAlignna)) | ti ∈ Tn0, na ∈
NA(rootLog)}, where NAlignna is the sub-alignment of the model nested
in ti and the logs of na.

Algorithm 6 takes hierarchical event log hlog and hierarchical process model hpn
as input, a hierarchical alignment tree hat is recursively constructed. The details
are described as follows.

Algorithm 6 HierarchicallyAlignedSeqConstruction()

Input: a hierarchical process model hpn and a hierarchical event log hlog
Output: hierarchical alignment tree hat
1: xlog = hlog .getMainLog();
2: pn = hpn.getPn();
3: hat = replayLog(context , pn, xlog);
4: When hpn i ̸= ∅ and hlog i ̸= ∅
5: xlog = hlog .getsubLogMapping().get(nestingActivityPariSet);
6: pn = pn.getXEventClass2hpn().get(eventClassName2EventClass

.get(t.toString()).getPn();
7: hat i = replayLog(context , pn, xlog);
8: return hat .

In Algorithm 6, the root log hlog is extracted from the hierarchical log hlog
(Line 1). The top-level Petri net pn is extracted from the hierarchical model hpn
(Line 2). The top-level alignment is obtained by aligning pn and xlog (Line 3). The
algorithm recursively aligns the nested model hpn i and the nested log hlog i to get
the hierarchical alignment tree hat . The algorithm traverses the process models and
event logs of each layer and perform alignment. The levels of the process model
are n. The activities of the process model in each layer is Li. The length of the
event log is σi. Therefore, the computational complexity is O(n×max(σi, Li)), for
1 ≤ i ≤ n.
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Take the hierarchical model hpn2 (in Figure 7) and the corresponding event log
with lifecycle

L2 = {⟨as, cs, ds, dc, bs, cc, ac, bc⟩79, ⟨as, cs, ds, dc, cc, ac, bs, bc⟩99,
⟨bs, as, cs, bc, ds, dc, cc, ac⟩96, ⟨as, bs, cs, ds, dc, cc, ac, bc⟩86,
⟨as, cs, ds, bs, dc, cc, ac, bc⟩78, ⟨as, cs, ds, dc, cc, bs, ac, bc⟩82,
⟨as, bs, cs, ds, bc, dc, cc, ac⟩98, ⟨as, cs, bc, ds, dc, cc, bc, ac⟩85,
⟨as, cs, bs, ds, bc, dc, cc, ac, bc⟩100}

as an example illustrating how to get the hierarchical alignment tree.

Figure 7. Hierarchical process model hpn2

As Figure 7 shows, the top level of hpn2 contains a nested transition a, and
a normal transition b. The nested Petri net PNN1 is nested in a, and PNN1 with
a nested transition c. The nested Petri net PNN2 is nested in c and PNN2 with
a normal transition d.

By Algorithm 5, taking hpn2 and L2 as input, we can obtain the hierarchical
event log hl2. The root log is

rootLog = {⟨as, bs, ac, bc⟩79, ⟨as, ac, bs, bc⟩99, ⟨bs, as, bc, ac⟩96, ⟨as, bs, ac, bc⟩86,
⟨as, bs, ac, bc⟩78, ⟨as, bs, ac, bc⟩82, ⟨as, bs, bc, ac⟩98, ⟨as, bc, bc, ac⟩85,
⟨as, bs, bc, ac, bc⟩100},

and the set of nested activities is NA(rootLog) = {a}. The corresponding sub-log to
a is

NLoga = {⟨cs, cc⟩79, ⟨cs, cc⟩99, ⟨cs, cc⟩96, ⟨cs, cc⟩86, ⟨cs, cc⟩78, ⟨cs, cc⟩82, ⟨cs, cc⟩98,
⟨cs, cc⟩85, ⟨cs, cc⟩100},

and the set of nested activities is NA(NLoga) = {c}. The corresponding sub-log to
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c is

NLogc = {⟨ds, dc⟩79, ⟨ds, dc⟩99, ⟨ds, dc⟩96, ⟨ds, dc⟩86, ⟨ds, dc⟩78, ⟨ds, dc⟩82, ⟨ds, dc⟩98,
⟨ds, dc⟩85, ⟨ds, dc⟩100}.

The nesting relationship is shown in Figure 8.

Figure 8. The hierarchical event log hl2 corresponds to the event log with lifecycle L2

By Algorithm 6, taking hpn2 and hl2 as input, we can obtain the hierarchical
alignment tree hat in Figure 9. Part of the results is shown as follows:

For top-level Petri net and root log, there are many possible cases of alignment,
three of which are listed as follows:

x1 =
a b

, x2 =
a b

, x3 =
a b

.≫ b a b a ≫

For nested Petri net PNN1 and sub-log NLoga, the possible alignment has the
following two possible cases:

y1 =
c

, y2 =
c

.≫ c

For nested Petri net PNN2 and sub-log NLogb, the possible alignment has the
following two possible cases:

z1 =
d

, z2 =
d

.≫ d

The hierarchical alignment tree is shown in Figure 9.

4.3.2 Alignments

By taking the hierarchical alignment tree hat as input, the final alignment r is
obtained by traversing and merging hat. The details are described in Algorithm 7.
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Figure 9. The hierarchical alignment tree hat

In Algorithm 7, the element in rootA should be pushed into the queue st when hat
is not null (Lines 4–6). The head element in st is taken out, and the pointer points
to the next element (Lines 7–9). The nodes in st should be traversed. If roota.tag i
== 1, then the elements before the node should be pushed into st (Lines 10–13).
The next level of hat i is recursively traversed. The algorithm traverses each node

Algorithm 7 AlignedSeqConstruction()

Input: the hierarchical alignment tree hat
Output: alignment r
1: rootA = HNT (rootlog);
2: st −→ ∅
3: if hat ̸= ∅
4: if rootA! = Null
5: st .push(rootA);
6: rootA = HAT (rootA) −→ data;
7: rootA = s.top();
8: s.pop();
9: r = rootA −→ child ;
10: if r −→ child == Null || r −→ chlid == tag
11: if (!nestedTransitionLabels .contains(roota.getLabel()))
12: r.pop(roota −→ data);
13: else r.pop(roota −→ data) and roota.tagi == 1;
14: rootA = r and r = r −→ chlid ;
15: AlignedSeqConstruction(hat i);
16: return r.
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of the hierarchical alignment tree. The depths of the hierarchical alignment tree are
n. The maximum number of nodes in each layer refers to max (Li), for 1 ≤ i ≤ n.
Therefore, the computational complexity is O(n×max(Li)).

By Algorithm 7, the hierarchical alignment tree hat (in Figure 9) is merged,
which is depicted in Figures 10, 11, 12, and 13.

Figure 10. Three possible hierarchical alignment trees of hpn2 and hl2

Figure 11. The merged alignment r1 of hat

The elements of rootA = {r1, r2, r3, . . . } are pushed in the queue st . Algorithm 7
takes out the head elements r1 in st and traverses it. As tag i == 1, then node
a is a nested transition. The elements before a should be pushed into st . The
hierarchical alignment nested in a should be recursively traversed. The other node
in rootA should be traversed in the same way.

5 TOOL IMPLEMENTATION AND EXPERIMENTAL EVALUATION

Experiments are conducted to demonstrate the practicality and effectiveness of the
proposed conformance checking approach in this paper. Firstly, the tool implemen-
tation of the conformance checking approach is introduced. Then, the conformance
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Figure 12. The merged alignment r2 of hat

Figure 13. The merged alignment r3 of hat

checking for hierarchical models is compared with existing conformance checking
methods based on simulation logs and real logs.

5.1 Tool Implementation

The conformance checking approaches suggested in this paper have been integrated
into ProM (http://promtools.org) through an extension. ProM is an open-source
platform that offers plug-ins to support a range of process mining techniques. The
approaches in this paper: are 1) using XES event logs with lifecycle as input; 2) user
input noise threshold; and 3) the conformance checking outcomes of the hierarchical
models and logs are obtained by utilizing the corresponding hierarchical process
models as input. The plug-in Hierarchically AlignedSeq Construction (HAC) for
the method is implemented, the details are shown in Figure 14.

http://promtools.org
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Figure 14. The details of the plug-in

5.2 Experiment Data

The input data of the approach are event logs with lifecycle and hierarchical models
with sub-process. We got 2 simulation hierarchical models and 2 real hierarchical
models as the experiment data. The detail of the hierarchical process models is
given as follow:

The 2 simulation models hpn1 and hpn2 are mentioned above. The 2 real models
are hpn3 and hpn4 given in Figure 15 respectively. And the corresponding datasets
are public datasets TSECLog and CRMCLog .

The source of the datasets:

1. TSECLog : the dataset is generated based on the transnational e-commerce sce-
nario. When a user submits an order, the merchant contacts a third-party
logistics provider. Once the user receives the items and completes the payment,
the order is considered complete. The process involves two sub-processes: the
third-party logistics process and the payment process.

2. CRMCLog : the dataset is created from the upgrade process of Netflix Asgard,
an open-source cloud resource management tool that runs on Amazon Web
Services. The entire process includes preparation before the upgrade and the
upgrade process. The upgrade process is a sub-process of preparation before the
upgrade.

The basic information about the datasets and the model size is respectively given
in Table 2 and Table 3.
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The link of data and program is:
https://pan.baidu.com/s/1Soku4gJWzX5Js6ICglfnOg?pwd=9ecc.

a) b)

Figure 15. a) The hierarchical process model hpn3 of TSECLog and b) the hierarchical
process model hpn4 of CRMCLog

Hierarchical Model Transitions Places Connections
hpn1 2 4 4
hpn2 4 7 8
hpn3 19 21 40
hpn4 11 12 22

Table 2. The information on the model size

https://pan.baidu.com/s/1Soku4gJWzX5Js6ICglfnOg?pwd=9ecc
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Event logs Traces Events Activities
L1 91 360 4
L2 802 6 516 8
TSECLog 522 14 616 20
CRMCLog 626 27 544 34

Table 3. The information of the datasets

5.3 Experiments Evaluation

The experiment results based on simulation models and logs are illustrated in this
paragraph. To evaluate the effectiveness of the conformance checking approach
(HAC) proposed in this paper, the Alignment based Hierarchical Business Process
Model Compliance Detection algorithm (HAC) was quantitatively compared with
Convert a Hierarchical Petri Net to a Flat Petri Net (CHFP) [26] and Conformance
Checking by Decomposition (DCC) [18] based on simulation event logs and real
event logs.

In order to validate the effectiveness of the proposed method, simulation ex-
periments (Subsection 5.3.1) were performed. Applying HAC, CHFP, and DCC
to hierarchical process models of varying sizes (Subsection 5.3.2), the effectiveness
and adaptability of HAC can be evaluated. Additionally, event logs with different
lengths in terms of lifecycle are used to evaluate the performance and effectiveness
of HAC (Subsection 5.3.3). Finally, the performance of HAC at different noise levels
is evaluated by applying the approach to various noise thresholds (Subsection 5.3.4).

5.3.1 Simulation Experiment Results

Taking hpn2 and L2 as an example, part of the alignment results is shown in Fig-
ure 16.

Figure 16. Part of the alignment results of hpn2 and L2
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In the alignments in Figure 16, green is a synchronous movement, yellow is
a movement on a log, and purple is a movement on a model. Figure 16 shows
8 possible alignments for case 194 with trace length 4, and the best alignment
result contains 2 synchronous moves and 2 log moves. The conformance checking
method presented in this paper enables the evaluation of hierarchical structures
within hierarchical models for conformance. This approach can be utilized to identify
and diagnose conformance issues in complex systems. To illustrate the contribution,
based on hpn2 and L2, the overall fitness and the fitness for each level are analyzed
by HAC, which is shown in Figure 17.

Figure 17. Visualization of conformance for the hpn2 run example

The line chart is used to describe the fitness of hierarchical models hpn2. tople-
velfitness , firstlevelfitness , and secondlevelfitness represent the fitness of the top-
level model, first-layer model, and second-layer model of the hierarchical model,
respectively. totalfitness indicates the fitness of the overall hierarchical model.

Figure 17 shows that the toplevelfitness , firstlevelfitness , and secondlevelfitness
of the hierarchical process model hpn2 are 0.94268, 0.96009, and 0.96009, respec-
tively. Its totalfitness is 0.88403. The alignment result of each level is higher than
the overall alignment result. It is because the mapping relationship between the
levels is not taken into account when the hierarchical process model and the hi-
erarchical log are used for the hierarchical alignment. This point will be further
improved in future research.

5.3.2 Different Sizes of Hierarchical Process Models

To assess the practicality and effectiveness of the conformance checking method,
the 4 hierarchical models hpn1, hpn2, hpn3, and hpn4 in Table 2 are used as inputs
to compare the computation time of alignment with different sizes. hpn1 is the
smallest, with the least transition, places, and connections. hpn3 is the largest, with
the most transition, places, and connections.
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Taking the hierarchical models hpn1, hpn2, hpn3, and hpn4 as input, HAC,
CHFP, and DCC are run to alignment, respectively. The performance of HAC is
demonstrated by comparing the computation time.

Figure 18. Comparison of computational time for different sizes of models

Figure 18 shows that, for hpn1 (the smallest size), the computing time of HAC is
688ms, the computing time of CHFP is 6 046ms, and the computing time of DCC is
1 255ms. For hpn3 (the largest scale), the computing time of HAC is 8 589ms. The
computing time of CHFP is 10 792ms. The computing time of DCC is 19 149ms.
The computing time of HAC is the lowest with the same size as the hierarchical
model. For DCC with small models, the larger the model size, the longer times
are used to decompose the process model. But, DCC has a great advantage in
computing time when dealing with large process models. From the moving average
trend line in Figure 18, we observe that the computing times of HAC, CHFP, and
DCC increase with the model sizes increase. For all the models, the computing
times of HAC are lower than CHFP, and DCC.

5.3.3 Different Log Lengths

Using logs of varying sizes as input for the same hierarchical process model, the
computing time is used to verify the effectiveness and availability of HAC, CHFP,
and DCC. The hierarchical model hpn2 is utilized in this experiment, and the infor-
mation on the logs with different log lengths is given in Table 4.

Table 4 shows that prom 1 is the minimum length with 368 traces and 2 962
events. The prom 2 contains 500 traces and 4 100 events. The prom 3 contains 802
traces and 6 516 events. The prom 4 is the maximum length with 897 traces and
7 281 events. The experiment results are shown in Figure 19.
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Event Logs Traces Events Activities
prom 1 368 2 962 4
prom 2 500 4 100 8
prom 3 802 6 516 20
prom 4 897 7 281 34

Table 4. The information of the event logs

Figure 19. Comparison of computational time for different sizes of logs

From Figure 19, we observe that HAC, CHFP, and DCC perform well with
prom 1 (the minimum log length), the computation time are 2 305ms, 4 870ms, and
2 605ms, respectively. However, once the log size increases, the performance of the
CHFP and DCC will degrade. For prom 3, the computation time of HAC, CHFP,
and DCC is different. The computation time of HAC is 6 999ms, which is less than
17 432ms of CHFP and 13 808ms of DCC. That is the more activities in logs, the
more difficult to calculate the alignments. Figure 19 shows that, by the simulation
experiment with the same log lengths, the performance of HAC is better than CHFP
and DCC.

5.3.4 Different Noise Thresholds

Taking logs with different noise thresholds as input, the performance of HAC is
verified. The logs L1, L2, TSECLog , and CRMCLog in Table 3 are used in this
experiment. L1 contains the least events, which are 360. CRMCLog contains the
most events, which are 27 544. The plug-in “Add Noise to Log Filter” is used to
add noises to the logs. We add noise levels in percentages 2.0, 3.0, and 5.0 to
each log. Then the logs with noises are used in this experiment. The effectiveness
and practicability of HAC are evaluated by comparing the computation time with
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logs containing different noise thresholds. The experiment results are shown in
Figure 20.

Figure 20. Comparison of computational time at different noise thresholds

Figure 20 shows that the performance of HAC is not significantly impacted by
different noise thresholds when L1 and L2 contain fewer events. For L1 with noise
thresholds 2.0, 3.0, and 5.0, the computation times of HAC are 354ms, 1 119ms, and
665 ms, respectively. For L2 with noise thresholds 2.0, 3.0, and 5.0, the computation
times of HAC are 1 365ms, 1 869ms, and 1 155ms, respectively. For TSECLog with
noise thresholds 2.0, 3.0, and 5.0, the computation times of HAC are 16 028ms,
16 819ms, and 8 480ms, respectively. CRMCLog with noise thresholds 2.0, 3.0, and
5.0, the computation time are 3 784ms, 9 395ms, and 7 755ms, respectively. It shows
that when TSECLog and CRMCLog with more events are used, the performance of
HAC within various noises is different obviously. That is because as the number of
events increases, more alignments should be calculated. Therefore, to obtain more
accurate alignment results, the noises in logs need to be preprocessed.

6 CONCLUSIONS

The conformance checking approach for hierarchical process models is proposed in
this paper. As the hierarchical structures in hierarchical process models, it is hard to
check the conformance. And most of the existing conformance checking methods are
only for the flat process models. The nested relationships in hierarchical models are
researched. The existing conformance checking approaches is used to detect the sub-
models at each level. The results of each level are merged to analyze the conformance
of hierarchical models. The effectiveness of the proposed conformance checking
approach is evaluated using both real-world and simulated hierarchical models. The
computational time for different sizes of models and different noise thresholds among
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the same size logs is compared in the experiments. Experimental results confirm the
practicality and effectiveness of the conformance checking approach.

After the logs are layered, the activity names in the logs are only considered. The
lifecycle information of the logs is ignored in the approach. The method proposed
in this paper can only be applied to hierarchical models that involve a single process
instance. And the noise threshold in this method lacks of systematic setting means.
Future work will focus on researching the hierarchical structure in event logs. The
other feature information of the logs will be considered to optimize the approach,
and to improve the conformance checking approach to detect the hierarchical models
with multi-instances.
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