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Abstract. Recent research shows that the effect of heterogeneous graph embedding
learning is vulnerable to non-attribute nodes. However, the existing methods mainly
use first-order neighbor nodes to complete attributes, which cannot achieve a satis-
factory completion effect on the heterogeneous graphs with random non-attribute
nodes. Therefore, this paper put forward an attribute completion method of hetero-
geneous graphs based on attribute neighborhoods, which is called HGCAN. HGCAN
employs two major stages of completion. Specifically, in the first stage, we use meta-
paths to construct attribute neighborhoods of non-attribute nodes. The attribute
neighborhoods aggregation can capture the semantic relations of attributed nodes to
initially complete attributes. Then, the second stage uses structural information to
obtain the distance relationships between nodes to further improve the preliminary
completed attributes. Finally, HGCAN is combined with an existing heterogeneous
graph embedding learning model to verify the validity of the completed attributes
and make the system end-to-end. Extensive experiments carried out on the ACM
dataset show the proposed mechanism’s superior performance over state-of-the-art
attribute-completion methods.
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1 INTRODUCTION

Heterogeneous graphs [1] are composed of multiple types of nodes and edges and can
depict complex objects and their interaction in the real world, such as social networks
and citation networks [2]. Particularly, the attributes of the nodes express complex
information from corresponding entities [3]. However, the non-Euclidean nature of
graphs makes them difficult to be analyzed by traditional machine learning models,
such as convolutional neural networks [4]. Therefore, in order to mine information
from graphs deeply, many graph network embedding learning models have been
proposed [5]. Those models can encode the complex information of graphs into low-
dimensional Euclidean space and use them as the input of other machine learning
models.

Early heterogeneous graph embedding learning methods construct node sequen-
ces by random walks and transform the graph into a computable representation,
such as metapath2vec [6], HIN2Vec [7] and HeteSpaceyWalk [8]. However, those
methods ignore the important information contained in nodes’ attributes, which
makes their performance poor on heterogeneous graphs with rich node characteris-
tics. With the in-depth study of the heterogeneous graphs, people realized that the
nodes’ attributes [9] express their real and rich complex connotation, and are ben-
eficial to dig up heterogeneous graphs’ information. Therefore, the current hetero-
geneous graph embedding learning focuses on the aggregation algorithms of nodes’
attributes and proposes many excellent methods, such as HAN [10], MAGN [11] and
HGT [12]. On the other hand, these models are very sensitive to the attributes of
nodes. And attributes in data sets are not always complete. For example, when
people collect ACM dataset [10], many nodes are non-attribute. Furthermore, ex-
isting research [13] reveals that using these models on a graph with non-attribute
nodes will spread the noise in the aggregation process and affect the subsequent
tasks.

To reduce the impact of non-attribute nodes on heterogeneous graph embedding
learning, one common method in existing embedding learning models is to delete
these non-attribute nodes at the data preprocessing stage to ensure that all of the
input nodes have attributes. Nevertheless, these methods are only applicable when
the total number of the non-attribute nodes is small and the attribute nodes of the
same types account for a large proportion of the total dataset. In addition, this
way changes the original structures of graphs, and cannot analyze non-attribute
nodes. Another common method is to fill the attributes of non-attribute nodes
with zero vectors. However, this way also causes noise propagation in the graphs
after attribute aggregation of nodes, resulting in poor tasks. The latest research
on attribute completion which is called HGN [13] uses the first-order neighbors of
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non-attributive nodes to complete attributes. This method only considers that some
types of nodes are non-attributive, so it is necessary to ensure that the first-order
neighbor classes of these non-attribute class nodes are complete. Yet, non-attribute
nodes are likely to occur randomly in each category, still using this method will
lead to poor performance of downstream tasks. Consequently, how to accurately
complete non-attribute nodes in a heterogeneous graph is an important problem
that needs to be studied urgently in the current heterogeneous graph embedding
learning.

For solving the shortcomings of existing methods in dealing with the data sets
with missing attributes, we propose an attribute completion method of heteroge-
neous graph based on attribute neighborhood (HGCAN). This method solves the
above problems by applying two stages of attribute completion.

Specifically, in the first stage of attribute completion, we first use an attribute
neighborhood selection strategy which is based on a meta-path to construct attribute
neighborhoods of non-attribute nodes. Therefore, all the nodes in the generated
attribute neighborhood have attributes. Then, a graph attention mechanism is
used to obtain the weight of the attribute nodes to the non-attribute nodes in each
attribute neighborhood. Through weighted aggregation, the non-attribute nodes
are initially completed. In the second stage of attribute completion, We fuse the
original topological embedding of non-attribute nodes with their initial completion
attributes. Topological embedding contains the distance relations between nodes.
In this way, the completed attributes of nodes obtain rich information, and can be
well combined with other heterogeneous graph embedding learning models to make
the whole system end-to-end. Note that we use the loss function of the attribute
completion and the loss function of the model training task as the final loss to
optimize the learning process.

The main contributions of this paper are summarized as follows:

• This paper finds a problem of missing whole attributes of some nodes in the het-
erogeneous graph. Previous heterogeneous graph attribute completion methods
usually directly aggregate first-order neighbors. This only applies to the case
that some categories of nodes are non-attributive. This paper extends the study
of such issues. As far as the literature we have investigated, this is the first
attempt to effectuate the attribute completion of a heterogeneous graph when
the non-attribute nodes occur in each type.

• This paper proposes a method of a heterogeneous graph attribute completion
based on the attribute neighborhood. When there are non-attribute nodes in
each node type, this framework makes up for the shortcomings of previous meth-
ods in dealing with missing attributes, and is easy to combine with heterogeneous
graph embedding learning models.

• In this paper, a large number of experiments have been conducted on ACM
dataset to evaluate the performance of HGCAN. The results show that the
performance of the node attributes fulfilled by HGCAN in downstream tasks
is always better than the most advanced attribute completion baseline model.



1284 Z. Zhang, S. Huang, C. Hu, P. Wang

In addition, ablation experiments were carried out on ACM dataset to further
prove the effectiveness of the proposed framework.

The remainder of this paper is arranged as follows. Section 2 presents the
related work of heterogeneous graph embedding learning and attribute completion.
Section 3 defines the problem. Section 4 represents the proposed mechanism in
detail. Section 5 discusses the experimental results. Finally, the paper is summarized
in Section 6.

2 RELATED WORK

The goal of graph embedding [14] is to map the nodes in the graphs into low-
dimensional vector representations [15] and retain as much original information of
the graph as possible in Euclidean space for application in downstream tasks. Early
graph embedding methods were first applied to homogeneous graphs. For example,
Skip Gram’s model generalization [16] and line [17], these methods can well capture
the topological structure of the graph and reduce the impact of sparsity. However,
these methods are not designed to deal with node attributes, and it is difficult to
perform well for most graphs with rich node attributes. With the development
of neural networks, there are spectral-based (such as GCN [3] and AGCN [18],
which use edge information to generate new node representations) and spatial-based
graph neural network models (such as GraphSage [2] and GAT [19], which directly
convolve in the graph domain by aggregating node information). Besides, UG-
AGE [20] learns complex semantics of edges by generating fake neighbors as negative
samples. GFN [21] can generate text graphs and learn different opinions in the graph
reasoning stage. Although these methods are suitable for homogeneous graphs and
depend on complete node attributes, they provide many ideas for heterogeneous
graph embedding learning.

Different from homogeneous graphs, heterogeneous graphs usually need to con-
sider the dissimilarity of neighbor information under various relationships. Inspired
by the learning of homogeneous graphs, most heterogeneous graphs deal with the
heterogeneity of graphs through meta-paths. For example, metapath2vec [6] gen-
erates a random traversal guided by a single meta-path and then feeds it to the
skip-gram model to engender node embedding. However, such methods do not uti-
lize the attributes of the nodes. HAN [10] transforms a heterogeneous graph into
several homogeneous graphs based on multiple meta-paths and employs an attention
mechanism to aggregate diverse meta-paths. MAGN [11] expands HAN [10] by con-
sidering both the messages of multiple meta-paths and intermediate semantic nodes
on the meta-paths. DT-GCN [22] embeds nodes in hyperbolic space. BM-GCN [23]
introduces blocking modeling to GCN and learns the corresponding aggregation
rules for neighbors of different classes. P-GCN [24] proposes two measurements of
homophily degree, which can constrain the similarity of representations between
nodes, to adaptively learn the propagation process. TUD-GSL [25] proposes a SUB-
LIME framework to learn the structures of graphs. Besides, RICE [26] proposes



HGCAN: Heterogeneous Graph Completion Method Based on AN 1285

a balanced sampling strategy guided Contrastive Learning mechanism to deal with
the long-tail problem and the incremental graph learning on social information.
These methods are proficient to capture the complex details in the heterogeneous
graphs. The learned low-dimension embeddings execute properly in several down-
stream tasks such as node classification and link prediction, but still rely on the
heterogeneous graphs with full attributes.

In view of the fact that more and more graph embedding learning methods are
highly sensitive to node attributes, non-attribute nodes will reduce the effectiveness
of these models. Therefore, to ensure the integrity of the attribute set, we can
learn from the relevant attribute completion methods in machine learning [27]. For
instance, MacKay [28] proposed Bayesian interpolation method in 1992. Rodriguez
et al. [29] suggested an improved method for the single heat vector coding in 2018.
Han et al. [30] interpolated the average value of traffic flow data. Yet, these methods
make the attribute completion of nodes and graph embedding learning become two
independent parts. Some research [13] shows that the completed attributes in the
preprocessing stage are likely to bring negative effects for embedding learning.

With the development of deep learning, more and more people combine attribute
completion with model learning. Based on the idea of Generate Adversarial Net-
work(GAN), Yoon et al. [31] proposed the GAIN method to interpolate medical data,
and Jiang et al. [32] also used GAN to interpolate sensor missing data for long-term
detection of bridge health. Lall and Robinson [33] yielded a multiple interpolation
method with a denoising automatic encoder, which improved the interpolation effi-
ciency for large-scale datasets. However, the above methods are used for Euclidean
structure data and cannot handle the non-European structure of graphs. Recently,
the HGN method proposed by Jin et al. [13] considers that when all the attributes
of some types of nodes are missing, the attributes of other types of nodes directly
connected can be used to complete them, instead of using one-hot vectors.

In general, the existing heterogeneous graph embedding learning methods de-
pend on a complete set of node attributes. However, the existing attribute com-
pletion methods still have some limitations. Manual attribute completion cannot
determine the accuracy of attribute completion. Therefore, this paper proposes
a heterogeneous graph attribute completion method based on attribute neighbor-
hood to complete node attributes efficiently and accurately.

3 PROBLEM STATEMENT

This section first provides formal definitions of some significant terminologies re-
lated to heterogeneous graphs used throughout this paper and then formalizes the
problem.

Definition 1 (Attribute Heterogeneous Graph). Heterogeneous graph G is defined
as a 5-tuple G = (V,E, TV , TE, X) where V is the node set, E represents the set
of edges, TV and TE indicate the sets of node and edge type, respectively, with
TV + TE > 2. Each node v ∈ V is associated with its mapping function φ(v) : V →
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TV , while each edge e ∈ E is accompanied with the mapping function φ(e) : E → TE.
The X represents the collection of nodes’ attributes.

Definition 2 (Attribute Missing Heterogeneous Graph). Given an attribute hete-
rogeneous graph G = (V,E, TV , TE, X), missing attribute means that for the array
of nodes’ attributes X, ∃v ∈ V , node v has no attribute. We mark the missing
attribute with a zero vector of the same dimension. We take VZERO to indicate the
nodes in the node set whose attributes are zero vectors, so there is VZERO ∈ V and
XZERO ̸= ∅. In addition, non-attribute nodes are not of the same type. That is,
when we use node type TV ZERO to contain the type of nodes in VZERO, then there
is TV ZERO = TV .

As shown in Figure 1, ACM dataset can be composed of three types of nodes:
paper (P), author (A) and subject (S), and two types of edges: author-paper and
subject-paper. Each type has some non-attribute nodes. In this paper, zero vectors
are used to identify the non-attribute nodes.

Figure 1. ACM dataset and its meta-paths

Definition 3 (Meta-path). A meta-path P is defined as a path in the form of T1
R1→

T2
R2→ . . .

Rl→ Tl+1, which describes a composite relationship between node type T1 and
Tl+1, R = R1

◦R2
◦ . . . Rl, where

◦ represents a composite operator on the relationship.
Taking Figure 1 as an example, the meta-path “APA” describes the relationship

between two authors (A) on one paper (P). The meta-path “APSPA” represents that
two authors publish articles (P) on the same subject (S). Recent works show that
many data mining tasks in heterogeneous graphs can benefit from the meta-path
modeling.

As is shown in Figure 2, there may be non-attributive nodes in different types
of nodes, which will have a negative influence on heterogeneous graph embedding
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Figure 2. ACM dataset with missing attributes and its attribute completion methods

learning. What is more, the existing attribute completion methods have certain lim-
itations. Traditional completion methods separate attribute completion and embed-
ding learning, which make the completed attributes unreliable. However, HGN [13],
which is the latest advanced heterogeneous graph attribute completion relies on
the first-order neighbors’ attributes. It may lead to the deviation of the completed
attributes.

Therefore, this paper further develops the research on the completion method
of missing attributes of heterogeneous graphs and formalizes the research questions
as follows.

Question 1 (Attribute completion of attribute missing heterogeneous graphs).
Given an attribute missing heterogeneous graph G = (V,E, TV , TE, X), in which
some nodes have no attributes, how to learn a d-dimension node representation
x ∈ R|V |×d, where d =|V |, so that the learned node representation x can effectively
replace the non-attribute nodes.

4 HGCAN FRAMEWORK

This section mainly introduces the framework of a heterogeneous graph completion
method based on attribute neighborhood (HGCAN). HGCAN can effectively solve
the problem of poor embedding learning caused by the lack of some attributes of
the heterogeneous graph.

4.1 Overview

To complete the non-attributive nodes, the main idea of HGCAN is that the at-
tributes of non-attributive nodes are completed by the attributes of the nodes which
have relationships with non-attributive nodes. In order to capture the attribute
nodes with semantic relationships, we first find the attribute nodes with semantic
relationships, and then learn the semantic relationships among the distance between
nodes through structural information. Therefore, HGCAN is mainly composed of
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two stages of attribute completion, which is shown in Figure 3. To be specific, given
an attribute missing heterogeneous graph G = (V,E, TV , TE, X) with some non-
attribute nodes, HGCAN first uses the existing topology embedding algorithm [6]
to pre-learn the topological embedding matrix s of nodes. Some reports [23, 24]
show that the topological embedding of a node can reflect the semantic relation-
ship between this node and other nodes. Next, HGCAN applies two stages of the
attribute completion.

In the first stage of the attribute completion, HGCAN exercises the attribute
neighborhood selection strategy guided by meta-paths to capture the attribute
nodes which have semantic relationships with the non-attribute node and gener-
ate the attribute neighborhoods of each non-attribute node. Then, HGCAN im-
plements the graph attention mechanism guided by s on each attribute neighbor-
hood, and learns the weights of nodes with attributes. By aggregating the at-
tributes of neighborhood nodes, HGCAN obtains the preliminary completion em-
bedding XC of the node. In the second stage of attribute completion, HGCAN
learns the near and far relationship between nodes by fusing the topological embed-
ding and the initial completion attributes of the non-attribute nodes. The farther
away from the non-attributive node, the less influence the node with attributes has
on it. After two stages of the attribute completion, we acquire the node embed-
dings.

The obtained node embeddings can be combined with any heterogeneous graph
embedding model. In a word, we send the complete node attributes and the original
heterogeneous graph G into the model as a new graph for learning. Then we use
the attribute completion loss function and task loss function to optimize the whole
model end-to-end.

The following sections will introduce the content of the framework in detail.

Figure 3. Attribute completion framework of heterogeneous graphs based on attribute
neighborhood
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4.2 The First Stage of Attribute Completion

To complete non-attribute nodes, some studies average the directly connected neigh-
bors. The state-of-the-art study weights and aggregates first-order neighbors. Note
that these methods only focus on first-order neighbors, but first-order neighbors
may also have non-attribute nodes. Therefore, we propose the first stage of at-
tribute completion, which is composed of two modules: Attribute Neighborhood
Selection and Neighborhood Weighted Aggregation. The core is the attribute neigh-
borhood, which can capture the semantic characteristics of attribute nodes ver-
sus non-attribute nodes. More specifically, in the first stage of attribute com-
pletion, we first use the Attribute Neighborhood Selection module, which is a
strategy based on meta-path. Meta-path is an important concept in heteroge-
neous graphs, which reflects the high-level semantic relationship of heterogeneous
graphs. For example, the meta-path “APA” reflects the co-author relationship be-
tween the two authors. Therefore, we use meta-path to construct attribute node
sequences through a random walk, which is called attribute neighborhood. At-
tribute neighborhood contains attribute nodes which have semantic relationships
with non-attribute nodes. We construct it and then we aggregate it to prelimi-
nary completed non-attribute nodes. In particular, Neighborhood Weighted Ag-
gregation uses a graph attention mechanism to focus on the topological struc-
ture similarity of nodes, so as to learn the importance between attribute nodes
and non-attribute nodes. We get preliminary attributes by weighted aggregation,
which contains the semantic relationships from attribute nodes to non-attribute
nodes.

4.2.1 Attribute Neighborhood Selection

The existing models work out the problem that some kinds of nodes have no at-
tributes by weighted averaging the attributes of neighbor nodes directly connected.
However, considering that the non-attribute nodes may exist in distinct categories,
straightly connected neighbor nodes do not necessarily have attributes. If we only
use zero vectors instead of them, it will make a deviation in attribute aggregation.
Therefore, the first stage of attribute completion proposes an attribute neighborhood
selection strategy based on the meta-path to solve this, which is, the meta-paths
are used to generate a sequence of multiple types of nodes, then the node sequences
are used to find the attribute neighbors of the non-attribute nodes on the meta-
paths and these attribute nodes are regarded as the attribute neighborhood of the
node.

Formally, given a heterogeneous graph G = (V,E, TV , TE, X) and multiple man-

ually selected meta-path patterns Pj = T1
R1→ T2

R2→ . . . Tt
Rt→ Tt+1 . . .

Rl→ Tl+1 as
the guidance of random walk, where j ∈ [1, J) means there are J meta-paths. We
set the number of first-order neighbors of non-attribute nodes as the size of their
attribute neighborhood. Therefore, the size of non-attribute nodes in the first-order
neighbors is the length of a random walk sequence. The transition probability of
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step i can be defined as follows:

p
(
vi+1

∣∣vti , P) =


1
|M(vi+1)| , (vti , vi+1) ∈ E,φ (vi+1) = t+ 1, vi+1 /∈ Vzero,

1
|N(vi+1)| , (vti , vi+1) ∈ E ,φ (vi+1) = t+ 1, vi+1 ∈ Vzero,

0, others,

(1)

where vti ∈ Tt, vi+1 ∈ Tt+1 indicates that the type of current node vti is Tt and
the type of next node vi+1 after random walk is Tt+1, depending on the predefined
meta-path P . M (vi+1) represents the length of the node set where nodes in it have
attributes and are connected to node vti . E represents the edge set, and VZERO

represents all non-attribute nodes. N (vi+1) represents the length of the node set
where nodes in it are connected to node vti but with no attributes. When the
attribute of vi+1 is not empty, that is, vi+1 /∈ VZERO, the probability of the next step
is 1

|M(vi+1)| . Otherwise, the probability of the next step is 1
|N(vi+1)| . Generally, the

type of node in the next step counts on the predefined meta-path, and the specific
node banks on whether the node has attributes. When the node sequence length
does not meet the predefined length, the next step is to select an attribute node
and add it into the node sequence. If there is no attribute node in the next step, we
select non-attribute node. However, the non-attribute nodes do not belong to the
attribute neighborhood, and are only used as intermediate nodes to generate the
node sequences based on the meta-path. When we find enough attribute nodes, we
construct an attribute neighborhood.

For more detail, we regard Equation (1) as the probability formula for a single
node to the next node. To generate attribute neighborhood, we use the nodes
with attributes in the first-order neighborhood of non-attribute nodes as part of the
attribute neighborhood. The remaining nodes are found by a random walk strategy.
That is, we only need to perform the random walk algorithm on the non-attribute
nodes in the first-order neighborhood. For J meta-paths, we build J random walk
sequences for each non-attribute node, and select the node with a high probability
of occurrence to complete the attribute neighborhood.

In the traditional neighborhood selection algorithms, although there are some
algorithms based on the meta-path, almost all of them only consider the information
of directly connected nodes and do not consider whether all nodes in the neighbor-
hood contain attributes. For example, in Figure 2, for node 1, the traditional method
will set the non-attribute nodes 2, 3, and 6 to zero vectors, which will cause noise
to propagate on the graph, resulting in a poor aggregation effect. The random walk
strategy adopted in this paper is based on the mode of meta-path. It tries to find
the nodes with attributes based on the meta-paths. That is to say, in order to ensure
that the neighborhood with attributes is obtained, the strategy encourages node 1
to make jump connections for a neighborhood selection. The sequence of node 1,
node 3 and node 5 is found according to the meta-path, so that the attribute neigh-
bors of node 1 on the second hop or a further hop are found. By applying attribute
neighborhood selection module, we exclude non-attribute nodes 2, 3 and 6 from the
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attribute neighborhood, and we add attribute nodes 5 and 7 to form the attribute
neighborhood K of node 1. Therefore, the nodes in the attribute neighborhood
generated by the meta-path have a semantic relationship with the non-attribute
nodes.

4.2.2 Neighborhood Weighted Aggregation

For the problem that some nodes have no attributes, as shown in Figure 2, among
the first-order neighbors of node 1, nodes 2, 3, and 6 have no attributes and be-
long to different categories of nodes. Direct aggregation will spread the noise
brought by non-attribute nodes in the network, while attribute neighborhood avoids
the appearance of non-attribute nodes. However, nodes in attribute neighbor-
hood are in various types. What is more, due to the meta-path guided strat-
egy, attribute nodes have different semantic relationships with non-attribute nodes.
Averaging attributes ignore the difference of nodes’ types and the semantic rela-
tionships between nodes. Therefore, we use graph attention mechanism to assign
weights to different nodes in attribute neighborhood. And then, we use differ-
ent weights to aggregate attribute neighborhood, preliminary completing the non-
attribute nodes.

The graph attention mechanism is used to learn the contribution of attribute
nodes in attribute neighborhoods to non-attribute nodes. As shown in Figure 3,
since node 1 has no attributes, HGCAN uses the pre-learning topological embed-
dings s to calculate the weights. Specifically, pre-learning topological informa-
tion reflect different topology of nodes. Some reports [23, 24] show that authors
writing same papers may have a similar topology [13], which reflects their ho-
mophily degree. Therefore, we use a meta-path based topology embedding gen-
eration algorithm [13], and in order to avoid the information loss caused by a single
meta-path, we use multiple meta-paths for topology embedding learning. We use
graph attention mechanism on the topological embeddings of the attribute nodes
in the attribute neighborhood. The higher the similarity of topological embed-
ding of node, the greater its importance. When we get the contribution of differ-
ent attribute nodes to the non-attribute nodes, we carry out weighted aggregation
on the attribute neighborhood to get the initial complement of the non-attribute
nodes.

Given a node pair (v, u), where node u is a node in the attribute neighborhood of
node v, the Neighborhood Weighted Aggregation module can learn the importance
avu of the attribute node u to the non-attribute node v, which means that the
contribution of node u to node v can be expressed as follows:

euv = att (su, sv) , u ∈ Kv, (2)

where att(·) represents the executive attention network, Kv expresses the attribute
neighborhood of node v, su and sv are the topological embeddings of node u and
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node v. The above formula can be expanded as follows:

euv = LeakyReLU
(
sTvW1su

)
, (3)

avu = softmax (euv) . (4)

In Equation (3), LeakyReLU is the activation function. W1 is the parameterized
attention vector of the structure. To make the coefficient easy to calculate, we apply
softmax (·) in Formula (4) to obtain the normalized weighting coefficient auv. By
executing the attention mechanism, auv can be calculated, that is, the importance
of node u to node v.

Then, the first stage of attribute completion for non-attribute nodes can be
finished through following formula:

XC
v = σ

(∑
u∈Kv

avuxu

)
, (5)

where xu represents the attributes of node u, σ is an activation function; XC
v indi-

cates the preliminary completed node attributes.

HGCAN extends the attention process to multi-head attention, with a view to
stabilize the learning process and reduce high variance. As shown in Figure 2, dif-
ferent line colors represent different attention processes. HGCAN executes D times
of independent attention mechanism, and then connects together. The weighted
aggregation of neighborhood attributes of node v can be rewritten as follows:

XC
v =∥Dd σ

∑
u∈N+

v

avuxu

 . (6)

Note that unlike other methods, HGCAN does not use the mask mechanism to
focus only on the first-order nodes which are directly connected to node v. In fact,
it is precisely because HGCAN has adopted the attribute neighborhood selection
algorithm that it can obtain enough attribute neighbors. The previous methods
only consider the directly connected nodes, but some non-attribute nodes in the
first-order will lead to a decline in the quality of attribute completion. HGCAN
avoids this risk. However, the weighted aggregation on the attribute neighborhood
does not take into account the distance relationship between the different attribute
nodes in the attribute neighborhood with the non-attribute nodes, so it can only be
used as the initial complement of the non-attribute nodes. Besides, it is natural to
think whether there is a case where the attribute neighborhood selection algorithm
cannot find the associated node with attributes. The next section will supplement
this.
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4.3 The Second Stage of Attribute Completion

HGCAN uses the first stage of attribute completion to initially complete the non-
attribute nodes. This stage can capture the relationship between the attribute
nodes and non-attribute nodes but omit the skipped nodes. When we aggregate the
attribute neighborhood, we see them as non-attribute nodes’ first-order neighbors.
The difference of semantic relationship between remote nodes and near nodes to non-
attribute nodes is ignored. However, the contribution of the remote nodes to the
non-attribute nodes may be much smaller than that of the near nodes, according to
the situation that many methods only focus on first-order neighbors. It is necessary
to obtain the original distance between nodes, based on original structure. Therefore,
we propose the second stage of attribute completion. Non-attribute nodes’ topolog-
ical embeddings are pre-learned by an existing topological embedding method based
on the original structure. The embeddings reflect their original topology, which can
guide the distance relationships between nodes. We fuse non-attribute nodes’ topo-
logical embeddings hv and their preliminary completion embeddings XC

v and use
them as the complement attributes of nodes.

XC
v = mean

(
XC

v +W2hv

)
, (7)

where mean(·) indicates to average the results. + means to add two embeddings.
W2 represents the learnable weight parameter matrix which can reduce the dimen-
sion of hv to XC

v and balance these two embeddings. In addition, for the problem
mentioned at the end of last section, although this situation is unlikely to occur,
once it occurs, HGCAN will regard it as a zero vector and use W2 to align the
topology vector hv of nodes with other attribute vectors.

4.4 Combining with HIN Model

In order to verify that the completed attributes can enhance the performance of
heterogeneous graph embedding learning methods, evaluate the effectiveness and
learnable of HGCAN in this paper, and make the system end-to-end, the learned
XC

v will replace the zero vectors in the original Xv. At the beginning, this paper uses
zero vectors to represent non-attribute nodes. HGCAN then takes the heterogeneous
graph G = (V,E, TV , TE, X) after attribute completion as a new graph and sends it
into any heterogeneous graph embedding learning model for combining learning.

HGCAN defines the combining loss function, that is, the loss function of at-
tribute completion and the loss function of model training task, to optimize the
learning effect. The loss function of attribute completion is as follows:

Lattribute =
1

|VU |
∑
u∈VU

fu, (8)

where VU means a set of nodes. Each node u ∈ VU has raw attributes. We randomly
select some nodes from those nodes with attributes to form VU . Then, we drop those



1294 Z. Zhang, S. Huang, C. Hu, P. Wang

nodes’ attributes and use HGCAN to reconstruct them. fu represents a metric to
make sure that the reconstructed attributes are as close to the raw attributes as
possible. The equation of fu is as follows:

fu =
√(

XC
u −Xu)

2 , (9)

where node u belongs to VU and represents the nodes with attributes. XC
u repre-

sents the reconstructed attributes of node u after using HGCAN. Xu represents
the original attributes of node u. This equation calculates the Euclidean dis-
tance.

After end-to-end learning, HGCAN uses the real value of the model, truy, and
the predicted value, prey, as the input of the loss function of model training task,
expressed as:

Lclassification = L(prey , truy), (10)

where L represents the loss function which depends on the actual tasks. In the node
classification experiments, we use cross entropy loss function to optimize the overall
effect.

We define loss function coefficient α to balance these two loss functions. The
loss function results of the two parts of coefficient balance are optimized and learned
through back propagation under the guidance of labeled data. Lloss can be formu-
lated as:

Lloss = αLattribute + Lclassification. (11)

5 EXPERIMENTS

To verify the improvement of the proposed attribute completion method on hetero-
geneous graph embedding learning, we perform experiments on the dataset of ACM.
In this section, we give the experimental scheme first. Then, we describe the dataset
and baselines. At last, we analyze the experiment results.

5.1 Experimental Scheme

First, we use ACM dataset in all experiments in this paper. The distribution of non-
attribute nodes in ACM is also equivalent. We take three graph embedding learning
models as baselines. Then we feed the embeddings of paper nodes in ACM generated
by each learning model to a linear SVM and a K-means clustering model to obtain
the results of node classification and clustering, respectively. Macro-F1 Value and
Micro-F1 value are used as the evaluation value of multi-classification model, and
normalized mutual information (NMI) and adjusted RAND index (ARI) are used
as the evaluation value of clustering model. We compare those results to prove
the effectiveness of the framework proposed in this paper. Besides, we use Adam
optimizer and the learning rate is 0.005.
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Then, to further study the necessity of each part in the framework proposed in
this paper, the same dataset is studied using different variants of the proposed model.
They are the baseline method without attribute completion algorithm (MAGN),
a variant that only uses the first stage of attribute completion (HGCAN1), a model
which only aggregates first-order neighbors but fuses the topological embeddings
(HGCAN2) and the final algorithm HGCAN.

After that, in order to study some parameters involved in the model, such as the
influence of different loss function coefficients on attribute completion results, this
paper conducts several node clustering experiments on them to study the changes
of NMI and ARI values under different loss function coefficients, so as to prove the
optimal coefficient range.

Finally, in order to verify the scope of application of the model, that is, HGCAN
has different effects on attribute completion of heterogeneous graphs with different
ratios of non-attribute nodes, multiple random scale node attribute loss operations
are conducted for a given dataset, and node clustering experiments are conducted
to study the model performance under several ratios.

5.2 Dataset

The dataset of ACM used in the experiments is a subset extracted from the website
of ACM1. By the same extraction method as HAN [10], we construct a heteroge-
neous graph containing 4019 papers (P), 7 167 authors (A) and 60 subjects (S), in
which the papers are divided into three categories according to the conference they
have been published in. We employ the meta-path set APA, APSPA to perform
experiments.

What is more, each node in the ACM has attributes, and the papers have a real
label information. Therefore, to facilitate the study of the problems proposed in this
paper, we construct several ACM datasets with non-attribute nodes. In detail, we
first select a fixed set of random seeds to ensure that the results can be reproduced.
Then, according to different random seeds, we select nodes as non-attribute nodes
from each node type in the same proportion. Finally, we get a missing attribute
heterogeneous graph for each random seed. Here, the datasets are divided into 10%
training sets, 10% verification sets and 80% test sets.

5.3 Baselines

To evaluate the performance of HGCAN, we compare it with two existing methods,
i.e., GAT and MAGN and the state-of-art attribute completion method HGN.

GAT [19]: As a spatial-based graph convolutional network, GAT is comprised
of attention layers which can calculate different weights to different nodes in the
neighborhood. Note that we test GAT on several meta-path based homogeneous
graphs and report the best results.

1 http://dl.acm.org/

http://dl.acm.org/
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MAGN [11]: As a heterogeneous graph neural network, MAGN boosts the per-
formance through employing three steps (Node Content Transformation, Intra-meta-
path Aggregation, Inter-meta-path Aggregation).

HGN [13]: As an attribute completion method for heterogeneous graph, HGN
implements node attribute completion by first-order neighborhood aggregation.

5.4 Node Classification

We conduct experiments on ACM dataset in which 30% nodes have no attributes
to compare the performance of different models on node classification tasks. To
make a fair comparison and reproduce the results, we set five different random seeds
to loss nodes’ attributes in ACM dataset randomly, and take the average value of
Macro-F1 and Micro-F1 respectively as the experimental results. We verify the
effectiveness by combining the proposed completion method with MAGNN. We use
a linear SVM with different training ratios from 1% to 80% to classify paper nodes
in ACM. Because SVM is a semi-supervised model, for fair comparison, only the
nodes of the test set are sent to the classifier.

Besides, the parameter settings of the baseline models remain unchanged in
this subsection. For the proposed framework, we use the following settings. We
expand the graph attention to multiple attention with K = 8 attention heads.
The proportion of non-attribute nodes of each category is set to 30%, and the loss
weighting coefficient λ is set to 0.5. The input data sets of all experiments were
consistent.

Training Ratio
Model

GAT MAGN HGN HGCAN

80% 79.8% 91.8% 91.3% 94.5%
60% 79.7% 91.5% 90.9% 94.3%
40% 79.7% 90.7% 90.1% 93.5%
20% 79.7% 89.5% 89.1% 92.7%
10% 79.6% 88.8% 88.1% 91.6%
5% 79.5% 88.9% 87.4% 90.8%
1% 77.5% 86.9% 86.4% 89.4%

Table 1. Macro-F1 of node classification results on ACM

As shown in Table 1 and Table 2, the proposed method HGCAN performs
better than other baselines in each training ratios of ACM dataset, which proves the
stability and superiority of HGCAN. Specifically, for the heterogeneous graphs with
30% non-attribute nodes, MAGN and GAT use zero vector instead of them, and
HGN uses first-order neighbors to complete them. Compared with these methods,
HGCAN improves the results by 1.7% to 3.6%.

On the other hand, HGN uses first-order neighbors to complete the missing at-
tributes and is combined with MAGN. However, it is worth noting that the scores
in the table show that the score of HGN is not as high as MAGN. HGN only uses
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Training Ratio
Model

GAT MAGN HGN HGCAN

80% 81.1% 92.0% 91.4% 94.6%
60% 81.0% 91.7% 91.0% 94.4%
40% 81.0% 91.0% 90.3% 93.7%
20% 81.0% 89.7% 89.2% 92.9%
10% 81.0% 89.0% 88.2% 91.7%
5% 80.9% 89.2% 87.7% 90.9%
1% 79.2% 87.6% 86.8% 89.6%

Table 2. Micro-F1 of node classification results on ACM

first-order neighbors, though some of them are non-attribute. These non-attribute
neighbors will lead to poor aggregation effect. Therefore, HGN shows its limitation
on attribute completion. Meanwhile, HGCAN uses two stages of attribute comple-
tion to avoid aggregating non-attribute nodes, so it has greater advantages in the
face of this situation.

5.5 Node Clustering

We carry out the node clustering task on ACM dataset. And we also train the
models used in the node classification experiments to generate node embeddings.
We use node embeddings as the input of K-means algorithm, and use NMI and ARI
as evaluation indicators. NMI and ARI can measure the similarity of clustering
results. The value range is between 0 and 1. The larger the value, the closer the
clustering result is to the real. We make the number of clusters in K-means the
number of classes in the dataset, that is, ACM papers can be divided into three
categories.

As shown in Figure 4, the performance of MAGN, HGN and HGCAN is better
than that of GAT, and the performance of HGN is weaker than that of MAGN.
However, HGCAN still performs best in node clustering tasks. It proves again that
the method proposed in this paper can obtain better node attributes.

5.6 Ablation

In order to verify the effectiveness of each stage in the framework proposed in this
paper and the rationality of parameter settings, different case studies are conducted.

5.6.1 Effectiveness of Components

In this part, different HGCAN variants are tested. This experiment uses Macro-F1
to evaluate the node classification results, so the experimental settings are the same
as node classification’s. The methods in this paper are combined with MAGN, so
MAGN is a baseline model that does not use any attribute completion method.
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Figure 4. Node clustering results on ACM (NMI and ARI)

HGCAN1 considers selecting attribute neighborhood for aggregation, so it only uses
the first stage of attribute completion. HGCAN2 considers topological embeddings
to complete attributes, so it mainly uses the second stage of attribute completion.
HGCAN is the final model which uses two stages of attribute completion. Except
for the above differences, other parameter settings are consistent.

Training Ratio
Model

MAGN HGCAN1 HGCAN2 HGCAN

80% 92.0% 92.3% 93.2% 94.6%
60% 91.7% 92.1% 92.8% 94.4%
40% 91.0% 91.3% 92.1% 93.7%
20% 89.7% 90.6% 91.2% 92.9%

Table 3. Effectiveness of components

As shown in Table 3, HGCAN1 achieves better performance than MAGN by ap-
plying the attribute neighborhood algorithm, which shows that the attribute neigh-
borhood effectively reduces the noise propagation caused by missing attributes when
aggregating attributes. HGCAN2 fuses the topological embeddings with the com-
pletion of first-order neighborhood aggregation. The results indicate that consider-
ing the distance relationship between nodes can promote the attribute completion
of nodes, thus proving the necessity of the second stage of attribute completion.
Finally, the results of HGCAN1, HGCAN2 and HGCAN show that each stage is
necessary and promotive. The three methods are still better than the best baseline
MAGN, which shows the effectiveness of the proposed framework in this paper.
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5.6.2 Loss Function Coefficient α

To achieve the best performance of the model, this section tests different loss function
coefficients which are represented by symbol α. Under the condition that other
parameters are the same, we use symbol α to represent the loss function coefficient
and use NMI and ARI evaluation indicators as the final scores. The results are
shown in Figure 5. With the increase of the coefficient, the score shows a trend of
rising first and then falling. The score proves that if the proportion of loss function
of attribute completion is too high, the task effect will be affected, and if it is too
small, the attribute completion effect will be affected too.

Figure 5. Loss function coefficient comparison

5.6.3 The Scale of Non-Attribute Nodes

To verify the applicability of the model, this section tests the impact of different
ratios of non-attribute nodes on the performance of the proposed model. The results
are shown in Figure 6. With the increase of the proportion of non-attribute nodes,
the scores of NMI and ARI show a downward trend. This is reasonable, because the
more attributes are missing and the fewer nodes are used for attribute completion,
the greater the noise and the greater the impact on the final score. If the scale of
non-attribute nodes is too high or too small, the results of other experiments may
lose credibility. Therefore, in the node classification and clustering experiments in
this paper, 30% of the missing attributes are selected to complete the experiment.
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Figure 6. The scale of non-attribute nodes

6 CONCLUSIONS

In this paper, for the non-attribute nodes in the heterogeneous graph, we propose an
attribute completion model based on attribute neighborhood named HGCAN. HG-
CAN uses two stages of attribute completion to capture rich information of nodes,
making the completed node attributes accurate and effective, and improving the
mining effect of the heterogeneous graph. In short, the attribute completion in the
first stage uses the attribute neighborhood selection strategy and the neighborhood
weighted aggregation module to capture the sequence of attribute nodes which have
semantic relationships with non-attribute nodes and do the initial completion of
nodes’ attributes. In the second stage, the attribute completion uses the original
structure information of the non-attribute node to capture the far and near semantic
relationships between attribute nodes and the non-attribute node in the structure.
The secondary completion of nodes’ attributes is obtained by fusing the topological
embedding and the initial completion of non-attribute nodes. Finally, we send the
completed heterogeneous graphs into the existing heterogeneous graph embedding
models for joint learning. In experiments, we use MAGNN model as the combined
model. The results on node classification, node clustering and ablation experiments
demonstrate the superiority of HGCAN over the existing state-of-the-art works con-
vincingly.

There are several potential improvements and extensions to the attribute com-
pletion method proposed in this paper that could be addressed as future work, such
as overcoming the dependency of attribute neighborhood on prior knowledge like
a meta-path and the impact of noise from the original attributes on the method.
What is more, it is also beneficial to extend the method to fill in heterogeneous
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graphs with different attribute missing ratios, which will allow us to tackle more
problems of missing attributes.
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