Computing and Informatics, Vol. 42, 2023, 1255-1280, doi: (10.31577/cai_2023_5_1255

MULTI-LABEL BIRD SPECIES CLASSIFICATION
USING SEQUENTIAL AGGREGATION STRATEGY
FROM AUDIO RECORDINGS

Noumida ABDUL KAREEM

College of Engineering Trivandrum
APJ Abdul kalam Technological University, Thiruvananthapuram, India
e-mail: noumidaa@gmail.com

Rajeev RAJAN

Government Engineering College, Barton Hill, Thiruvananthapuram
APJ Abdul kalam Technological University, Thiruvananthapuram, India
e-mail: rajeev@cet.ac.in

Abstract. Birds are excellent bioindicators, playing a vital role in maintaining the
delicate balance of ecosystems. Identifying species from bird vocalization is ardu-
ous but has high research gain. The paper focuses on the detection of multiple bird
vocalizations from recordings. The proposed work uses a deep convolutional neu-
ral network (DCNN) and a recurrent neural network (RNN) architecture to learn
the bird’s vocalization from mel-spectrogram and mel-frequency cepstral coefficient
(MFCC), respectively. We adopted a sequential aggregation strategy to make a de-
cision on an audio file. We normalized the aggregated sigmoid probabilities and
considered the nodes with the highest scores to be the target species. We evaluated
the proposed methods on the Xeno-canto bird sound database, which comprises
ten species. We compared the performance of our approach to that of transfer
learning and Vanilla-DNN methods. Notably, the proposed DCNN and VGG-16
models achieved average F1 metrics of 0.75 and 0.65, respectively, outperforming

the acoustic cue-based Vanilla-DNN approach.
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1 INTRODUCTION

Over the last few decenniums, significant research efforts have been devoted to
automatic speech analysis. However, there has recently been an upsurge in the
study towards the automated analysis of animal and avian vocalizations. Bird de-
tection is critical for avian biodiversity conservation because it allows ornitholo-
gists to count the number of birds in a particular location. A bird may listen to
other birds and determine whether they are neighbours or strangers, kin or non-
kin.
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Figure 1. Avian sound production [I]

Figure [1] illustrates the avian sound production system [I]. In birds, the sound
production mechanism consists of the lungs, bronchi, syrinx, trachea, larynx, mouth,
and beak [I]. The vocal tract modulates airflow from the lungs as it traverses through
the bronchi to the syrinx. The trachea is made of complete cartilage rings. Complete
C-shaped cartilage rings with open ends against each other make up the bronchial
elements. Airflow causes the syringeal medial tympaniform membrane (MTM) in
each bronchus to vibrate nonlinearly opposite the cartilage wall during a bird’s song.
In birds, the mouth functions as a cavity resonator in the same way that it does
in humans, but it is less flexible. Both bird calls and songs are examples of bird
vocalization.

Bird songs are more intricate vocalizations than bird calls, which are thought
to be simpl(ﬂ. Typically, songs are produced spontaneously by the male. The
hierarchical levels of a bird’s song consist of phrases, syllables, and elements. When
a bird changes the order of the phrases in the songs, it can generate diverse singing
types. Bird calls are short and are produced by connecting a series of sounds [I].
Figure 2] depicts the vocalization patterns of Eurasian Owl and Red-wattled Lapwing
through mel-spectrograms.

! https://en.wikipedia.org/wiki/Bird-vocalization
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Figure 2. Mel-spectrograms of vocalizations of Eurasian Owl a), Red. Lapwing b)

Traditional field methods for tracking and identifying various bird species require
significant human labour. The Global Biodiversity Information Facility (GBIF)H7
which builds biological multimedia databases, also works on automatic species iden-
tification from field recordings. Acoustic bird monitoring is an effective strategy
since most birds communicate primarily through vocalizations [2]. Some of the
speech and audio processing techniques for the recognition of bird calls can be re-
ferred to in [3, 4 [5].

Despite weather noise and a wide variety of bird call types, machine learn-
ing approaches, particularly deep learning, can obtain very high recognition rates
on remote monitored auditory data [6]. There have been numerous endeavours
in the literature to classify birds, from pre-segmented acoustic single-label audio
recordings [, 8, [@, 10, IT]. Multi-label bird classification is difficult because of the
time-frequency overlapping in the audio recordings. A bag generator is proposed
to convert an audio recording into a bag-of-instances representation, followed by
a multi-instance multi-label (MIML) classifier to forecast the set of species present
in the recording [12]. It is formulated as a problem in the MIML framework
for supervised classification. A multi-label classification model for finding simul-
taneous auditory patterns in long-duration recordings is proposed in [I3]. Some
of the previous works in multi-label bird call classification include [T4, [T5, 16,

3.

2 mttps://www.gbif.org
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The algorithm in [I8] employs a deep learning technique based on convolution
layers to predict the most dominant foreground species in an acoustic scenario.
While forecasting the major species of each sound file, the network design yields
a mean average precision (MAP) score of 0.686. The efficacy of various CNN-derived
features for detecting bird vocalization is explored in [I9]. Due to the difficulties
in acquiring annotated training sounds, the utilization of transfer learning in CNN
might be advantageous in bird call classification. An efficient CNN-based transfer
learning approach for bird-call identification is explored in [20]. A particularly chal-
lenging task of bio-acoustic classification pertains to detecting overlapping events in
an acoustic scene. In this context, our work aims to discern both multiple simulta-
neous and isolated bird vocalizations in audio recordings.

The main contributions of the paper are:

1. The sequential aggregation strategy has been implemented effectively on MFCC
and mel-spectrogram features for bird call identification.

2. We present a DCNN model for mel-spectrogram inputs and systematically com-
pare its performance with RNN, Vanilla-DNN, and transfer learning schemes.

3. SpecAugment-based data augmentation scheme (time masking, frequency mask-
ing and time warping) has been implemented for creating additional training files
for the network.

A brief overview of the multi-label classification system is provided in Section [2]
The performance evaluation, including the detailed dataset description, is explained
in Section [3 followed by the result analysis in Section [l Finally, the paper is
concluded in Section [l

2 SYSTEM DESCRIPTION

We proposed two sequential aggregation models for multi-label bird species classi-
fication, namely, the Acoustic RNN/DNN models and the mel-spectrogram CNN
models. Features namely, mel-frequency cepstral coefficients (MFCC) and mel-
spectrograms are extracted. MFCC features are queried to Acoustic RNN/DNN
models (LSTM, GRU and Vanilla-DNN), whereas mel-spectrogram features to mel-
spectrogram CNN models (pre-trained models, proposed DCNN) for classification.
Multi-label classification is performed using a novel sequential aggregation strategy.
The scheme for detecting the vocalization is illustrated in Figure [3

2.1 Acoustic RNN Models

MFCCs find extensive application in diverse audio classification tasks driven by
human perception [2I], serving as predictors of timbre similarity perception [22].
MFCC converts the raw audio data into a compact and informative representation
that captures the relevant information in the signal while removing irrelevant or re-
dundant information. Gated Recurrent Unit (GRU) and Long Short-Term Memory
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(LSTM) stand out as two popular variants of Recurrent Neural Networks (RNN)
that possess long-term memory capabilities. By effectively storing past inputs within
their internal states and leveraging this historical context to target vectors, these
networks excel at processing sequential data and retaining valuable memories. The
present study delves into the examination of LSTM and GRU, exploring their capac-
ity to capture long-range dependencies and learn temporal patterns using MFCCs.
These models were trained using our multi-label dataset and implemented using
sequential aggregation strategy.

2.1.1 Sequential LSTM

The LSTM cell, a recurrent network node equipped with an input, output, and
a forget gate to mitigate vanishing gradients [23], 24], is harnessed to efficiently
capture temporal patterns inherent in audio, as illustrated in Table[l} By leveraging
frame-wise computed MFCC, LSTM effectively taps into the sequential nature of
the data. LSTM can memorise previous data and predict the future with the aid of
the information stored in the memory [25].

No. | Output Shape | Description
1 | (None, 64, 1048) | LSTM, 1048 hidden nodes
2 | (None, 64, 728) LSTM, 728 hidden nodes
3 | (None, 432) LSTM, 432 hidden nodes
4 | (None, 432) Dropout, 0.2
5 | (None, 10) Dense, 10 hidden nodes

Table 1. LSTM architecture

An LSTM can be mathematically represented as follows:

w; = tanh(Epy * T + Epy * hiq + dy), (1)
ri = 0 (& * T + Epphi + dy), (2)
fi = 0(&ap i+ Sup % hiy +dy), (3)
0; = 0(Euo * Ty + Epo * hica + do), (4)
¢ = riu; + fici1, (5)
h; = tanh(c;0;), (6)
output yqss = 0 (hi * Soutpara), (7)

where u;, 15, fi, 0;, ¢; represents update equations for input gate, forget gate, output
gate, cell state and cell output, respectively. &, &or, &afs oo @A Ehu,y Enr,y Enys
hos Eoutpara are weights, and d,, d,, dy, d, are biases to be computed during training.
The output of a neuron at time ¢ is denoted as h;, and elementwise multiplication is
represented by ‘.. The activation functions employed in our model are o(.) for the
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sigmoid function and tanh(.) for the hyperbolic tangent function. x; denotes the
input feature vector at time i. output,qss is the classification output.

2.1.2 Sequential GRU

In the realm of sequence modelling techniques, GRU emerges as the latest addition,
succeeding RNN and LSTM, and thereby holding the promise of enhancing various
sequential processing applications. RNNs have gained widespread adoption in lan-
guage recognition [26] due to their ability to process sequential data effectively. For
deep sentence processing, different cell types have been devised to improve neural
networks’ ability to capture long-term dependencies. The fundamental difference
between GRU and LSTM neural network architectures resides in their gate struc-
tures. GRU, characterized by its simplicity, features two primary gates: the reset
gate and the update gate. In contrast, LSTM, a more complex architecture, in-
corporates three distinct gates into its design. The GRU cells exhibit comparable
power to LSTM cells [27], especially for smaller data sets, while requiring fewer
computational resources.

No. | Output Shape | Description
1 | (None, 64, 1048) | GRU, 1048 hidden nodes
2 | (None, 768) GRU, 728 hidden nodes
3 | (None, 10) Dense, 10 hidden nodes

Table 2. GRU architecture

The governing equations for GRU is presented as follows [28]:

2z = 0y(Wox; + Ushioy +0.), (8)
ri = 0y(Wywi + Uphiy + ), (9)
hi = on(Wii + Up.(ri © hi 1) + by), (10)
hi = (1—2) ©hiy + 2 O h, (11)

Here, the variables x;, h;, h}, gi, and f; represent the input, output, candidate acti-
vation, update gate, and reset gate vectors, respectively. The matrices W, U, and
b represent parameter matrices, while oy and ¢, denote the activation functions.
The symbol ® denotes the Hadamard product, and °.” signifies elementwise mul-
tiplication. The GRU architecture utilized in the proposed work is conveniently
summarized in Table B

2.2 Mel-Spectrogram CNN Models

A mel-spectrogram is a visual representation that shows how the frequencies of
a signal change over time [29, 30]. It uses a special filter called a mel-scale filter bank
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to highlight the frequencies most important for human perception. The mel scale
was developed to scale frequency data in a manner that more closely resembles how
humans perceive sound. Mels are units on the mel scale, and a reference frequency of
1000 Hz, 40 dB above a listener’s threshold is defined as 1 000 mels. The number of
mels associated with a tone closely corresponds to its frequency below 500 Hz. Above
500 Hz, the number of mels between pitches perceived as “evenly spaced” increases as
frequency increases. The mel-spectrogram is a smoothed spectrogram with highly
emphasized low-frequency components. Here mel-spectrogram is computed with
128 bins and a frame size of 40 ms and a hop size of 10ms. Figure [] depicts mel-
spectrograms of two audio files containing two and three species.
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Figure 4. Mel-spectrogram of bird’s vocalization with multiple bird sounds in a single
audio recording. Repetitive patterns in the vocalization are shown in circles for 2 species a)
and 3 species b).

CNN has been extensively used as one of the representation learning meth-
ods that enable a machine to automatically detect the representations or patterns
required for classification tasks [31]. We utilized two CNN architectures for the
sequential aggregation model. One is based on transfer learning models and the
other one is based on a proposed DCNN shown in Table [} Data augmentation
techniques such as time-warping, frequency masking, and time-masking are used to
create additional mel-spectrograms during the training phase of the network

2.2.1 Sequential DCNN

The architecture shown in Table |3| is used in the proposed analysis. The resulting
432 x 1008 arrays of the mel-spectrograms after data preparation were fed into the
CNN model. The model comprises multiple convolutional layers with 3 x 3 kernels,
‘same’ padding, and ‘glorot_uniform’ kernel initialization, followed by Leaky ReL.U
activation (LeakyReLU (alpha = 0.33)). Maxpooling layers with 3 x 3 pool size and
stride 3 are inserted after each pair of convolutional layers. Dropout layers with
a 0.25 dropout rate follow maxpooling layers. After every two layers, the number
of channels for the convolution layer is increased by a multiple of two, from 32
to 256. The model concludes with a GlobalMaxPooling2D layer to reduce spatial



Multi-Label Bird Species Classification Using Sequential Aggregation Strategy

1263

dimensions, two dense layers (Dense(1024) and Dense(10, activation = ‘sigmoid’))
for classification, and Leaky ReLU activation in the first dense layer.

No. | Input Shape Description
1 3 x 432 x 1008 Mel-spectrogram
2 32 %434 x 1010 | 32 x 3 x 3 Convl
3 32 x 436 x 1012 | 32 x 3 x 3 Conv2
4 | 32 x 145 x 337 3 x 3 Maxpooling, Dropout (0.25)
5 64 x 147 x 339 64 x 3 x 3 Conv3
6 64 x 149 x 341 64 x 3 x 3 Conv4
7 | 64x49x 113 3 x 3 Maxpooling, Dropout (0.25)
8 128 x 51 x 115 128 x 3 x 3 Convb
9 128 x 53 x 117 128 x 3 x 3 Conv6
10 | 128 x 17 x 39 3 x 3 Maxpooling, Dropout (0.25)
11 256 x 19 x 41 256 x 3 x 3 Conv7
12 | 256 x 21 x 43 256 x 3 x 3 Conv8
13 | 256 x1x1 GlobalMaxPooling2D
14 | 1024 Fully connected (Flatten)
15 | 1024 Dropout (0.5)
16 | 10 Sigmoid

Table 3. Proposed DCNN architecture

The equations for the Leaky ReLU activation (LReLU) and sigmoid activation

are:
Leaky ReLU:

LReLU(a) =

Sigmoid(a)

a, ifa >0,
0.33a, ifa <0,
B 1
~ 1+exp(—a)

These activations introduce non-linearity in the model. The Leaky ReLU helps mit-
igate the vanishing gradient problem, while the sigmoid activation in the final layer
maps the model’s output to a range between 0 and 1 for multi-class classification.

To learn a non-linear function from input to output that generalises well and
yields good classification accuracy on unknown data, CNN heavily relies on the
availability of massive amounts of training data [32]. Data augmentation, which
involves deforming a set of annotated training files to produce additional training
data, is an elegant solution to this problem. We adopted SpecAugment [33] as a data
augmentation technique for the proposed scheme.
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2.2.2 Sequential Transfer Learning

In transfer learning, a model created for one application is customized for another
task. It is a popular deep learning approach that commences with pre-trained models
for pattern recognition and computer vision tasks. We experimented with five pre-
trained networks for the proposed task, namely VGG-16, ResNet50, InceptionV3,
InceptionResNetV2, and Efficient-NetB3. These models were re-trained using our
multi-label dataset and implemented using sequential aggregation strategy. The
details of the baseline pre-trained models are presented in Table [

No. | Model Parameters | Layers | Activation
1 | InceptionResNetV2 56 M 164 | ReLU
2 | InceptionV3 23.9M 48 | ReLLU
3 | VGG-16 138 M 16 | ReLU
4 | Efficient-NetB3 12M 300 | ReLU
5 | ResNet50 25.6 M 50 | ReLU

Table 4. Model description (M-Million)

VGG-16. The deep convolutional VGG-16 model is retrained in this experiment
to detect multiple species. Table [f] shows the VGG-16 architecture, including
13 convolutions and three fully connected layers. The convolution layers are
all 3 x 3 layers, with the same padding and stride size of 1, and the pooling
layers are all 2 x 2 layers, with a stride size of 2. After data preparation, the
resulting 432 x 1008 arrays of the mel-spectrograms are resized to 256 x 256
pixels. Before the fully connected layers, the last feature map has 512 channels
and is flattened into a vector with 32768 values. Finally, the dense layer with
4096 neurons is used to add the fully connected layers, followed by a dropout
layer with a value of 0.5. The proposed VGG-16 architecture for our experiment
requires ten classes. The sigmoid function is chosen in the output layer.

ResNet50. Residual Networks (ResNet) are a type of deep neural network com-
monly used as the framework for many computer vision applications. ResNet50
is a b0-layer DCNN architecture with 48 convolutional layers, one maxpool-
ing layer, and one average pooling layer. It is a variant of the ResNet model
that uses residual learning [20]. To solve the vanishing gradient problem, the
concept called residual network architecture is introduced. ResNeth0 uses skip
connections to propagate the activations to reduce the impact.

InceptionV3. The InceptionV3 is a 48-layer deep CNN architecture. Convolutions,
poolings, dropouts, and fully connected layers make up the model. Sigmoid loss
is computed and batch normalization is used throughout the model [34].

InceptionResNetV2. InceptionResNetV2, a 164-layer deep CNN architecture ba~
sed on the Inception family’s design but with residual linkages, is a variation of
InceptionV3. The number of auxiliary classifiers is reduced from three to two.
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No. | Input Shape Description

1| 3 %256 x 256 Conv 3 x 3 (x2), Stride =1
2 | 64 x 256 x 256 Maxpooling 2 x 2, Stride = 2
3| 64x128x128 | Conv 3 x 3 (x2), Stride =1
4 | 128 x 128 x 128 | Maxpooling 2 x 2, Stride = 2
5| 128 x 64 x 64 | Conv 3 x 3 (x3), Stride = 1
6 | 256 x 64 x 64 Maxpooling 2 x 2, Stride = 2
7 | 256 x 32 x 32 Conv 3 x 3 (x3), Stride =1
8 | 512 x 32 x 32 Maxpooling 2 x 2, Stride = 2
9 | 512 x 16 x 16 Conv 3 x 3 (x3), Stride =1

10 | 512 x 16 x 16 Maxpooling 2 x 2, Stride = 2

11 | 32768 Fully connected (Flatten)

12 | 4096 Dropout (0.5)

13 | 4096 Dropout (0.5)

14 | 10 Sigmoid

Table 5. VGG-16 architecture

EfficientNet. EfficientNet is a CNN model that uses a compound coefficient to
scale all width/depth/resolution dimensions uniformly. There are eight mod-
els in the EfficientNet architecture group, ranging from B0 to B7. Each model
number denotes a variant with greater precision and a greater number of param-
eters [35]. To significantly reduce calculation costs while maintaining accuracy,
EfficientNet divides the original convolution into two stages: depthwise and
pointwise convolution. Because of its linear bottleneck architecture, which uses
linear activation in the final layer of each block to prevent data loss from ReLU,
the network is efficient.

2.3 Vanilla-DNN Model

A Vanilla-DNN framework is also used for performance comparison. The Librosa
Python library is used to compute 40-dimensional MFCCs in the front-end.

Our model has two hidden layers, each with 256 perceptrons, followed by the
ReLU activation function and a 50 % dropout. The sigmoid activation function is
chosen in the output layer. The model is trained using our multi-label dataset and
implemented using sequential aggregation strategy.

3 PERFORMANCE EVALUATION
3.1 Data Set

Recordings of the bird species are collected from the Xeno-canto website [36]E|. We
standardized all the files to a minimum sampling rate of 16 kHz because the original

3 https://www.xeno-canto.org (Xeno-canto)
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files’ sample rates ranged from 16 kHz to 44.1 kHz.

Details of scientific names and the number of Xeno-canto files used for each
bird species are illustrated in Table [ff Table [7] gives the dataset specification af-
ter pre-processing. The train set contains 1078 isolated audio files of 10 species.
The files are refined such that one vocalization of 1.5s duration is in each audio
file. HC (House Crow-111), MD (Mallard Duck-106), AK (Asian Koel-121), EO
(Eurasian Owl-107), HS (House Sparrow-100), BJ (Blue Jay-109), RL (Red-wattled
Lapwing-104), GG (Grey Go-away-109), IP (Indian Peafowl-103), and WW (West-
ern Wood-Pewee-108) are among the birds featured. The names and number of audio
files after pre-processing are indicated in brackets. The test set contains 434 audio
files that contain overlapping and multiple calls, often consisting of 2 or 3 distinct
vocalizations.

No. | Code — Scientific Name # XC | Specialities
1 | HC — Corvus splendens 27 | loud, cawing call, “caw”
MD - Anas platyrhynchos 25 | low pitch “quacks”, “whistles”,
“grunts”, “hank”
3 | AK — Eudynamys chinensis 26 | loud, repetitive cuckoo-like call, “coo-
ing”
4 | EO — Bubo bubo 25 | deep haunting, hooting call, “hoo-
hoo-hoo”
5 | HS — Passer domesticus 24 | cheerful, trilling, chirping call, “chip”
6 | BJ — Cyanocitta cristata 27 | “ay jay” or “scold-call”, “chak”,
“wheeoo”
7 | RL — Vanellus vanellus 24 | loud, wailing call
8 | GG — Corythaixoides concolor 19 | loud, honking, clear-territorial call,
“kwaa”
9 | IP — Pavo cristatus 29 | piercing screams, “gobbling”, “pea-
cock”
10 | WW - Contopus sordidulus 24 | loud, clear whistle, peenting “pee-a-
wee”

Table 6. Details of Xeno-Canto (XC) files

No. | Class Count (Bird Files) | # Calls
1 | Audio Files (Train) 1078 1078

2 | Audio Files (Test)
Calls with two species 334 668
Calls with three species 100 300
Total 1512 2046

Table 7. Dataset specification

The selection is based on some below-mentioned rules. Firstly, the ten se-
lected species represent a broad range of bird call patterns well-defined in previous
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works [37, 38]. The bird call structures mainly consist of chirp, whistle, block, war-
bles, and click. This renders the proposed system to satisfy the generic requirement.
Secondly, the selected species should have adequate samples to train and test the
proposed method.

3.2 Data Augmentation

As cited in [39, 40], CNN’s efficacy is highly reliant on abundant data for achieving
superior results, which can be limited when dealing with small data sizes. To address
this limitation and enhance the training process, data augmentation techniques are
employed. In the proposed scheme, SpecAugment [33] serves as the augmentation
strategy, involving the masking of frequency channels and time frames within the
mel-spectrogram image representation. This augmentation includes time warping,
frequency masking, and time masking of mel-spectrograms, as illustrated in Fig-
ure [l

A log mel-spectrogram, comprising 7 time steps, can be visualized as an image,
with the time axis running horizontally and the frequency axis running vertically.
Within the time steps ranging from W to (7 — W), a point randomly selected
along the central horizontal line of the mel-spectrogram can undergo a warp to the
left or right, covering a distance of W. Additionally, this visualization incorporates
frequency masking and time masking techniques, where certain frequency bands and
time segments are selectively masked. To enrich the train set, we generated 8923
mel-spectrograms for the DCNN model and an additional 3344 mel-spectrograms
as augmented data for the transfer learning models [33].

3.3 Sequential Aggregation Strategy

Audio recordings are sliced into fixed-length segments. For acoustic models, MFCCs
of sliced audios are extracted and fed to RNN/DNN models. Sliced mel-spectro-
grams are utilized for training and testing with DCNN and pre-trained models.
The model trained on ten classes is used to predict the probability of ten bird
species. The trained neural network then predicts the probability of each species
present in a segment. We used an aggregation strategy to decide on the test data.
Since multiple species exist per audio clip, multiple sigmoid outputs from slices are
aggregated and normalized. The nodes corresponding to the highest probability
values are considered the target species. Figure [f] illustrates the schematic of the
sequential aggregation process used in all the proposed methods.

3.4 Experimental Framework

MFCC and mel-spectrogram features are extracted using Librosa Python package.
Proposed DCNN model, pre-trained models (VGG-16, ResNet50, InceptionV3, In-
ceptionResNetV2, and EfficientNetB3), DNN and RNN-based models (GRU and



1268

N. Abdul Kareem, R. Rajan

Frequency (Hz)

Time (sec)
(a)

a) Time warped

=
=
>
Q
=]
2
=y
(5]
-
29
] 10
Time (sec)
(b)

b) Frequency masked

Frequency (Hz)

10
Time (sec)

(c)

¢) Time masked

Figure 5. SpecAugment-generated mel-spectrograms of bird calls

LSTM) are implemented using the novel sequential aggregation strategy. Addi-
tionally, some existing models in the literature are also implemented using sequen-
tial aggregation strategy. All these models were trained on a Google Colab note-

book.

Audio files are converted to a time-frequency representation using short-time
Fourier transform (STFT) with 480 samples for the window. The mel-spectrogram
is segmented into small duration chunks and fed to DCNN. Adaptive moment esti-
mation (Adam) was used in the training process of the network for optimizing the
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Figure 6. Schematic of window sliding technique used in the experiments

categorical cross-entropy between predictions and targets. After each maxpooling
layer, the training was regularized with dropouts at 0.25. The sigmoid activation
function was used and the model was trained for a maximum of 25 epochs with
a batch size of 64. In this study, we retrained five deep CNN models: VGG-16,
ResNet50, InceptionV3, InceptionResNetV2, and EfficientNetB3. After hyperpa-
rameter tuning, all transfer learning models are trained with a batch size of 32 for
30 epochs using the Adam optimizer. The softmax activation function is chosen in
the output layer. This work uses an acoustic DNN-based model and RNN-based
methods like GRU and LSTM. The RNN models LSTM and GRU are trained us-
ing Adam optimization in 30 and 20 epochs, respectively, with a batch size of 32.
During the experiment, 10 % of the corpus was used for validation.

The accuracy and loss for training and validation data in LSTM model is shown
in Figure[7] It can be observed from Figure [7] that the model exhibits almost stable
but slightly fluctuating curves, and it achieves the highest training and validation
accuracy. The accuracy curves for the training data show rapid improvement, reach-
ing around 94 % from epoch 0 to 5, and then stabilizing at a value slightly over 100 %
after epoch 25. Similarly, the accuracy curve for the validation data reaches approx-
imately 99 %. As for the loss curves of the training and validation data, the loss
quickly decreases to approximately 2% within the first five epochs, then continues
to decrease with slight fluctuations until 25 epochs before stabilizing beyond 25
epochs.

4 RESULTS AND DISCUSSION

The performance metrics with variable slicing length are shown in Figure [§ The
3s window indeed performed worse than the shorter windows, and 0.5s is too short
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Figure 7. Accuracy and loss for training and validation data in LSTM model

for identifying the bird call. So, we have chosen a slicing length of 1.5s for the
performance evaluation.

The confusion matrix for the Vanilla-DNN, LSTM, VGG-16, and proposed
DCNN models for the target dataset comprising two and three species are given
in Tables [0} [0} 2 and [I3] It is found that the proposed DCNN models outperform
the VGG-16 model and the acoustic LSTM model by 10 % and 13 %, respectively. In
our experiments, the best-performing DCNN model outperforms all other transfer
learning schemes and acoustic models with an accuracy of 75 %.
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Figure 8. Performance metrics with various slicing window lengths
No. | Species Name Vanilla-DNN GRU LSTM
P R| F1 P R| F1 P R| F1
1 | House Crow 0.76 | 0.77 ] 0.77 10.90 | 0.86 | 0.88{0.86|0.62 | 0.72
2 | Mallard Duck 0.71]0.34| 046 |0.77|0.76 | 0.76 | 0.74]0.71 | 0.73
3| Asian Koel 0.4810.94| 0.64(0.62|0.77| 0.69|0.70|0.78 | 0.73
4 | Eurasian Owl 0.36 {0.30 | 0.310.52|0.22| 0.31]0.71]0.09 | 0.16
5| House Sparrow 0.380.12] 0.18 |0.80|0.23 | 0.36|0.56 | 0.38 | 0.45
6 | Blue Jay 0.62]0.72| 0.67 (0.37|0.71 | 0.48{0.44]0.74| 0.55
7 | Red-wattled Lapwing | 0.97 | 0.58 | 0.73|0.70 | 0.52 | 0.60 | 0.89| 0.57 | 0.70
8 | Grey Go-away 0.51]0.83| 0.63|0.48|0.76 | 0.60|0.50|0.87 | 0.64
9 | Indian Peafowl 0.34]0.52| 0.41(0.43/0.46| 0.44|0.65|0.63 | 0.64
10 | Western Wood-Pewee | 0.96 | 0.84 | 0.90 | 1.00 | 0.50 | 0.67|0.93|0.77 | 0.84
Macro Average 0.61]0.60 | 0.57 | 0.66 | 0.58 | 0.58 | 0.70 | 0.62 | 0.62

Table 8. Precision (P), recall (R), and F1 metric of the acoustic DNN/RNN model

The class-wise accuracy of Mallard Duck, Eurasian Owl, House Sparrow, and
Indian Peafowl using the Vanilla-DNN approach is less than 50 %. In the proposed
DCNN approach, however, all classes report an accuracy greater than 50%. The
proposed DCNN significantly reduced Indian Peafowl, Mallard Duck, and House
Sparrow misclassification errors. The class House Sparrow has made significant
progress. Compared to the Vanilla-DNN approach, the classification accuracy of
three target classes, Grey Go-away, Asian Koel, and Western Wood-Pewee, de-
creased slightly.

Visualization of feature maps is given in Figure 0l The purpose of visualizing
a feature map for a specific input image is to understand which features from the
input are being detected or highlighted in these maps, as discussed in [4I]. It is
generally assumed that feature maps closer to the input layer capture finer details,
while those closer to the model’s output focus on more generalized characteris-
tics.
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AK | BJ | HC | MD | GG | RL | EO | IP | HS | WW
AK 65 0 0 1 3 0 0 0 0 0
BJ 6| 73 2 11 0 1 2 0 0
HC 5 1 77 1 13 0 0 2 1 0
MD 5 11 30 25 0 0 8 1 0
GG 6| 13 2 0| 120 0 0 4 0 0
RL 7 2 0 0 26 | 79 2 7 13 0
EO 9 3 2 2 5 0 15 | 14 5 0
P 22 0 0 0 2 1 4| 33 1 0
HS 8 18 7 2 26 1 13| 27 | 14 3
Ww 2 0 0 0 3 0 7 1 2 7

Table 9. Confusion matrix: Vanilla-DNN

AK | BJ | HC | MD | GG | RL | EO | IP | HS | WW
AK 54 6 0 0 3 1 2 2 1 0
BJ 4| 75 0 3 12 0 0 4 2 1
HC 0 5 62 7 22 0 0 2 2 0
MD 0 5 0 63 12 2 0 3 3 0
GG 0 16 0 0| 127 0 0 0 2 0
RL 7| 18 0 3 18| 77 0 3 9 1
EO 1 11 5 4 13 1 5 7 8 0
IP 5 1 0 2 15 0 0] 40 0 0
HS 5| 32 5 3 20 6 0 45 3
Ww 2 3 0 0 9 0 0 0 8 70

Table 10. Confusion matrix: LSTM

When filters are applied in the initial convolutional layer, it results in multiple
variations of the bird call, each emphasizing different attributes. Notably, the highly
activated neurons in the first layer across all species strongly indicate their primary
role in identifying horizontal edges within the input mel-spectrogram, aiming to de-
tect harmonic components. This observation is in line with our expectations and
aligns with our understanding of early-stage feature extraction. To further explore
these patterns, we have updated the model to visualize feature maps based on the
outputs of other convolutional layers, specifically layers 1, 4, and 8, as depicted in
Figure[d] The proposed deep CNN demonstrates its ability to extract more discrim-
inative information from feature maps and effectively preserve critical edges related
to multiple overlapping species within the mel-spectrogram. The distinctive spectral
patterns of species like Asian Koel, Crow, and Sparrow are clearly discernible. It is
worth noting that as we move deeper into the model, the feature maps progressively
lose fine-grained detail, as evident from the visualizations. Although it may not be
entirely clear from the final image how the model perceived the intricate patterns
within the bird call mel-spectrogram, our ability to interpret these deeper feature
maps diminishes.
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No. | Species Name VGG-16 ResNet50 InceptionV3
P R F1 P R F1 P R F1
1 | House Crow 0.76 | 0.72 0.7410.70 | 0.55| 0.62]0.77|0.46 0.57
2 | Mallard Duck 0.62 | 0.57 0.60 | 0.64 [ 0.39 | 0.48|0.51|0.41 0.45
3| Asian Koel 0.610.80 0.7010.920.68| 0.780.42|0.71 0.53
4 | Eurasian Owl 0.670.53 0.60 | 0.80 | 0.65| 0.72]0.32|0.25 0.28
5| House Sparrow | 0.71|0.50 0.58 1 0.80 | 0.55| 0.66 | 0.70 | 0.23 0.35
6 | Blue Jay 0.51|0.64 0.5710.49(0.84| 0.62]0.45|0.70 0.54
7| Red. Lapwing 0.44 | 0.50 0.46 | 0.650.43 | 0.51]0.48|0.43 0.45
8 | Grey Go-Away | 0.66 | 0.65 0.66 | 0.70 | 0.61 | 0.65|0.71|0.71 0.71
9 | I. Peafowl 0.740.89 0.8010.43(0.94| 0.59]0.38|0.90 0.54
10 | W. Wood-Pewee | 0.82 | 0.72 0.7710.48 [ 0.71| 0.57]0.86 | 0.60 0.70
Macro Average |0.65|0.65 0.65 | 0.66 | 0.62 | 0.62 | 0.56 | 0.54 0.51
No. | Species Name | InceptionResNetV2 | EfficientNetB3 | Proposed DCNN
P R F1 P R F1 P R F1
1 | House Crow 0.73|0.54 0.62|0.73]0.60| 0.65|0.80|0.81 0.80
2 | Mallard Duck 0.59 | 0.60 0.60 | 0.54 | 0.67 | 0.60|0.57 | 0.57 0.57
3| Asian Koel 0.62 | 0.75 0.680.720.74| 0.73|1.00|0.81 0.90
4 | Eurasian Owl 0.80 | 0.42 0.5510.37]0.18 | 0.24]0.74]0.47 0.58
5| House Sparrow | 0.67 | 0.44 0.5310.71]0.48 | 0.57]0.81|0.90 0.85
6 | Blue Jay 0.50 | 0.63 0.56 | 0.53 [ 0.33| 0.40|0.50 | 0.84 0.63
7| Red. Lapwing 0.58 | 0.46 0.5110.51(0.51| 0.51]0.93|0.63 0.75
8 | Grey Go-Away |0.60 | 0.67 0.6310.590.63| 0.61]0.74|0.76 0.75
9 | I. Peafowl 0.40 | 0.97 0.5710.40 [ 0.90| 0.55]0.73|0.92 0.82
10 | W. Wood-Pewee | 0.89 | 0.60 0.7110.65|0.68| 0.67|0.95]|0.68 0.80
Macro Average |0.64 |0.61 0.60 | 0.57 | 0.57 | 0.55|0.78 | 0.74 0.75

Table 11. Performance metrics of the proposed model and transfer learning models

AK | BJ | HC | MD | GG | RL | EO | IP | HS | WW
AK 55 5 2 2 3 2 0 0 0 0
BJ 5| 65 1 4 8 10 1 3 3 1
HC 2 1 72 3 8 7 2 1 3 1
MD 7 7 50 5 16 0 0 0 1
GG 2 14 6 5 94 8 1 1 8 6
RL 12 | 18 1 10 6| 67 7 6 4 5
EO 4 5 1 1 3 5 29 6 1 0
IP 0 2 2 0 0 0 2| 56 1 0
HS 3 8 2 3 12 28 1 59 0
Ww 0 6 1 2 3 10 0 0 4 66

Table 12. Confusion matrix: VGG-16
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Figure 9. Visualization of feature maps with multiple species: Layer 1 (row 1), Layer 4

(row 2), Layer 8 (row 3) of Asian Koel-Sparrow (column 1), Asian Koel-Crow-Sparrow
(column 2), respectively

AK | BJ | HC | MD | GG | RL | EO | IP | HS | WW
AK 56 7 1 2 2 1 0 0 0 0
BJ 0| 8 4 2 4 2 0 4 0 0
HC 0 8 81 2 1 2 0 3 3 0
MD 0| 11 5 50 16 0 4 0 2 0
GG 0] 20 1 4| 111 0 2 1 6 0
RL 0] 11 3 16 7| 86 2 4 6 1
EO 0 7 4 4 6 0 26 5 3 0
P 0 1 0 2 0 1 0| 58 0 1
HS 0 6 1 4 0 0 0 0| 107 1
WwW 0| 14 1 2 2 0 1 4 5 63

Table 13. Confusion matrix: Proposed DCNN

Tables [§ and [[1] show the precision, recall, and F1 measure of the experi-
ments. Overall classification scores for VGG-16, ResNet50, InceptionV3, Inception-
ResNetV2, EfficientNetB3, Vanilla-DNN, GRU, LSTM, and the proposed DCNN
model are 0.65, 0.62, 0.51, 0.60, 0.55, 0.57, 0.58, 0.62, 0.75, respectively. The LSTM
framework’s macro average precision, recall, and F1 measures are 0.70, 0.62, and
0.62, respectively, while the transfer learning-based VGG-16 model’s macro average
precision, recall, and F'1 measures are 0.65, 0.65, and 0.65, respectively. The metrics
reported by the proposed DCNN approach are 0.78, 0.74, and 0.75, respectively. The
VGG-16 gives the best performance among the five pre-trained models used. The
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average F1 measure for proposed DCNN, VGG-16, and Vanilla-DNN based frame-
works are 0.75, 0.65, and 0.57. Compared to the Vanilla-DNN framework based on
acoustic cues, there is a significant improvement in visual processing performance.
Even in the case of overlapping vocalization, effective pattern learning from visual
representation could be a possible cause.

It is worth noting that the proposed DCNN based architecture outperforms the
Vanilla-DNN, LSTM, and VGG-16 frameworks. The Vanilla-DNN framework could
not perform well for the audio files when overlapping vocalizations are present. By
adopting the sequential aggregation approach, DCNN;, originally designed for image
classification, is adapted and fine-tuned to detect the presence of birds in audio
recordings in the proposed work. The majority of the existing frameworks were
refined using neural networks pre-trained on ImageNet’s “trimmed” Large Scale Vi-
sual Recognition Challenge (LSVRC) [42] version, a dataset with almost 1.5 pictures
of 1000 object categories scraped from the web [43]. However, re-training the whole
network, not just the final layers, is vital when fine-tuning a network originally
intended for image classification.

No. | Method Precision | Recall | F1 Metric
1 | Grill and Schliiter [Model 1] [44] 0.50 0.50 0.45
2 | Grill and Schliiter [Model 2] [44] 0.51 0.48 0.48
3 | Efremova et al. [20] 0.61 0.54 0.53
4 | Puget [45] [Transformer] 0.69 0.68 0.67
5 | Yang et al. [46] [SENet] 0.65 0.58 0.58
6 | Gupta et al. 7] [CNN+GRU] 0.68 0.65 0.67
7 | Sequential EfficientNetB3 0.57 0.57 0.55
8 | Sequential InceptionV3 0.56 0.54 0.51
9 | Sequential InceptionResNetV2 0.64 0.61 0.60

10 | Sequential ResNet50 0.66 0.62 0.62
11 | Sequential Vanilla-DNN 0.61 0.60 0.57
12 | Sequential GRU 0.66 0.58 0.58
13 | Sequential LSTM 0.70 0.62 0.62
14 | Sequential VGG-16 0.65 0.65 0.65
15 | Proposed Sequential DCNN 0.78 0.74 0.75

Table 14. Performance comparison (Implemented using sequential aggregation and the
Xeno-canto dataset)

The performance comparison of various algorithms using our multi-label dataset,
assessed in terms of precision, recall, and the F1 metric, is detailed in Table [T4}
Grill and Schliiter [44] conducted a study comparing two approaches for detecting
the presence of bird calls in audio recordings. For model 1 (Global architecture),
they reported precision, recall, and an F1 metric of 0.50, 0.50, and 0.45, respectively.
Model 2 (Local architecture) achieved slightly improved metrics with precision, re-
call, and an F1 metric of 0.51, 0.48, and 0.48, respectively. Efremova et al. [20]
employed a transfer learning-based ResNet-50 model to evaluate bird call classifica-
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tion. With the use of our multi-label dataset, this model achieved an F1 metric of
0.53. Puget [45] proposed an STFT Transformer, where time slices of spectrograms
are used as the input patches to the ViT. Another neural network architecture, the
SENet, is employed in [46] to enable the network to perform dynamic channel-wise
feature re-calibration, which is also mentioned as future work in the paper [48]. The
CNN+GRU part of [47] is implemented, and the system gives an F1 metric of 0.67.
The F1 metric for our best-performing CNN model using sequential aggregation is
0.75, which is 30 %, 27 %, and 22 % superior to the existing models [44], 20]. Tt is
worth noting that the proposed sequential aggregation strategy shows promise in
recognition of bird vocalization in multi-label audio recordings in comparison with
the existing models.

5 CONCLUSION

The issue addressed here is identifying multiple bird species from noisy or over-
lapping raw audio recordings. A DCNN architecture with a sequential aggregation
strategy was proposed for the multi-label bird call classification task. Five different
transfer learning models and an acoustic DNN/RNN based network were also im-
plemented, and the best outcome in the test data was obtained using our proposed
DCNN model. Data augmentation methods like time masking, frequency mask-
ing, and time-warping have been proposed to generate additional training data for
DCNN learning. The DCNN-based scheme achieves an average F1l-metric of 0.75,
and it performs better than the transfer learning and acoustic approaches.
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