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Abstract. The autoscaling mechanism of cloud computing can automatically ad-
just computing resources according to user needs, improve quality of service (QoS)
and avoid over-provision. However, the traditional autoscaling methods suffer from
oscillation and degradation of QoS when dealing with burstiness. Therefore, the
autoscaling algorithm should consider the effect of bursty workloads. In this pa-
per, we propose a novel AmRP (an autoscaling method that combines reactive and
proactive mechanisms) that uses proactive scaling to launch some containers in
advance, and then the reactive module performs vertical scaling based on existing
containers to increase resources rapidly. Our method also integrates burst detection
to alleviate the oscillation of the scaling algorithm and improve the QoS. Finally,
we evaluated our approach with state-of-the-art baseline scaling methods under dif-
ferent workloads in a Docker Swarm cluster. Compared with the baseline methods,
the experimental results show that AmRP has fewer SLA violations when dealing
with bursty workloads, and its resource cost is also lower.
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1 INTRODUCTION

In recent years, the rapid development of cloud computing has provided basic sup-
port for Big Data [1], Internet of Things [2], Artificial Intelligence [3], and other
fields. Autoscaling is one of the important characteristics of cloud computing [4, 5],
which automatically adjusts computing resources based on service requirements and
preset policies. Appropriate computing resources can be allocated in a peak or
a trough period of workload. Therefore, autoscaling further reflects the advantages
of pay-as-you-go in cloud computing. Cloud vendors such as AWS1, Google Cloud2

and Microsoft Azure3 have corresponding scaling strategies. According to the scaling
policy, autoscaling can be divided into horizontal and vertical scaling [6]. Horizontal
scaling refers to scaling in/out, adjusting only the number of containers/VMs (Vir-
tual Machines). Vertical scaling refers to scaling up/down, which only adjusts the
resources, such as CPU, memory, and network bandwidth. In Kubernetes [7, 8, 9],
HPA [10] and VPA4 are the horizontal and vertical scalers in the cluster, respec-
tively. In addition, autoscaling can also be classified by scaling timing [11]. Reactive
autoscaling uses the current service status and workload to make scaling decision
and proactive autoscaling employs the future status of the service or workload.

Autoscaling can adjust the computing resource in real time as the workload
changes. However, for bursty workload, whether it is reactive autoscaling or proac-
tive autoscaling, there will be a period of QoS degradation. The impact of burstiness
on the scaling algorithm is mainly due to two points. The first point is that the
bursty workload usually fluctuates wildly, which brings oscillation to the scaling
algorithm. That is, the resource provided is frequently changed; Another impact
is that burstiness will cause a period of service degradation. For reactive scaling,
resources are already under-provision when burstiness is detected. Similarly, proac-
tive scaling presents a similar problem, as the quality of service (QoS) inevitably
degrades when dealing with the bursty workload since it is hard to predict.

Most of the existing research about autoscaling focus on the prediction and
resource provision models [12, 13, 14, 15]. For a non-bursty workload, optimizing the
above two models can ensure the QoS and use fewer resources. However, autoscalers
require additional optimization for bursty workloads. In this paper, we propose
a novel burst-aware scaling method named AmRP (an autoscaling method that
combines reactive and proactive mechanisms). AmRP can be divided into two main
modules: the proactive module and the reactive module. The proactive module
launches a part of the containers in advance. These containers mainly serve the
reactive scaling modules. When the reactive module of AmRP performs scaling,
vertical scaling can be performed on existing containers, which increases resources

1 https://aws.amazon.com/cn/autoscaling/
2 https://cloud.google.com/compute/docs/autoscaler
3 https://azure.microsoft.com/en-us/features/autoscale
4 https://github.com/kubernetes/autoscaler/tree/master/

vertical-pod-autoscaler

https://aws.amazon.com/cn/autoscaling/
https://cloud.google.com/compute/docs/autoscaler
https://azure.microsoft.com/en-us/features/autoscale
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
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more rapidly than horizontal scaling. In addition, burst detection is added to the
reactive module. If the surge in the number of requests is detected, the scaling
scheme will be further adjusted to alleviate the oscillation of the scaling algorithm
and better ensure the QoS. In this paper, an AmRP prototype is designed and
developed on Docker Swarm Cluster. Compared with the baseline methods, resource
cost and SLA violation are lower when dealing with the bursty workload. The main
contributions of this paper are as follows:

1. It designs a complete scaling system, which adjusts resources according to the
real time workload to meet the expected response time.

2. It proposes a novel scaling algorithm combining reactive and proactive scaling to
provide resources rapidly. The algorithm also adds burst detection to alleviate
the impact of bursty workload on QoS.

3. It implements an AmRP prototype on Docker Swarm and evaluates it with the
baseline methods under different workload types.

The paper is organized as follows. Section 2 introduces the work related to au-
toscaling in recent years. Section 3 describes in detail the AmRP scaling strategy
proposed in this paper. The specific experimental design, including baseline meth-
ods and benchmark application, is described in Section 4. Section 5 analyzes the
experimental results. Section 6 describes the conclusion and future work.

2 RELATED WORK

Autoscaling can be divided into reactive scaling and proactive scaling according to
scaling timing. [16, 17, 18] are all about reactive scaling based on rules and analytical
models. Using native Kubernetes HPA requires certain experience to set reasonable
scaling rules. Therefore, [16] solves this problem employing two-stage scaling. Libra
autoscaler is an autoscaler proposed by the authors. Libra first uses vertical scaling
to find the optimal resource allocation for pods and then enters horizontal scaling
to cope with fluctuating workloads. In [17], the author proposes a dynamic multi-
layer indicator scaling method, adding application-level indicators based on native
Kubernetes HPA, optimizing resource usage, and further ensuring QoS. [18] proposes
a combined scaling method named COPA. When making scaling decisions, vertical
and horizontal scaling are combined, and the rolling update parameter in Kubernetes
is taken into account. While ensuring QoS, COPA reduces overall resource costs.
The above work takes the current workload and service status as input when making
scaling decisions, called reactive scaling. When proactive scaling makes scaling
decisions, the input is the future workload or future service status. [19] proposes an
autoscaler based on machine learning by using time series forecasting and queuing
theory, which can accurately predict the workload of distributed servers, estimate
resources required, optimize service response time, and meet SLA. In [20], authors
use LSTM as a prediction model to dynamically scale horizontally and vertically to
improve the end-to-end latency of the service.
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According to the scaling policy, autoscaling can also be divided into horizontal
and vertical scaling. [21] improves the VPA of Kubernetes. The problem with the
native VPA is that the way to adjust resources is to start new pods and terminate
old ones. Therefore, the author proposes RUBAS, which solves the VPA adjustment
resource restart problem and improves resource utilization through container inte-
gration migration and checkpoint technology. The scenario in [22] is that container-
based IoT applications in edge computing need to dynamically adjust resources ac-
cording to the amount of IoT device requests. However, the native Kubernetes HPA
evenly deploys pods on each node without considering the imbalance of resource
demand among nodes in the edge computing environment. Therefore, the author
proposed THPA, running on Kubernetes, to achieve real time traffic awareness and
autoscaling pods for IoT applications in edge computing environments.

The impact of bursty workloads is rarely considered when scaling decisions
are made. [23] uses Bi-LSTM to predict the number of HTTP requests and de-
signs a proactive autoscaling approach in Kubernetes. Simple handling of the
bursty workload is added to this method. The idea is to reserve part of pods
each time when performing scaling in so that the autoscaler can have a better
QoS and increase resources faster dealing with burstiness. [24] adds online burst
detection into proactive autoscaling, uses standard deviation and sliding window
to detect burstiness, and allocates a relatively stable amount of resources after
detecting burstiness for the first time, which solves the problem of scaling oscil-
lation, and a certain extent guaranteed QoS. The method in [25] is similar to
that in [24], but the difference lies in that the information entropy method is
used in [25] for burst detection. The existing scaling methods are quite simple
to deal with the bursty workload. In scaling decisions, more resources are al-
located to cope with burstiness that may occur at any time, resulting in higher
resource costs than algorithms that do not consider bursty workload. In addi-
tion, because the bursty workload is hard to predict, the resources should be in-
creased rapidly when burstiness is detected. However, this is rarely considered
in the existing scaling strategies. Therefore, we propose a novel method combin-
ing proactive and reactive scaling. Proactive scaling performs workload prediction
and launches containers in advance. Reactive scaling performs online burst detec-
tion and prioritizes vertical scaling. Compared with horizontal scaling, the vertical
scaling strategy can increase resources more quickly and further reduce SLA viola-
tions.

3 PROPOSED SYSTEM

This section begins with an overview of AmRP. Section 3.2 describes the reactive
module, including burst detection, resource provision model, and reactive scaling
algorithm. Section 3.3 introduces the proactive module, including the time series
forecasting model, an estimation of the maximum requests, and the proactive scaling
algorithm.
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Figure 1. Overall architecture of AmRP

3.1 Overview of AmRP

The execution process of AmRP is shown in Figure 1. AmRP is an autoscaler
that focuses on resource allocation at the container level. In Docker Swarm, the
resources of containers are determined by the limit property. Therefore, the pur-
pose of AmRP is to determine the number of containers and the resource setting.
AmRP periodically executes the reactive module and the proactive module. The
reactive module is implemented every short period, obtains the current number of
requests from HAProxy in real time and performs burst detection. HAProxy5 is
a High-Performance TCP/HTTP Load Balancer. If it is in the burst interval at
this time, the number of requests will be adjusted. The adjusted requests are used
as input to the resource provision model. The resource provision model uses the
number of requests and the expected response time from users as input to get the
scaling scheme. If existing containers can be scaled vertically to meet the workload,
AmRP will prioritize vertical scaling. If not, a combined scaling, that is, vertical
and horizontal scaling is performed. The proactive module is executed every more
extended period. It will perform time series prediction and estimation of the maxi-
mum number of requests used as one of the inputs to the proactive scaling algorithm.
Only the number of containers is concerned in the proactive module.

5 https://www.haproxy.org

https://www.haproxy.org
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3.2 Reactive Module

Reactive scaling module obtains the current number of requestsWt and the container
list ConList containing resource settings for existing containers every 2 minutes and
updates them to the database. The burst detection module obtains the requests
sequence Wt−k, . . . ,Wt−1,Wt from the database. The sequence will be judged, and
the number of requests will be adjusted to better deal with the bursty workload if it
is currently in the burst interval. The revised number of requests W ′

t , the expected
response time ERT set by users, and the container list ConList are used as the input
of the resource provision model, and the output of the model is the total resource
totalRes . The reactive module prefers vertical scaling when making scaling decisions
because vertical scaling can increase resources faster than horizontal scaling.

3.2.1 Burst Detection

Workload burstiness is usually detected and judged by entropy-based methods [26,
27], but these methods are generally offline models and require a complete workload
trace. For autoscaling, it is necessary to detect business in real time. In this paper,
we choose an online model for burst detection. Abdullah et al. [24] also chose online
bustiness detection, which detection standard was the standard deviation of sliding
windows. The method adopted in this paper is the strategy of combining sliding
window and boxplot [28], which can be divided into the following two steps:

1. Conduct surge point detection and judgment.

2. Determine the burst interval according to whether it is a surge point.

Lines 1 to 13 of Algorithm 1 show the function of surge point judgment. The first
loop is to calculate a new time series S. It takes the mean value of the sliding window
as the reference value refi, then takes the value li behind the sliding window and
makes a difference between the two values. Line 8, on the new sequence S, calculates
the boxplot, where Q3 is the third percentile, IQR is the Interquartile Range, and
c is the coefficient of IQR. Through the boxplot, we can get the upper bound. If it
exceeds the upper bound, Wt is the surge point. Lines 15 to the end of Algorithm 1
determine the burst interval. Line 15 calls the function to determine the surge point.
If the current is the surge point, then update burstLen to the preset length Len,
indicating that the time points from the current point to the following length are
burst intervals, and adjust the number of requests to W ′

t . The reason for using
this strategy to determine the burst interval is that the burstiness usually occurs
continuously. Lines 20 to 27 represent that another judgment is required if it is
not a surge point. When burstLen is greater than zero, it means that it is in the
burst interval at this time, decrement the value by one and adjust the number of
requests W ′

t ; otherwise, burstLen is set to zero.
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Algorithm 1 Burst detection

Input: Remaining burst interval length (burstLen), time series (Wt−k, . . . ,Wt), win-
dow size (ws)

Output: burstLen
1: function Surge point Judgment(ws,Wt−k, . . . ,Wt)
2: Flag ← false
3: for each i in k − ws do
4: ref i ← the average of the sliding window
5: li ← next value of sliding window
6: Si ← ref i − li // S is a new sequence
7: end for
8: UpperBound ← Q3 + c ∗ IQR
9: if St > UpperBound then

10: Flag ← true
11: end if
12: return Flag
13: end function
14:

15: Flag ← Surge point Judgment(ws,Wt−k, . . . ,Wt)
16: if Flag = true then
17: burstLen ← Len
18: W ′

t ← max (Wt−k, . . . ,Wt)
19: else
20: if burstLen > 0 then
21: burstLen ← burstLen − 1
22: W ′

t ← max (Wt−k, . . . ,Wt)
23: else
24: burstLen ← 0
25: W ′

t ← Wt

26: end if
27: end if
28: return burstLen,W ′

t

3.2.2 Resource Provision Model

Containers can be deployed without setting resource allocation. However, it will
bring about resource competition between containers. Therefore, whether in Ku-
bernetes or Docker Swarm, it is best to give the resource setting of each container.
In this paper, the resource limit for a single container ranges from Cmin to Cmax.
When a single container is scaled vertically, resources are adjusted according to
fixed step size, such as adding 0.25 vCPU or 0.5 vCPU. When the resource of
a single container reaches Cmax, horizontal scaling will be executed to increase the
resources.
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In Resource Provision Model, the total CPU resources required will be solved.
Then the specific scaling scheme will be given by the reactive scaling algorithm.
The model’s input is the revised number of requests W ′

t , and expected response
time ERT , and the model’s output is the total resource amount totalRes .

φ : (W ′
t , ERT )→ totalRes . (1)

To collect trace data, we deploy the benchmark application (see Section 4.2) in
the Docker Swarm. Then, Hey Load Generator 6 is used to simulate users sending
requests. Then, we increase the number of requests linearly while adding resources
with a reactive scaling strategy. For example, 0.25 vCPU is incrementally added to
the existing container when the response time exceeds ERT . If all existing containers
have reached Cmax, the new container with Cmin will be started. Finally, we will
filter the data whose response time exceeds ERT , and the remaining data will be
used for model training. Table 1 shows part of the trace data. The first row in the
table indicates that when the number of requests is 804 and the total CPU resources
is 10.5 vCPU, the response time is 0.1751 s.

Request Response Time totalRes

804 0.1751 10.5

895 0.1904 10.75

956 0.1958 11.25

. . . . . . . . .

Table 1. Trace data

In AmRP, we choose Random forest as the resource provision model. Random
forest is an ensemble learning method for classification and regression that operates
by constructing a multitude of decision trees at training time [29, 30]. For classi-
fication tasks, the output of the random forest is the class selected by most trees.
In this paper, we use it to solve regression tasks, so the mean or average prediction
of the individual trees is returned. Random decision forests correct decision trees’
habit of overfitting their training set. In addition, the advantage of random forest
is that its training speed is relatively fast, and it can balance errors for imbalanced
data sets.

3.2.3 Reactive Scaling Algorithm

In the reactive module of AmRP, when performing scaling decisions, if vertical
scaling can meet the current workload, vertical scaling is preferred. Compared to
horizontal scaling, the execution of vertical scaling has a shorter duration. Therefore
when burstiness is detected, vertical scaling increases resources and restores the
response time to the ERT more quickly. Two methods detect the surge at Point 9
in Figure 2. Response time for vertical scaling recovers below ERT faster than for

6 https://github.com/rakyll/hey/releases

https://github.com/rakyll/hey/releases
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horizontal scaling. Therefore, AmRP tends to perform vertical scaling in the reactive
module. AmRP uses a combination of vertical scaling and horizontal scaling to
increase resources only when existing containers cannot be scaled vertically. In the
proactive module of AmRP, by predicting and estimating the number of containers
needed in the future, containers with Cmin resources are started in advance to ensure
that the reactive module can perform vertical scaling in most cases.

Figure 2. VA vs HA

Algorithm 2 describes the reactive scaling algorithm. The algorithm’s input
is the container information ConList , the adjusted number of requests W ′

t , the
expected response time ERT , and the output is the updated ConList ’. Initially,
the ResourceProvisionModel resolves the total current resource needs. Lines 2 to 24
of the algorithm are situations where it is necessary to increase the resources through
vertical or combined scaling. Count ∗ (ConList) ∗ Cmax refers to the maximization
of container resources that can reach through vertical scaling. Lines 3 to 14 indicate
that adding resources to existing containers can meet the current workload. In
order to adjust fewer containers when executing scaling, AmRP sorts ConList in
ascending order according to the allocated resources and then increases the resources
one by one. Lines 15 to 24 adopt a combined scaling strategy. First, set all existing
containers to Cmax. Then, the remaining required resource is added by starting new
containers. In this paper, the new container’s resource setting is Cmin. Line 25
to the end of the algorithm is the case of reducing the resources. In the reactive
module, only vertical scaling is used to reduce the resources. Since reserving a certain
number of containers is conducive to vertical scaling, which increases resources more
quickly. The operation of removing containers is performed in the proactive module.
Similarly, to adjust only a tiny part of containers as much as possible, sort ConList
in descending order and then reduce the resources one by one.

3.3 Proactive Module

The proactive module is executed every 10 minutes. The module first uses the
ARIMA model to perform a multi-step time series prediction. Then, the predicted
data is combined with a part of the historical data to form a new time series. The
Chebyshev’s Inequality is used to estimate the maximum number of requests. The
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Algorithm 2 Reactive Scaling Algorithm

Input: Current container list (ConList), Adjusted Request at time t (W ′
t), Ex-

pected Response Time (ERT )
Output: ConList ’
1: totalRes ← ResourceProvisionModel(W ′

t , ERT )
2: if totalRes > sum(ConList) then
3: if count(ConList) ∗ Cmax <= totalRes then
4: sort ConList by ascending order
5: addRes ← totalRes − sum(ConList)
6: for i ∈ Conlist do
7: diff ← Cmax − Ci

8: if addRes >= diff then
9: Ci ← Cmax

10: else
11: Ci ← Ci + addRes
12: break
13: end if
14: addRes ← addRes − diff
15: end for
16: else
17: for i ∈ ConList do
18: Ci ← Cmax

19: end for
20: addRes ← totalRes − count(ConList) ∗ Cmax

21: num ← ⌈addRes/Cmin⌉
22: for 1 . . . num do
23: ConList .append(Cmin)
24: end for
25: end if
26: else if totalRes < floor ∗ sum(ConList) then
27: sort ConList by descending order
28: removeRes ← sum(ConList)− totalRes
29: for i ∈ ConList do
30: diff ← Ci − Cmin

31: if removeRes >= diff then
32: Ci ← Cmin

33: else
34: Ci ← Ci − removeRes
35: break
36: end if
37: removeRes ← removeRes − diff
38: end for
39: end if
40: ConList ′ ← ConList
41: return ConList ′
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proactive scaling algorithm takes the maximum number of requests Wmax, expected
response time ERT , and the container Cmax as inputs to obtain the number of
containers required. Therefore, when the workload fluctuates wildly, AmRP will
start enough containers in advance and then use vertical scaling to adjust resources
in the reactive module. In addition, this module is also responsible for removing
containers. When the number of requests decreases and becomes stable, AmRP
performs scaling in to remove part of the containers.

3.3.1 Prediction Model

The prediction model in the proactive module is the ARIMA model commonly
used in statistics [31, 32, 33]. ARIMA is widely used in time series forecasting.
In ARIMA(p, d, q), AR is autoregression, parameter p is the number of autoregressive
terms; MA is moving average, parameter q is the number of moving average terms;
I represent difference, parameter d is the number of differences to convert the non-
stationary sequence into a stationary sequence. In the model, the value of the time
series at the next moment is predicted based on the value observed in the past and
random error. The specific formula is as follows, yt represents the value at time t, and
εt represents the random error at time t; φ1 (i = 1, 2, . . . , p) and θj (j = 1, 2, . . . , q)
are the coefficients of the AR and MA models, respectively.

yt = θ0 + φ1yt−1 + · · ·+ φpyt−p + εt − θ1εt−1 − · · · − θqεt−q. (2)

3.3.2 Chebyshev’s Inequality

AmRP uses Chebyshev’s Inequality to estimate the maximum number of requests
Wmax in the proactive module [34, 35]. This inequality generally applies to data of
various distributions and is called Chebyshev’s Theorem. The portion of any dataset
that lies within k standard deviations of its mean is always at least 1− 1

k2
, where k

is any positive number greater than 1. When k = 3, it means that at least 88.9%
of all data is within three standard deviations of the mean. Therefore Chebyshev’s
Inequality can estimate the probability of an event if the distribution of the random
variable X is unknown. The formula follows, where µ is the mean and σ is the
standard deviation. µ+ k ∗ σ will be used as the estimated maximum Wmax as one
of the inputs to the proactive scaling algorithm in Section 3.3.3.

P (|x− µ| ≥ kσ) ≤ 1

k2
, (3)

Wmax ≈ µ+ k ∗ σ. (4)

3.3.3 Proactive Scaling Algorithm

Algorithm 3 describes the proactive scaling algorithm. The input is container infor-
mation ConList , the estimated maximum number of requests Wmax, the maximum
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resources of a single container Cmax, and the expected response time ERT . The
output of the algorithm is the updated ConList ′. The algorithm begins with calcu-
lating the required total resource totalRes underWmax. Line 2 estimates the required
number of containers, which guarantees that the resources can be increased through
vertical scaling in the reactive module. In lines 3 to 6 of the algorithm, AmRP will
start additional containers, and the containers’ resource is Cmin. Lines 7 to 12 of the
algorithm are used to remove excess containers. Similarly, ConList is sorted first,
then AmRP will terminate containers with relatively few resources.

Algorithm 3 Proactive Scaling Algorithm
Input: ConList , Wmax, Cmax, ERT
Output: ConList ′

1: totalRes ← ResourceProvisionModel(Wmax,ERT )
2: num ← ⌈totalRes/Cmax⌉
3: if num > count(ConList) then
4: for i in 1 . . . num − count(ConList) do
5: ConList .append(Cmin)
6: end for
7: else if num < count(ConList) then
8: sort ConList by ascending order
9: for i in 1 . . . num − count(ConList) do

10: ConList .remove(Ci)
11: end for
12: end if
13: ConList ′ ← ConList
14: return ConList ′

4 EXPERIMENT DESIGN

To evaluate our method, we design an AmRP prototype on the Docker Swarm plat-
form and compare it with baseline scaling methods. All three scaling methods scale
benchmark applications under various workloads. Methods are evaluated according
to average response time, resource usage, and other indicators.

4.1 Baseline Methods

4.1.1 Base-Aware Predictive Autoscaling (BPA)

Abdullah et al. [24] proposed a burst-aware method based on proactive autoscaling,
which is referred to as BPA in the rest of this paper. BPA adds burst detection based
on standard deviation and sliding windows to traditional proactive autoscaling to
measure burstiness in real time. If burstiness is detected, the number of instances is
modified to the maximum number of instances in a nearby period. The regression
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a) synthetic workloads

b) NASA workload

Figure 3. Workloads

model is used to predict the workload and the decision tree model is used to solve
the scaling scheme. BPA provides a relatively stable resources when dealing with the
workload with frequent fluctuations, which can better ensure the QoS and alleviate
oscillation.

4.1.2 Reactive Method Based Queuing Theory (RMQ)

This baseline method is reactive autoscaling based on the Queuing Theory. In the
remaining chapters of this paper, this method is referred to as RMQ. RMQ takes
the processing capacity of a single service and the current number of requests as
the input of the Queuing Theory model to analyze and solve and then obtains
a reasonable number of instances in real time. For a non-bursty workload, this
method can guarantee QoS and use fewer resources.

4.2 Benchmark Application

With the rise of microservices architecture, cloud services are becoming more and
more fine-grained, such as image search, image recognition, document translation,
video or audio decoding tasks, etc. Benchmark application selected in this paper
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is a matrix operation, which is implemented based on PHP and packaged into con-
tainers to run in clusters. This application is a typical CPU-intensive task. In the
cloud environment, most microservices are more sensitive to CPU resources, so this
benchmark application is quite representative.

4.3 Simulation of Users

In the experiment, it is necessary to simulate the continuous and concurrent requests
of users. In this paper, we choose to use the stress testing tool to simulate requests
from users. Hey Load Generator 7 is an open-source stress-testing tool developed
based on the Go language. To better verify the performance of the scaling algorithm
under different workloads, this paper extracts some workloads showing burstinesses
from the real data set, and also generates some SWL (Synthetic Workload). Figure 3
shows three SWLs and NASA workload [36]. It can be seen that burstiness occurs
multiple times.

4.4 Evaluation Criteria

The selected evaluation indicators are resource usage, average request response time,
SLA violations. The resource usage mainly refers to the usage of vCPU. The reason
for not considering the memory is that the benchmark application is a CPU-intensive
task with low memory requirements. Average request response time and SLA vio-
lations can reflect the overall QoS.

4.5 Experiment Platform

The experiment is carried out on Docker Swarm cluster, Docker version 20.10.12,
where the CPU of the node is Intel(R) Xeon(R) Gold 6230 CPU@2.10GHz, a total
of 16 vCPU and 16GB memory. In addition, since the stress testing tool consumes
a lot of resources when sending requests concurrently, Hey Load Generator is inde-
pendent of the experimental cluster and occupies a node with 4 vCPU and 4GB
exclusively.

4.6 Experimental Parameters

Table 2 lists the key parameters in the experiment. There are three critical parame-
ters in Burst Detection. First, we set k to 10, which means that we take the number
of requests data adjacent to ten points as the detection input, ws is the window size
of the surge point, and the setting of Len will affect the resource cost and QoS. If
Len is too large, there will be some redundancy in resources, but the service quality
can be better guaranteed, and vice versa. After some trial and error, we finally
set this parameter to 10. Regarding container resources, we set the minimum and

7 https://github.com/rakyll/hey/releases

https://github.com/rakyll/hey/releases


Autoscaling Method for Docker Swarm Towards Bursty Workload 1051

a) Burst interval of BPA

b) Burst interval of AmRP

Figure 4. Burst detection

maximum resources of the container to 0.25 vCPU and 2 vCPU, respectively, and
the step size of adjusting its resource amount is 0.25 vCPU. Since our application
is a CPU-intensive service, there is very little demand for memory, and the impact
of memory is not considered in this experiment. The last parameter in the table is
the parameter of the ARIMA model.

Affiliation Parameters Values

Burst Detection
k 10
ws 2
Len 10

Container Resource
Cmin 0.25
Cmax 2
stepSize 0.25

ARIMA (p, d, q) (2, 0, 0)

Table 2. Part of experimental parameters
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5 RESULTS

5.1 Burst Interval

AmRP and BPA both contain the burst detection module. Figure 4 shows the
detection of burstiness under three SWLs by two methods. For SWL1, AmRP
and BPA were almost identical in determining burst interval. AmRP set [23, 33]
(Len = 10) as the burst interval after detecting the surge point at the 23rd point.
Then AmRP detected two surge points, which updated the end of the burst in-
terval twice. Therefore, for SWL1, AmRP detected the burst interval as [23, 50].
Similarly, BPA detected that the standard deviation of SWL1 exceeded the pre-
set threshold at the 23rd point. The standard deviation was lower than the preset
threshold at the 53rd point, and the number of requests at this time was lower
than the moment before the start of the burst interval, so 53 was the end of the
burst interval. SWL2 and SWL3 are processed differently by two methods. The
determination of the burst interval by AmRP depends on the surge point and the
preset length. Therefore, for SWL2, its burst interval detection is [23, 54], while
the detection of SWL2 by BPA belongs to burstiness from time point 23, and there
is no end point. The reason is that at all time points after 23, the number of
requests is higher than the moment before the first burstiness, so it is impossi-
ble to exit the burst interval. For SWL3, there is a sudden drop in the number
of requests around time point 20, and since BPA uses the standard deviation, it
is determined as a burstiness. The starting point of another burst interval de-
tected by BPA is 40. Similar to SWL2, this interval also cannot be exited. The
result of AmRP for SWL3 detection is that [40, 57] is the burst interval. It can
be seen that the burst detection of AmRP is guided by the surge point. When
a surge point is detected, it enters the burst interval, and if there is no burstiness
point for a long time, it exits the burst interval. The burst detection of BPA is
oriented by the standard deviation, and its algorithm also marks the number of
requests before the surge to exit the burst interval. For some workloads that have
been stable for a long time after the burstiness, it will lead to certain waste of
resources.

Figure 5. RT comparison under SWL
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5.1.1 Response Time, SLA Violation

Figure 5. shows the response time comparison between AmRP and baseline scaling
methods under SWL. To display the content of the figure more clearly, the upper
limit of the response time is 0.6 s, which means that the 0.6 s in the figure may be
greater than 0.6 s. There were three surges in SWL1. All scaling methods experi-
enced a period of service degradation because the initial burstiness was difficult to
predict and deal with. While AmRP and BPA benefit from burst detection, they
will provide relatively stable resources once burstiness is detected. Therefore, the
response time of AmRP and BPA did not exceed ERT in the subsequent two surges.
However, the RMQ method does not consider bursty workload, so resources are fre-
quently added/removed during burstiness, which makes its response time fluctuation
obvious, and its quality of service is the worst among the three scaling methods.

Figure 6. SWL2-Part

Similarly, in SWL2, all methods experience a drop in QoS for a while when
the first surge occurs. After AmRP and BPA detected the burstiness, they were
marked as surge status. A subsequent surge occurred shortly after that, and the
number of requests exceeded the previous surge. At this time, it can be seen that
the QoS of the three scaling algorithms will still decline because the strategy of
AmRP and BPA in burst interval is to take the maximum resource amount near the
time. Figure 6 shows the details of the second surge. AmRP restores the response
time to ERT fastest among all methods. This benefits from the proactive module
of AmRP that starts the container in advance. When the reactive module detects
a surge, it increases resources through vertical scaling on existing containers. By
comparison, the baseline method uses horizontal scaling to increase resources, so it
takes more time to reduce the response time to the desired value. The three scaling
ways in SWL3 and NASA (see Figure 7) are similar to SWL1 and SWL2. Table 3
summarizes the SLA violation of different methods. Except for SWL1, AmRP has
the lowest SLA violation rate.
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Figure 7. RT comparison under NASA

5.1.2 Resource Usage

Table 4 shows the total resource usage under various workloads. RMQ does not take
bursty workload into account, and its resource usage is directly related to request
trends. So RMQ is generally the scaling method that uses the least resources. AmRP
and BPA give the benchmark application relatively stable resources in the burst
interval, so these two methods use more resources than RMQ. The total resource
usage of AmRP is lower than that of BPA, which benefits from the heterogeneity
of the scaling scheme in AmRP and the finer granularity of resources. In addition,
burst detection of AmRP can determine the burst interval more accurately than
BPA.

WL
Method

AmRP BPA RMQ

SWL1 92.3% 95.3% 90.5%

SWL2 95.3% 95.1% 92.9%

SWL3 95.1% 93.1% 92.7%

NASA 91.5% 91% –

Table 3. SLA violations

WL
Method

AmRP BPA RMQ

SWL1 1 495 1 584 1 227

SWL2 2 227 2 400 1 830

SWL3 2 182 2 934 1 986

NASA 1 882 1 986 –

Table 4. Total resource usage
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6 CONCLUSION AND FUTURE WORK

We propose a novel scaling method named AmRP for bursty workloads. AmRP
is mainly divided into two parts, a proactive scaling module and a reactive scaling
module. In proactive scaling, multi-step time series prediction and the maximum
number of requests estimation are performed, and horizontal scaling is performed.
This module aims to start enough containers in advance so that in the reactive mod-
ule, vertical scaling can be executed on existing containers. The reactive module
includes real time burst detection, and when calculating scaling solutions, vertical
scaling is preferred. Experimental results show, compared with the baseline scaling
algorithm, that for bursty workload, the AmRP scaling method further alleviates
the QoS degradation caused by the surge of requests compared with BPA. As a re-
sult, AmRP can increase resources more rapidly and simultaneously provide stable
resources within the burst interval. In terms of resource usage, since AmRP is a het-
erogeneous scaling solution, more fine-grained resource allocation further reduces the
cost of AmRP resources.

Experimental results also show that the AmRP and baseline scaling methods
are ineffective in dealing with the first surge or continuous surge because AmRP and
BPA essentially do not predict the burstiness but only deal with them accordingly
after detecting the surge. When the scaling method detects burstiness, the QoS
declines, and the average response time exceeds the ERT . The solution in this paper
is how to increase the resources more quickly after detecting a surge. Therefore, in
future work, we will consider introducing burstiness prediction which can further
improve the QoS of the scaling method in dealing with bursty workloads. However,
its effect depends more on the accuracy of the burstiness prediction model.
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