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Abstract. Cloud computing performance optimization is the process of increasing
the performance of cloud services at minimum cost, based on various features. In
this paper, we present a new approach called MOOA-CSF (Multi-Objective Op-
timization Approach for Cloud Services Finding), which uses supervised learning
and multi-criteria decision techniques to optimize price and performance in cloud
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computing. Our system uses an artificial neural network (ANN) to classify a set of
cloud services. The inputs of the ANN are service features, and the classification
results are three classes of cloud services: one that is favorable to the client, one that
is favorable to the system, and one that is common between the client and system
classes. The ELECTRE (ÉLimination Et Choix Traduisant la REalité) method is
used to order the services of the three classes. We modified the genetic algorithm
(GA) to make it adaptive to our system. Thus, the result of the GA is a hybrid
cloud service that theoretically exists, but practically does not. To this end, we
use similarity tests to calculate the level of similarity between the hybrid service
and the other benefits in both classes. MOOA-CSF performance is evaluated using
different scenarios. Simulation results prove the efficiency of our approach.

Keywords: MCDM, cloud computing, optimization, artificial neural networks, ge-
netic algorithm, similarity measures, supervised learning

1 INTRODUCTION

In recent years, users have become increasingly accustomed to using the internet
to obtain software resources. This is done in the form of web services, provided
by information technology organizations, and can be accessed by end users over
the internet [1]. Cloud computing is a service delivery paradigm that provides
access to services and resources. It is defined by the National Institute of Standards
and Technology as a model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g. networks, servers, storage,
applications, and services) that can be quickly provisioned and released with minimal
management effort or service provider interaction [2]. Cloud computing has three
service models: Software as a Service, Platform as a Service, and Infrastructure as
a Service. Furthermore, it has four deployment models: private, public, hybrid,
and community [3]. The cloud service provider (CSP) supplies services to users as
a rental. Due to the huge number of available virtual cloud resources, the CSP role
is very complex. As such, researchers have given more attention to cloud service
performance [3].

With the development of cloud computing technology, a single web service can
no longer meet users’ needs, since these are often complex. On the other hand,
since different service providers offer web services with the same functionalities, but
different in terms of their criteria, selecting the best web service that satisfies user
needs is a difficult problem. This can decrease the performance of cloud services,
which has a direct impact on the client’s business. So, the more cloud performance
is optimized, the more client confidence is increased [4].

Performance optimization of cloud computing is about making the components
in the cloud meet component-level requirements and client expectations. We aim
to increase the performance of cloud services with a minimum cost, depending on
various constraints. Performance optimization allows us to improve the performance
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of various factors [4]. To meet the needs of different clients, it is important to
optimize the performance of cloud computing. In the literature, some solutions have
been proposed. Among these solutions, the approaches can be cited based on: hybrid
optimization [5, 6], genetic algorithm [7, 8, 9], and multi-objective optimization
[3, 10, 11].

They are classified into two categories:

1. Approaches that optimize cloud performance on the client’s side, in which re-
sponse time and cost factors are always taken into account as users always need
the best services at the lowest cost and response time; however, the cost factor
is equally crucial. Since the service cost is a major factor to provide QoS, espe-
cially for commercial customers, therefore, compromising the response time for
long deadline requests is desirable compared to the compromising in the cost
factor [12].

2. Approaches that optimize cloud performance on the system side apply vari-
ous techniques and strategies, such as caching, compression, load balancing,
autoscaling, and serverless computing. This allows reduced latency, increased
throughput, enhanced availability, and resources savings. To our knowledge,
very few works that have taken into account user needs and system performance.

To address these challenges, this paper proposes a novel approach to optimize
cloud computing performance. Compared to the above approaches, our proposi-
tion takes into consideration both the optimization of user and system preferences.
Therefore, our contribution allows to solve the problem of the cloud service finding
while satisfying user and system constraints. Our approach is based on neural net-
work classification, multi-criteria decision-making systems (MCDM), optimization
algorithms (genetic algorithm), and similarity measurements. First, we use an arti-
ficial neural network (ANN) to classify cloud services. The ANN inputs are service
criteria. The classification results are three classes of cloud services. The first class
is composed of services that are favorable for the client side (i.e. that satisfy client
needs). The second class is composed of services that are favorable for the cloud
provider side. In addition, the third one contains services that are common between
the client and the provider. Concerning the MCDM, we have chosen to use the
ELECTRE method. It is applied to sort services in each class. The purpose of this
sorting is to eliminate weak services from the three classes. In a second step, we
have modified the genetic algorithm (GA) to make it adaptive to our system. The
genetic algorithm result is a hybrid cloud service that theoretically exists but prac-
tically does not. For this, we use similarity tests to calculate the level of similarity
between the hybrid service and the other services to obtain the best service that
meets the client’s needs at a low price.

The rest of this paper is organized as follows: background and preliminaries are
presented in Section 2, related work in Section 3, proposed model in Section 4, case
study in Section 5, experimental results and evaluation in Section 6, and conclusion
in Section 7.
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2 BACKGROUND AND PRELIMINARIES

In this section, we will first give a brief overview of ANN, followed by an introduction
to the ELECTRE II method that we consider in our proposal.

2.1 Artificial Neural Network

ANNs are an information-processing paradigm that simulates the behavior of the
human brain for a specific task or function [13]. This type of network is composed of
several sets of calculations called neurons, which are combined in layers and operate
in parallel. The information is propagated from the input layer to the output layer.

ANNs can store empirical knowledge and make it available to users. The know-
ledge of the network is stored in synaptic weights, obtained through the process
of adaptation or learning [14]. Activation values are transmitted from neuron to
neuron based on the weights and activation functions. Each neuron adds up the
activation values it receives and then changes the value according to its activation
function. The activation procedure follows a look-ahead process and the difference
between the predicted value and the actual value (error) is propagated backward by
distributing it among the weights of each neuron according to the amount of error
for which its neuron is responsible [14].

2.2 ELECTRE II

ELECTRE II [15] is a multi-criteria analysis method that solves decision problems
with greater accuracy. This method was the first of the ELECTRE methods specifi-
cally designed to deal with ranking problems. The evaluation matrix is the starting
point of the ELECTRE II method, in which alternatives are evaluated on different
criteria. It aims to rank actions from best to worst. Based on a total pre-ordering
principle, ELECTRE II assumes that all actions are comparable; incomparability is
excluded, i.e., the decision-maker can always choose between action A and action B.

ELECTRE consists of two main steps. The first step is the preparation of the
decision matrix (see Table 1), where gij denotes the value of variant i with respect
to criterion j. The second step is the calculation of the concordance and discordance
matrices [15].

Alternatives

Criteria
C1 C2 . . . Cn

a1 g11 g12 . . . g1n
a2 g21 g22 . . . g2n
. . . . . . . . . . . . . . .
an gn1 gn2 . . . gnn

Table 1. Decision matrix illustration
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2.2.1 Calculation of the Concordance Matrix

The concordance matrix is generated by summing the weights of the elements in the
concordance set. The strength of the hypothesis that alternative Ai is at least as
good as alternative Aj is evaluated usisng the concordance index between the pair
of alternatives Ai and Aj which is calculated using formula (1) [16]:

c(a, b) =

∑
kj
k

, where gj(a) ≥ gj(b)∀j, (1)

where gj(a) and gj(b) are the sets of criteria for which a is equal or preferred to b, kj
is the weight of the jth criterion.

2.2.2 Calculation of the Discordance Matrix

The discordance index D (a, b) is calculated by formula (2) or (3):

D(a, b) = 0, if ∀j, gj(a) ≥ gj(b) (2)

else

D(a, b) =
1

σ
MAXj[gj(b) − gj(a)], (3)

σ = max
∣∣gj(b) − gj(a)

∣∣ . (4)

After calculating the concordance and discordance indices for each pair of alter-
natives, two types of outranking relationships are constructed by comparing these
indices with two pairs of threshold values: (C+, D+) and (C−, D−). The pair
(C+, D+) is defined as the concordance and discordance thresholds for the strong
outranking relationship, and the pair (C−, D−) is defined as the thresholds for the
weak outranking relationship, where C+ > C− and D+ > D−. Then, outranking
relationships are constructed according to the following two rules [15]:

• If C(a, b) ≥ C+, D(a, b) ≤ D+ and C(a, b) ≥ C(b, a), then alternative a is
considered to strongly outperform alternative b. Likewise,

• If C(a, b) ≥ C−, D(a, b) ≤ D− and C(a, b) ≥ C(b, a), then alternative a is
considered to weakly outperform alternative b.

The values of C−, C+, D−, D+ are given by the decision makers [15].

3 RELATED WORK

The performance optimization of cloud computing, based on different features, has
become increasingly important in today’s world. For this reason, there are many
studies developed in the literature. In this section, we will focus on some of them
and suggest a comparative table (see Table 2) to introduce an analysis of these
studies based on different parameters (features).
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In [17], Guo et al. proposed a queuing model and developed a synthetic optimiza-
tion method to optimize the performance of services. They analyzed and conducted
the equation of each parameter of the services in the data center. Then, by ana-
lyzing the queuing system’s performance parameters, they proposed the synthetic
optimization mode, function, and strategy. Finally, they set up the simulation based
on the synthetic optimization mode. By comparing and analyzing the simulation
results to classical optimization methods, the authors showed that the proposed
model can optimize the average wait time, average queue length, and number of
clients.

The authors in [18] proposed a prediction-based dynamic multi-objective evo-
lutionary algorithm, named NN-DNSGA-II. They incorporated an ANN with the
NSGA-II. The optimization objectives taken into account included minimizing make-
span, cost, energy, and imbalance, while maximizing reliability and utilization.
The authors demonstrated that in Dynamic Multi-objective Optimization Problems
(DMOPs) with unknown true Pareto-optimal fronts, the NN-DNSGA-II algorithm
showed remarkable superiority over other alternatives. It outperformed them in var-
ious metrics, such as the number of non-dominated solutions, Schott’s spacing, and
the Hypervolume indicator in most cases.

The authors of [19] expanded the functionality of an existing parallel software
framework called WoBinGO, which was initially designed for GA-based optimiza-
tion, to be suitable for deployment in a cloud environment. Additionally, the re-
searchers introduced an intelligent decision support engine that utilizes artificial
neural networks (ANN) and metaheuristics. This engine enables users to evaluate
the framework’s performance on the underlying infrastructure concerning optimiza-
tion duration and resource consumption cost. By conducting this assessment, users
can make informed decisions based on their preferences, whether they prioritize
faster result delivery or lower infrastructure expenses.

Authors of [20] recognized the role of the innovative Grasshopper Optimization
Algorithm (GOA). They have strongly highlighted the significance of such an algo-
rithm for optimizing resource allocation in a cloud computing environment. The pro-
posed algorithm was simulated with MATLAB using eight datasets. Furthermore,
the authors conducted a comparative analysis between the Grasshopper Optimiza-
tion Algorithm (GOA) and the genetic algorithm (GA) and SElf-adaptive Inertia
weight and Random Acceleration (SEIRA) algorithms. This comparison aimed to
accurately assess the performance of GOA. The findings demonstrated the effective-
ness of the proposed GOA in efficiently solving the resource allocation problem in
the cloud.

In [21], Salem et al. created a new algorithm (MOABC) derived from a combi-
nation of ABC and Multi-Objective Optimization. Hence, the study introduced
optimized replica placement strategies to determine the most suitable locations
based on minimum distance and cost-effective paths. Additionally, for direct bees,
the approach focused on identifying the shortest routes in terms of distance and
lower cost. The proposed algorithm gave fast access to data and selected the best
replica placement nearest to users. Additionally, the placement optimization pro-
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vided more least-cost paths, better response times, and replication costs within the
budget.

Authors of [22] used a hybrid metaheuristic algorithm, namely, the Whale Opti-
mization Algorithm (WOA) with Simulated Annealing (SA), to optimize the energy
consumption of sensors in IoT-based WSNs. To simulate the IoT network, the au-
thors used the Xively IoT platform. Several performance metrics, such as load,
residual energy, number of alive nodes, cost function, and temperature, were used
to choose the optimal CHs in the IoT network. The proposed work in [22] was sub-
jected to a comparison with various state-of-the-art approaches, and it demonstrated
favorable results.

In [23], the authors introduced a new and innovative approach for performance
optimization using a multi-agent system, which is based on both the Internet of
Things (IoT) and the deep learning paradigm. They took advantage of the state-of-
the-art probabilistic, recurrent neural network, and long short-term memory models
to predict, intelligently, the upcoming behavior and optimization needs of the sys-
tem. They deployed the proposed performance optimization approach and showed
significant performance gain in comparison with existing approaches.

In [5], a hybrid optimization model has been developed which allows for an
efficient task allocation to the virtual machines (VMs) in cloud computing. The task
priorities are managed by using the hierarchy process. The authors have used BAT
(Bandwidth-aware divisible task) and BAR models to consider the task properties
and VM characteristics for task scheduling. They also used MOML (the minimum
overload and minimum lease) preemption policy which was successfully employed
to reduce the load on the VMs. The performance of the proposed model was then
compared with existing algorithms such as BAT and ACO (ant colony optimization)
algorithms. Consequently, the authors have been able to prove that their model is
efficient in terms of resource, bandwidth, and memory utilizations.

In [24], the authors proposed a decision support engine that recommends optimal
framework parameters to achieve minimal total execution time and total cumula-
tive uptime for a specified optimization problem. The engine solves a bi-criteria
optimization problem and uses surrogate models of the IaaS behavior under various
large-scale optimization loads as a fitness evaluator in MOGA (multi-objective ge-
netic algorithms). According to the authors, the obtained results were promising,
especially in the case of computationally heavy fitness evaluation functions.

In [25], the authors introduced a novel approach named Multifaceted Optimiza-
tion Scheduling Framework (MFOSF), which integrates scheduling and resource cost
chronology models. According to the authors, this framework effectively illustrates
the relationship between the user’s budget and the producer’s cost during the plan-
ning process.

In [26], Zhou et al. proposed a cloud service optimization method based on
an artificial ant colony algorithm and bee colony algorithm (DAABA). To enhance
the applicability of the farming season, the authors incorporated both the dynamic
coefficient strategy and the reliability feedback update strategy into the optimiza-
tion model. These additions were made to strengthen the overall performance and
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adaptability of the model. Furthermore, the optimal fusion evaluation strategy was
used to save optimization time by reducing useless iterations, while the iterative
adjustment threshold strategy was adopted to improve the accuracy of cloud service
finding by increasing the size of the bee colony.

Ragmani et al. [27] proposed a hybrid Fuzzy Ant Colony Optimization (FACO)
algorithm for VM scheduling to guarantee high efficiency in a cloud environment.
The proposed fuzzy module evaluates historical information to calculate the phero-
mone value and select a suitable server while keeping an optimal computing time [27].
Their study provides one of the first investigations into how to choose the optimal
parameters of ant colony optimization algorithms using the Taguchi experimental
design.

In [28], the authors introduced a hybrid meta-heuristic algorithm based on Fire-
fly Optimization Algorithm and GA to optimize task scheduling in the cloud com-
puting platform for multiple tasks. The developed system provides a distribution
by reallocating the loads to the related VMs, taking into account the objective func-
tion of the VM. The system, also, increases resource utilization and communication
cost during task scheduling and efficiently decreases the processing time of the pro-
cess compared to different techniques such as GA, Firefly Algorithm, and Modified
Firefly Optimization Algorithm.

In their paper [29], the authors proposed a novel hybrid load balancing model
based on optimizing a modified particle swarm algorithm. This model incorporates
enhanced metaheuristic firefly algorithms, which significantly improve the overall
performance of cloud computing systems. The proposed approach primarily fo-
cuses on predictive workload allocation, emphasizing resource scalability and imple-
menting a load balancing model that maximizes the utilization of uniformly load-
distributed virtual machines (VMs) [29].

The authors of [7] proposed an approach to improve the capability of data cen-
ters. It allocates requests among VMs in an inefficient manner by using their current
status in cloud computing with a GA [7]. The authors claim that their algorithm
uses a modified GA-based approach, in which the best VM is selected by analyzing
candidates which have more fitness compared to others. The proposed approach
significantly reduced the response time of servers and provided an effective load
balancing among VMs [7].

In [30], an efficient optimization method for task scheduling was presented. It
is based on a hybrid Multi-Verse Optimizer with a GA (MVO-GA). MVO-GA was
proposed to enhance the performance of tasks transfer via the cloud network, based
on cloud resources’ workload. The proposed method works on multiple properties
of cloud resources, namely: speed, capacity, task size, number of tasks, number
of VMs, and throughput. The proposed method successfully optimized the task
scheduling of a large number of tasks [30]. Also it optimized the large cloud tasks’
transfer time, reflecting its effectiveness.

After analyzing the articles cited in Table 2, we can classify them into two main
classes. The first class optimizes cloud performance on the client’s side [17, 19, 20,
21, 22, 23, 5, 10, 8]. The second class contains articles that optimize cloud perfor-
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Research Paper Environment
Used Parametres

Client/System
Side

R Av C Th Rt Client System
[17] Cloud Computing – – – – + + –
[18] Cloud Computing + – – + + – +
[19] Cloud Computing – – – – – + –
[20] Cloud Computing – – – + – + –
[21] Cloud Computing – – + + – + –
[22] IoT Network – – – + – + –
[23] IoT – – – – – + –
[5] Cloud Computing – – – – + + –
[24] Cloud Computing – – – – + + –
[25] Cloud Computing – – – + – – +
[26] Cloud Computing + – – – – + –
[27] Cloud Computing – – – – – – +
[28] Cloud Computing – – – – – – +
[29] Cloud Computing – – – – – – +
[7] Cloud Computing – – – – + – +
[30] Cloud Computing – – – – – – +
Our Approach Cloud Computing + + + + + + +

Table 2. A comparative summarization of some previous studies on performances opti-
mization

mance on the system side [7, 18, 25, 27, 28, 29, 30]. In our research, we introduce
a model that optimizes cloud performance for both clients and systems, positioning
our proposal at the intersection of these two classes (as shown in Figure 1).

In the model, R, Av, C, Th, and Rt represent Reliability, Availability, Cost,
Throughput, and Response Time, respectively.

Figure 1. The contextual situation of our research work

4 PROPOSED APPROACH

The successful development of cloud computing has attracted more and more peo-
ple and companies to use it. On the one hand, the use of cloud computing reduces
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costs; on the other hand, it improves efficiency. As users are largely concerned
by the quality of services, optimizing the performance of Cloud computing has
become essential for its successful application [17]. Furthermore, the number of
cloud providers is increasing rapidly. Therefore, the challenge of choosing the cloud
provider that best meets a client’s needs and optimizes both cost and performance
has become a big challenge. In this context, we propose an approach that helps
clients to choose the best provider that meets their needs and optimizes both cost
and performance.

In this study, we consider a service with five criteria. Two criteria are specifi-
cally related to the client side, two criteria are focused on the cloud provider side,
and there is one criterion that is common to both the client and the provider. The
common criterion in our study is subject to opposing objectives: the client seeks to
minimize it, while the provider aims to maximize it. This is precisely why we opted
for multi-criteria decision-making systems. In many decision-making problems, di-
verse perspectives are encountered, often leading to contradictions and differing
viewpoints.

4.1 Architecture and Functioning of Our Approach

Figure 2 depicts the overall architecture of our system, which comprises five inter-
connected components.

Figure 2. An overview of the proposed general architecture

The first component in our system is the Classification Component (CC-ANN),
which utilizes a multi-layer neural network. This component comprises three layers.
The first layer is the input layer, where the inputs represent the service criteria. Con-
sequently, we extract the parameters of each cloud service, considering the client’s
requirements, and represent each service with a vector. The second layer is the
hidden layer, which contains the function responsible for making the classification.
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Lastly, the third layer is the output layer, generating outputs into three classes:
the Client Preferences Class (CPC) containing services preferred by the client, the
System Preferences Class (SPC) comprising services preferred for the system, and
the Common Services Class (CSC).

The second component in our architecture is referred to as the Sorting Com-
ponent (SC-El). It relies on the ELECTRE method to arrange the services within
each class, ranking them from the best to the worst. This sorting process involves
assigning weights to each criterion based on its significance. As for the Storage Com-
ponent (SC), it serves as a centralized repository within the system, responsible for
storing all relevant data.

The fourth component is the Optimization Component (OC-GA), which oper-
ates based on the principles of genetic algorithm (GA). Its primary function is to
generate a new generation of cloud services derived from the initial three classes
mentioned earlier.

The services produced by GA are considered hybrid services, which theoretically
exist but are not practically realized. To address this, we need to assess the simi-
larity between these hybrid services and the existing ones. To achieve this, we have
introduced the fifth component, the Similarity Component (SMC). The SMC assists
in identifying the best service (the closest match) among the services obtained in
the preceding steps. The entire process is illustrated in the sequence diagram shown
in Figure 3.

Figure 3. Sequence diagram of the MOOA-CSF functionality
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4.2 Classification Step

This step is performed by the CC-ANN component, as shown in Figure 4. The
ANN is composed of three layers: input, hidden and output layers. The input layer
is comprised of five nodes, denoting the criteria of a service, namely Reliability,
Throughput, Availability, Cost, and Response Time. These criteria values are then
propagated to the hidden layer. Within the hidden layer, the activation values are
passed from neuron to neuron, where each neuron aggregates the received activations
and updates its value using a transfer function. This process involves an anticipation
mechanism. Subsequently, the difference between the predicted value and the actual
value (error) is propagated backward through the network.

Figure 4. The layers of the CC-ANN component

4.3 Activation Function

The activation function transfers the input values to an output signal. In this
paper, we have chosen the hyperbolic tangent function (Tanh). The Tanh function
is similar to the sigmoid function, but it is symmetrical around the origin. This
results in different signs of outputs from the previous layers being fed into the input
of the next layer, as defined by formula (5).

The Tanh function is continuous and differentiable, with values ranging between
−1 and 1. Compared to the sigmoid function, the gradient of the Tanh function
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is steeper. Tanh is more commonly used than the sigmoid function because it has
gradients that are not bounded to vary in a certain direction, and it is also centered
on zero [31].

Tanh(a) =
ea − e−a

ea + e−a
, (5)

where a is the value of the neuron. Figure 5 shows the process of the classification
component, where d denotes the desired goal and E is the error margin.

Figure 5. Activity diagram of the CC-ANN component

4.4 Sorting and Elimination Step

This component performs according to the ELECTRE II principle, and is composed
of two steps; sorting and elimination. We have to prepare the decision matrix; the
alternatives in our case illustrate the services. Each service has five criteria, and
each class has a decision matrix that is different from the others.

In the first step, we sort the services of each class from the best to the worst
by calculating the concordance, discordance, and dominant matrices. Service a is
better than service b if the following strong outranking relation holds:

• If C(a, b) ≥ C+, D(a, b) ≤ D+ and C(a, b) ≥ C(b, a), then service a is consid-
ered to strongly outperform service b.
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In the second step, we eliminate the services that are weakly outranking. We con-
sider that a service a is weakly outranking with b when the following condition is true:

• If C(a, b) ≥ C−, D(a, b) ≤ D− and C(a, b) ≥ C(b, a), then service a is consid-
ered to strongly outperform service b.

4.5 Optimization Step

This component is based on the principle of GA, a metaheuristic approach to solve
multi-objective optimization problems. GA is inspired by the principles of Darwin’s
theory of evolution and is often used as an evolutionary computational model in
various fields of study [32]. Currently, GAs are recognized as a very powerful tool in
optimization, having been applied in computer science, engineering, education, and
stock market data mining optimization [32].

Figure 6. Initial populations of CP, SP and CS classes

We have applied modifications to the GA to make it adaptive to our context.
Its operation after modification is as follows:

1. The initial population in our approach is not generated randomly. Instead, we
utilize the three classes obtained during the classification phase as our initial
populations. Consequently, there are three separate initial populations, not just
one (as shown in Figure 6).

2. The population is evaluated by assigning a fitness value to each service, so we
can generate a new population.



910 Y. Bezza, O. Hioual, O. Hioual, D. Yiltas-Kaplan, Z. Gürkaş-Aydin

3. The algorithm determines the termination of the search process based on specific
predefined conditions. Typically, these conditions are met when the algorithm
reaches a fixed number of generations or when it discovers a satisfactory solu-
tion.

4. In case the termination condition is not satisfied, the population proceeds with
the selection step. During this step, one service is chosen from each class based
on its fitness score, with higher fitness scores leading to a higher likelihood of
selection.

5. Following the selection step, the algorithm proceeds to implement crossover on
the chosen services, as illustrated in Figure 7. This stage involves creating new
services for the subsequent generation through the process of crossing or recom-
bination.

Figure 7. Illustration of the crossover operation results

6. At this stage, the new population returns to the assessment step and the process
begins again. We call each cycle of this loop a generation.

7. When the termination condition is met, the algorithm breaks out of the loop
and usually returns its final search results to the client/provider.

4.6 Similarity Step

The calculation of the degree of similarity between two services is ensured by the
SMC, which is based on the similarity SimCosin(X, Y). We suppose that we have two
services X and Y represented by two vectors, each vector containing five criteria [33]:

X = [Rx, Avx, Cx, Thx, Rtx];

Y = [Ry, Avy, Cy, Thy, Rty]

Additionally, the function SimCosin(X, Y ) must satisfy the following properties
[33]:

Property 1: 0 ≤ cos(X, Y ) ≤ 1.

Property 2: cos(X, Y ) = cos(Y,X).

Property 3: cos(X, Y ) = 1; if X = Y .
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5 CASE STUDY

To validate our system, a simulation environment is established. The simulation
context proceeds as follows: we suppose that we have several cloud services providers
and each one provides a service. A client searches for optimal services that meet
their needs among these services, and each service has (m) criteria.

The simulation environment is a PC with the following configuration: Nvidia
GeForce GTX 1060 GDDR5, Intel Core i7-7700HQ CPU 2.80GHz and RAM 16GB.
The programming environment is Eclipse IDE 2020-09. The test data is based on
the QWS2 dataset [34] where the number of services is 4000. The neural network
was trained using 2600 services. Each service is composed of five criteria.

Figure 8. Classification process of the CC-ANN component

As a first phase, we develop a neural network to classify these services. Thus,
we assign each service to the appropriate class.

As shown in Figure 8, in the first step we train the neural network using
a dataset. We initialize our weights randomly then feed-forward the values from
one layer to the next. If the output is not equal to the desired value, we back-
propagate from the output neuron to the input neuron. We update the weights and
feed-forward the values. We repeat this process until we find the desired values and
obtain a model of a neural network.

In the Classification step (Figure 8), we use the model of the neural network to
classify services into three categories. Each class contains a set of services that have
the same range of values. The first class (CPC) contains 916 services, the second
(SPC) contains 640 services, and the last one (CSC) contains 444. After that, we
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make a copy list of these services and send it to the storage component. Then, we
transfer the result to the sorting component.

As a second phase, the sorting component uses the ELECTRE method to sort
and then eliminate services to find the best one in each class. The decision problem
is characterized by five parameters or criteria. All criteria are advantage criteria,
i.e., performance is better when the score is high.

The weights of the criteria are presented in Table 3.

Criterion Availability Cost Response Time Throughput Reliability

Weight 2 3 3 2 1

Table 3. Initialisation of the five criteria weights

Due to the large number of services in the dataset, we will take as a sample the
services S6, S8, S9, S907, S908 and S910. Therefore, the service performance matrix
of the first class, as illustrated in Table 4, is used to calculate the concordance matrix
C(a, b), which is illustrated in Table 5. This is calculated using the formula (1) that
was quoted in the previous section.

Service ID Reliability Cost
Response

Time
Throughput Availability

Service 6 61 68 1 046 2 178 68
Service 8 73 63 1 250 2 144 75
Service 9 81 124 1 244 2 060 85
Service 907 64 62 1 175 1 655 43
Service 908 73 63 1 188 1 963 50
Service 910 52 110 1 107 1 999 60

Table 4. Performance matrix of the illustrative example

Service ID Service 6 Service 8 Service 9 Service 907 Service 908 Service 910

Service 6 1 0.454 0.181 0.545 0.545 0.454
Service 8 0.545 1 0.454 1 1 0.727
Service 9 0.818 0.545 1 1 1 1
Service 907 0.454 0 0 1 0 0.454
Service 908 0.454 0.454 0 1 1 0.454
Service 910 0.545 0.272 0 0.545 0.545 1

Table 5. The concordance matrix relating to the illustrative example

We calculate the discordance matrix D(a, b) of our illustrative example using
formula (3), results are shown in Table 6. To obtain σ, we calculate, for each at-
tribute, the differences between all its values in the dataset. Moreover, the attribute
corresponding to the maximum value of these deviations is maintained. We then cal-
culate σ, which is equal to the maximum value of the maintained attribute minus its
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minimum value (see formula (4)). According to the QWS2 dataset, the maintained
attribute is the Cost attribute consequently σ = 140.

Service ID Service 6 Service 8 Service 9 Service 907 Service 908 Service 910

Service 6 0 0.085 0.4 0.021 0.081 0.3
Service 8 0.035 0 0.435 0 0 0.335
Service 9 0.0008 0.004 0 0 0 0
Service 907 0.178 0.228 0.442 0 0.064 0.342
Service 908 0.128 0.178 0.435 0 0 0.335
Service 910 0.064 0.15 0.207 0.085 0.15 0

Table 6. The discordance matrix relating to the illustrative example

After calculating the concordance and discordance matrices, the dominant ma-
trix is constructed from the two concordance and discordance indices. Thus, the fol-
lowing strong and weak outranking indices are obtained: C+ = 0.850, C− = 0.750,
D+ = 0.200, and D− = 0.300. We obtain the dominant matrix as illustrated in
Table 7.

Service ID Service 6 Service 8 Service 9 Service 907 Service 908 Service 910

Service 6 Strong – – – – –
Service 8 – Strong – Strong Strong –
Service 9 Weak – Strong Strong Strong Strong
Service 907 – – – Strong – –
Service 908 – – – Strong Strong –
Service 910 – – – – – Strong

Table 7. The dominant matrix relating to the illustrative example

Figure 9 shows the final rank between services, to get this graph we follow this
two properties:

• If service a outranks service b, an arrow starting at vertex a and ending at
vertex b.

• If no outranking relation exists between the two services a and b, then no arrow
can be drawn between the two vertices.

After that, we sort services to eliminate those with weak outclass relations.
A service with a weak outclass relation to another service means that the former
is included in the latter. The remaining services, which have not been eliminated,
are the best in each class. We use these services as an initial population. This
latter is used to generate new populations based on the good services. We repeat
the same process for the second and third classes, then transferring the resulting
services to the optimization component. The OC will consider each class as an initial
population. At first, the OC crosses a service from the first class with the services
from the second class. Then, we evaluate the new service. If the value is less than
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Figure 9. The outrank relation between services relating to the illustrative example

the fitness function, we eliminate the service. After crossing all services of the first
class with all services of the second class, we will obtain a new population. Then we
cross a service from the second class with the services of the third class, obtaining
a second population. After that, we cross the services of the new populations to get
the final one.

The final population contains hybrid services; the latter are abstract. To design
the optimal service, we must calculate the similarity between services already stored
in our storage component and those of the final population.

The similarity component (Figure 10) calculates the similarity index between
the best services of each class and services of the final population. In our case, we
use the Sim-Cos function. If the similarity index is in the interval [0.8:1], we keep
the service. Furthermore, we keep all services that have a high index. Then, we
send the list of these services to the client.

6 EXPERIMENTAL RESULTS AND EVALUATION

In this section, we evaluate our system based on the number of services in each class.
We assume that there are more than 100 services in each class. In the experiments
(1, 2, and 3), the values of response time and throughput do not change because
they include technical aspects (servers, computer network, etc.) as well as those
related to the interface ergonomics between the user and the system.

6.1 Experiment 1

The goal of this experimentation is to show the average of services in the client-
preferred-class (CPC) before and after optimization. As shown in Figure 11, the
values of response time, throughput, availability, reliability, and cost before op-
timization are, respectively, 1.12, 1.6, 83%, 89% and $ 110. After optimization,
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Figure 10. The similarity component functioning

availability increases from 83% to 92%, reliability from 89% to 96% and cost de-
creases from $ 110 to $ 93. Through this experimentation, we note that the values
of three criteria have been optimized, due to the number of crossed services.

Figure 11. Average of services in CPC before and after optimization

6.2 Experiment 2

The goal of this experimentation is to show the average of services in the SPC before
and after optimization. As shown in Figure 12, the values of the response time,
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throughput, availability, reliability and cost before optimization were respectively
2.1, 2.74, 74%, 82% and $ 135. After optimization, the availability increases from
74% to 89%, reliability from 82% to 93% and the cost decreases from $ 135 to
$ 100. In this experiment, we found that the number of crossing services led to an
optimization in the values of three criteria.

Figure 12. Average of services in SPC before and after optimization

6.3 Experiment 3

The goal of this experimentation is to show the average of services in the Common-
Services-Class (CSC) before and after optimization. As shown in Figure 13, the
values of the response time, throughput, availability, reliability and cost, before the
optimization, are respectively 1.52, 2.35, 85%, 81% and $ 120. After the optimiza-
tion, the availability increases from 85% to 96%, the reliability increases from 81%
to 94% and the cost decreases from $ 120 to $ 93. Due to the number of intersecting
services, we observe through this experiment that the values of the three criteria
have been optimized.

6.4 Experiment 4

The goal of this experiment is to evaluate our system according to the number of
services. To reach this goal, we vary the number of services from less than 100 to up
to 1000, then observe the values of the criteria. The experimental results are shown
in Figure 14. When the number of services is more than 100, the availability has
increased from 75.35% to 82%, the reliability has increased from 80.52% to 85%,
the cost has decreased from $ 141.58 to $ 130, and the response time and throughput
are unchanged. When the number of services is more than 500 and less than 1000,
the availability has increased from 75.35% to 90%, the reliability has increased from
80.52% to 92%, the cost has decreased from $ 141.58 to $ 115.4, and the response



MOOA-CSF: A Multi-Objective Optimization Approach for Cloud Services Finding 917

Figure 13. Average of services in CSC before and after optimization

time and throughput are unchanged. Finally, when the number of services is more
than 1000, the availability has increased from 75.35% to 99%, the reliability has
increased from 80.52% to 98%, the cost has decreased from $ 141.58 to $ 95, and
response time and throughput are unchanged. From these results, we can conclude
that the optimization rate increases accordingly with the increase of the number of
services.

Figure 14. Impact of the services number on the optimization rate
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7 CONCLUSION

Recently, with the development of cloud computing, the performance optimization
of cloud services has become a very attractive research topic. This paper develops
a new approach based on supervised learning and multi-criteria decision techniques
to optimize cost and performance of services in a cloud-computing environment.
Our approach uses an ANN to classify a set of cloud services. The inputs of this
ANN are the service features, and its output is the classification results, consisting
of two classes of cloud services. The first class comprises services preferred by the
client, while the second class consists of services preferred by the providers. The
ELECTRE method is employed to rank the services in both classes. Additionally,
we made adaptations to the GA to suit our system. The GA produces a hybrid cloud
service, which exists only in theory and not in practice. To resolve this issue, we
used similarity tests to quantify the similarity level between the hybrid service and
other advantages found in both classes. The experimental results demonstrate the
effectiveness of MOOA-CSF. Nevertheless, certain limitations exist in this study,
including the absence of optimization for response time and throughput. In our
future research, we intend to expand our approach by incorporating other crucial
criteria. Moreover, we aim to optimize response time and throughput using alter-
native optimization methods.
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