
Computing and Informatics, Vol. 42, 2023, 716–740, doi: 10.31577/cai 2023 3 716

INTEGRATION OF A CONTEXTUAL OBSERVATION
SYSTEM IN A MULTI-PROCESS ARCHITECTURE
FOR AUTONOMOUS VEHICLES

Ahmed-Chawki Chaouche

MISC Laboratory, University of Constantine 2 – Abdelhamid Mehri
Ali Mendjeli Campus, 25000 Constantine, Algeria
e-mail: ahmed.chaouche@univ-constantine2.dz

Jean-Michel Ilié

LIP6, UMR 7606 UPMC – CNRS
4 Place Jussieu 75005 Paris, France
e-mail: jean-michel.ilie@lip6.fr

Assem Hebik

MISC Laboratory, University of Constantine 2 – Abdelhamid Mehri
Ali Mendjeli Campus, 25000 Constantine, Algeria
e-mail: assem.hebik@univ-constantine2.dz

François Pêcheux

LIP6, UMR 7606 UPMC – CNRS
4 Place Jussieu 75005 Paris, France
e-mail: francois.pecheux@lip6.fr

Abstract. We propose a software layered architecture for autonomous vehicles
whose efficiency is driven by pull-based acquisition of sensor data. This multi-
process software architecture, to be embedded into the control loop of these vehicles,

https://doi.org/10.31577/cai_2023_3_716

Contextual Observation System for Autonomous Vehicles 717

includes a Belief-Desire-Intention agent that can consistently assist the achievement
of intentions. Since driving on roads implies huge dynamic considerations, we tackle
both reactivity and context awareness considerations on the execution loop of the
vehicle. While the proposed architecture gradually offers 4 levels of reactivity, from
arch-reflex to the deep modification of the previously built execution plan, the obser-
vation module concurrently exploits noise filtering and introduces frequency control
to allow symbolic feature extraction while both fuzzy and first order logic manage-
ment are used to enforce consistency and certainty over the context information
properties. The presented use-case, the daily delivery of a network of pharmacy
offices by an autonomous vehicle taking into account contextual (spatio-temporal)
traffic features, shows the efficiency and the modularity of the architecture, as well
as the scalability of the reaction levels.

Keywords: Autonomous vehicle, multi-process architecture, context-awareness,
contextual planning, reactive behavioral strategies, logical context modeling

1 INTRODUCTION

The design of autonomous vehicles is a highly active area of research. Develop-
ing a vehicle which is able to observe, plan and react safely with the surrounding
environment is a major challenge for both researchers and industrialists [1].

Different works in the autonomous vehicles domain and in particular on robotics
enhance some cognitive architectures dedicated to the representation of the human
mind. In particular, the symbolic architecture SOAR [2] is built on a two layered
system to capture both the human cognition processes and the operational activities.
Related concepts can also be modeled, such as attention and the motivations which
can have an impact on the design of an intelligent system [3, 4]. These works mostly
suggest a system composed of many connected processes, each one representing
a specific sub-task [5].

Moreover, various agent models have already been proposed to handle the ambi-
ent context. In particular, the Belief-Desire-Intention (BDI) approach which has the
advantage of introducing smart software agents with high level reasoning capacity,
mainly in terms of intentions (I), coming from agent Beliefs (B) and Desires (D) [6].
Since these native basic agents lack context awareness capacities, authors of [7] pro-
posed a reactive model as a supplement to the agent APL programming language in
order to control the software components of a robot. This work is related to software
multi-layered architectures, like 3T, ATLANTIS and LAAS [8], which all subsum
the agent behavioral information with the price to handle all the event messages
at the deliberative/planning layer. In this sense, the standard ROS operating sys-
tem [9, 10] emerges greatly in order to simplify the implementation of operational
physical robotic architectures.

Our main objective is to provide the autonomous vehicle with a guidance mech-
anism that computes an execution plan of actions while taking into account unex-

718 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

pected changes in the context. Thus, the main issue comes from the various and
numerous asynchronous events that may occur in the ambient environment that can
jeopardize the resilience of the vehicle. Being context aware, this vehicle needs to
identify its context correctly (traffic, road signs and traffic light, obstacles, current
location, etc.) to make the suitable decision at the right time. The context infor-
mation is acquired using sensors which may be physical (from hardware source),
virtual (from software applications or services) or logical (from composition of sev-
eral sources) [11] and passed as raw data inside a context aware system in order to
be analyzed, filtered and symbolized.

Due to its complexity, context-awareness is the subject of many works and stud-
ies. In [12], context aware system architectures are introduced and deployed in dif-
ferent applications. Other studies about context modeling and reasoning techniques
were presented in [11, 13, 14]. These works explore existing context aware systems,
context modeling approaches and identify the major challenges and requirements
for such systems.

Moreover, various techniques for data acquisition and preprocessing are pre-
sented in [15]. These studies present the different existing models for acquiring sen-
sor data, in addition to data smoothing and noise filtering techniques. Generally, the
design of a context aware system can be divided into sub-problems, consisting first
of acquiring the context, then modeling and reasoning about it. In particular, the
fact that sensors are relatively uncertain sources of information, requires the model
to be able to handle uncertainty while being consistent and expressive. Another
important aspect is the ability to represent relations between context information,
which helps in the reasoning phase to deduce more information about the context
and to check its consistency.

In this paper, we opt for Embedded Higher order Agent (E-HoA) architec-
ture [16], dedicated to context-aware autonomous vehicles. This architecture embeds
the high level BDI agent HoA [17] in a ROS-based platform. Actually, HoA agents
are particularly well-suited to handle the concurrency of intentions and learn from
past contextual information to provide appropriate execution plans that will be suc-
cessfully achieved if applied in a new but yet similar context. The presented work
can be viewed as an extension of the HoA approach to help the decision making of
a concrete self-driving vehicle. The E-HoA architecture has two main advantages:

1. From the ROS viewpoint, the agent is context-aware, it can learn from field
information and can react in real-time;

2. From the E-HoA viewpoint, reasoning on context information helps generate
symbolic intentions concretized as a plan of actions that can be scheduled then
performed at ROS level.

For the sake of efficiency, we aim to develop E-HoA architecture like a new
distributed platform based on multi-processes and a client-server protocol allowing
both synchronous and asynchronous communications. This is used to decentralize
the agent decision center in several pieces, while facilitating a coherent context-

Contextual Observation System for Autonomous Vehicles 719

awareness through subscriptions to services managing context information. Also,
we aim at showing that we can benefit from this decentralization to graduate the
vehicle reaction at different levels.

To reason on context efficiently, we propose a contextual observation system,
which offers context modeling and reasoning mechanisms occurring between sensors
and E-HoA layers. At ROS level, a specific node, called Acquire, is responsible
for collecting context raw data from different sensors, controlling the frame rate
then denoising and smoothing the raw data. The resulting data are delivered to an
Observation process situated at the E-HoA level. Next, the processed data are passed
to a helpful fuzzy logic processor in order to be symbolized, knowing that sensors can
provide misleading values sometimes and that the vehicle cannot have a universal
knowledge of the real context, therefore inconsistency problems are very likely to
happen. To solve such problems, we use an expressive context model that takes into
account the certainty of context information, and helps in the reasoning process to
detect inconsistencies. Furthermore, the reasoning process allows us to infer new
context information based on the specification of defined rules and relations.

The outline of the paper is as follows: Section 2 presents the multi-process
E-HoA architecture, which is able to execute the vehicle intentions and actions on
a ROS system, by means of contextual planning and learning mechanisms. The
nominal loop of the vehicle behavior is detailed. Section 3 identifies and details four
different levels of reactions, trying to maintain much of the vehicle intentions. In
Section 4, we present how context observation is achieved following the life cycle of
sensed data from acquisition to reasoning followed by a brief sample demonstrating
the utility of our approach. In Section 5 for efficiency purposes, we show how to
deploy the E-HoA processes on a concrete distributed platform. Then, a delivery
use case is presented based on a city road map to demonstrate the E-HoA interest
in practise. Section 6 discusses our approach with regard to related works. The last
section concludes and outlines our perspectives.

2 E-HOA LAYERED ARCHITECTURE

Like many autonomous driving systems, the goal of the proposed E-HoA architecture
is to develop the fixed computational building blocks necessary for general cognitive
agents. Those agents can perform a wide range of tasks like path planning, decision
making, or problem solving. E-HoA is a computational implementation of a theory
that combines BDI reasoning concepts and their physical concretization as a set
of maneuvers for an autonomous vehicle, while at the same time considering the
dynamic evolution of its surrounding spatio-temporal context.

As stated by Figure 1, E-HoA architecture is composed of four layers that are
vertically tightly coupled to achieve a good level of performance and accuracy. Con-
cretely, E-HoA consists of a set of cooperating processes that altogether define the
robot behavior by exchanging synchronous and asynchronous messages using a pub-
lish/subscribe paradigm and taking advantage of a graph-based database for plan-

720 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

Planning
process

Execution
process

Mental
process

Field	layer
Observation
process

Action
process

Context
process

Learning
process

Acquire

Lidar	Ctrl. Motor	Ctrl.

Context
DB

Drive

sync.	msg
async.	msg

subscription

Process

I

Context	layer

Symbolic	layer

σ

a

rl3

rl4
δ(a)	 fc(a)	

o

rl1

ROS	layer Camera	Ctrl.

ROS	node

Observation
process

Action
processrl2

m*

Figure 1. Embedded Higher-order Agent (E-HoA) architecture

ning. The lower layer instantiates two ROS nodes (Acquire and Drive) to allow
E-HoA to be interfaced with all the available ROS building blocks such as sen-
sor/actuator libraries or higher level software components such as Simultaneous
Localization And Mapping (SLAM) proposed by the vivid ROS community [10].
The context layer is of particular interest as it constitutes the long and short term
memory needed at all the levels of learning and reasoning.

The Symbolic Layer. All the high-level decisions of the E-HoA agent are taken
at the symbolic layer according to its context information. The major process in
this layer is theMental process which reasons in terms of Beliefs (B), Desires (D)
and Intentions (I) [6]. Aiming at optimizing the achievement of the agent’s
intentions, the Mental process asks the Planning process on the same layer to
compute an optimal plan of symbolic actions (σ), with respect to the original
intentions (I) and the available context information data. Then, the Mental
process asks the Execution process to perform in order, the actions defined by
the plan.

The Field Layer. The field layer is the concrete layer of the E-HoA architecture.
In practice, the Action process of the field layer receives symbolic actions from
the Execution process and converts each symbolic action (a) into a finite set
of implemented maneuvers (m∗) controlling the robot operations. To provide
context-awareness, a second process called Observation process is responsible
for capturing the real-world physical values from the robot and its ambient
environment that will be abstracted and symbolized (o) to enrich the context
layer. The Observation process mainly aims at acquiring raw or abstracted
information from the different sensors and actuators.

Contextual Observation System for Autonomous Vehicles 721

The ROS Layer. The Action and Observation processes of the E-HoA architec-
ture are in direct contact with their ROS nodes counterparts that manage the
sensors (LIDAR, camera, IMU) and actuators (left and right motors). This layer
relies on ROS and simplifies the interfacing of E-HoA with real robotic systems.
In particular, it allows the seamless shift from a simulated vehicle and environ-
ment modeled with Gazebo (ROS modeling and simulation tool) to a physical
robot operating in a real world.

The Context Layer. The context layer is inserted between the symbolic (Higher
layer) and field (Middle layer) layers. It is composed of two main processes.
The first one, namely the Context process, aims at storing the observed context
information for later retrieval. Like the Observation process, it also acts as an in-
formation provider other processes can subscribe to. Three kinds of symbolic
information managed in practice: The state context manages the state of the
robot elements and also the environmental information (weather consideration,
states of the road map and of the different environmental objects); the execu-
tion context yields the current state of the execution plan; finally, the historical
context contains information about the performances of the robot activities, in
terms of intentions, plans, actions and maneuvers. The second process of this
layer is the Learning process. This pivotal process learns about the context in-
formation in order to help decide some optimization criteria [18]. For instance,
it optimally computes the best path between several locations, by managing
a road map viewed as a graph and estimating the transit durations of the road
map sections.

2.1 Inter-Processes Communication

Altogether, the three upper layers (symbolic, context and field) cooperate and ex-
change information to consolidate behavior of the robot at all times. E-HoA archi-
tecture as a distributed system is a set of concurrent processes with coordinate and
communicate thanks to services according to a client/server (synchronous) approach
or a publisher/subscriber (asynchronous) formalism. Messages exchanged fall into
one of the three following categories:

Synchronous message which provides a simple transmission scheme: Client pro-
cess sends a request and waits for an immediate reply message from the requested
server.

Asynchronous message which provides a bidirectional scheme: Client process
sends a request and is notified by the server with one immediate or delayed
reply message.

Subscription message which provides a publish/subscribe mechanism, thus ex-
tending the asynchronous message scheme: Client process sends a subscription
request to be notified with several intermediate responses coming from the server
process. Such a subscription scheme is useful when a client needs milestone re-

722 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

porting about the progress of a significantly long operation such as the conversion
of a symbolic action into the corresponding set of maneuvers.

2.2 E-HoA Execution Loop

r(σ)

Observation
process

*

ROS
nodes

Concrete
execution

Execution
proc.

fc(a)

r(m)

get(expa)

Learning
process

{σ0 ,...}

get(expa)aI

Planning
process

*

Action
process

*

Mental
process

get(ctx0)

Context
process

set(expI)

δ(a)
σ

* a

get(expm)
m

set(expm) r(a)

set(expa)

r(I)

expa

a

m0m1...mn
expm

a

set(o)

acquisition

*

1 3
45

6

7
8

9

10
11

get(lipa)

Plan
update

2

1213

15

15

14

σcur

σ'cur

Figure 2. Nominal E-HoA execution loop

The nominal E-HoA loop addresses first the execution of an intention by means
of some successive refinements up to the concrete execution of maneuvers. This
principle is highlighted here due to the fact that a set of intentions are executed
concurrently.

Figure 2 is an UML sequence diagram that details how the four layers of the
E-HoA architecture cooperate to define its behavior. It all begins with a starting
set of intentions I acquired by the Mental process (1). The mental process has to
compute an execution plan (a set of ordered symbolic actions) and is assisted in
its task by the Planning process which analyses the different plans associated with
the intentions according to an available spatio-temporal context. The Planning
process can eventually get information from a library of action plans (2) available
through the context layer. For each action a of the actions related to an intention I,
the Planning process may ask the Learning process some experience data get(expa)
(3) to evaluate the duration of a (4). The Planning process may then accumulate
all the duration-weighted actions to return a list of feasible sequences of actions
{σ0, . . . }, among with an optimal one (σ) in terms of duration {δ(a)} (5). Thus,
Planning is a complex process as it may require the service of the Learning process
to get a good estimation of the duration of each considered action a concretely (for
instance, see [18]). It also should be noticed that the ROS node responsible for data
acquisition and dynamically notifies the Observation process with environmental
data that, once correctly abstracted, are used to feed the context (15).

In general and with respect to the currently available context, the Mental process
selects one optimal action sequence σ and then delegates its achievement to the

Contextual Observation System for Autonomous Vehicles 723

Execution process (6), which is responsible for the correct overall execution of the
sequence. It is helped by the Learning process (7) which can determine the potential
failure conditions restraining the execution of the actions (fc(a)). In order to control
the concrete execution of actions, a maximum timeout duration is computed for each
action and is considered the single condition which triggers the failure of the action.
The Execution process can then delegate the concrete execution of action a to the
Action process (8).

For all the consolidated actions, the Action process asks the Learning process
(hence also the Context process) the list of learned corresponding maneuvers (9) and
then performs them in order. To actually compute the most efficient decomposition,
the Action process may ask the Learning process for the Contextual Shortest Path
(CSP) to a given point on the map (according to the evolution of the spatial-temporal
context).

Hence, each symbolic action is decomposed into a series of individual maneuvers
that are propagated to the vehicle motors. The Action process is directly connected
to the ROS node that actually drives the vehicle and materialize the execution (10).

Once a specific maneuver is completed, it notifies the Action process with the
result of m (denoted r(m)), success or failure (11). The success or failure of a spe-
cific maneuver reinforces the E-HoA experience (expm) and the context database is
updated accordingly (11).

When the list of maneuvers corresponding to an action a has been entirely
processed or in contrast when a problem is detected from some maneuver, the Action
process notifies the corresponding outcome of a (r(a)) to the Execution process (12).
As before, the success or the failure of an action a may be used to increase the
E-HoA experience (expa). The context database is updated accordingly (13). The
Execution process can then proceed to the update of the execution plan with respect
to the actual duration time for action a, and thus accumulate experience on its
concrete realization (14).

When an execution plan composed of a list of actions has been fully completed
or in contrast when one action turns in failure, the Mental process is notified of the
intentions that are achieved or failed (15). The Mental process can then deliberate
implying possible changes in the considered set of the intentions, before retriggering
the so-called nominal loop. It is worth noticing that the intentions that remains in
activity can simply be resumed from their reached execution state, as in [19].

3 MULTI-LAYERED AND CONTEXT REACTIVE STRATEGIES

The E-HoA layered architecture provides four means to handle external or unex-
pected events, each of which depending on the complexity of the appropriate han-
dling routine to be executed. These handling routines correspond to four reactivity
levels (rli), depicted as red connection lines in Figure 1. E-HoA is thus able of adapt-
ing itself to evolution and changes of the spatio-temporal context. From a system
viewpoint, unexpected events correspond to interrupts with respect to the previously

724 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

described nominal execution loop. Accordingly, the four reactive levels correspond
to the four levels of Interrupt Service Routines (ISR) provided by E-HoA.

Figures 3, 4, 5 and 6 are UML sequence diagrams that respectively detail the
four reactive levels noted rl1 to rl4, according to the duration and latency of their
management (from the simplest and quickest rl1 that involves only the ROS layer
to the most complex rl4 that may impact the whole architecture).

Execution
proc.

Observation
process

ROS
nodes

Learning
process

Planning
process

Action
process

Mental
process

Context
process

rl1

acquire
1

Figure 3. Functioning of arch-reflex (rl1) strategy

The lowest reactivity level, rl1 or arch-reflex, operates only at the ROS layer
level, and represents the ability of E-HoA agent to have vehicle reflex capabilities,
i.e. the ability to react with a very small latency to immediate events that would,
if not correctly and quickly handled, cause trouble to the vehicle (car crash) or the
environment (person injury when the vehicle runs into a human being). The different
sensors on the vehicle (LIDAR, distance sensors) and the two ROS nodes (Acquire
and Drive) cooperate to constitute altogether a pre-mitigation braking system that
can avoid or get around obstacles (1). From an architectural viewpoint, the ROS
action node subscribes to the observation topics serviced by the ROS Acquire node
(hence the direction of the arrow in the rl1 connection). In practice, the appropriate
response is to successively stop the currently executed maneuver, execute the “get
around” maneuver service routine, and resume the executed maneuver. It is worth
notifying that the upper layers could not be notified with this local modification of
maneuvers.

Execution
proc.

Observation
process

ROS
nodes

Learning
process

Planning
process

Action
process

Mental
process

Context
process

r(m)

a

get(expm)
m

r(a)

a
m0m1...mn*

rl2

acquire *

r(m')

m'

*
get(expm')

a

m'0m'1...m'n
*

expm

expm'

2

3

4
5

6
7

Figure 4. Functioning of field-reflex (rl2) strategy

The second reactivity level, rl2 or field-reflex, allows the E-HoA agent to cor-
rectly handle situations where a specific maneuver m cannot be achieved, due to an
unexpected spatio-temporal condition (a specific section of the path to be followed
by the vehicle as part of its maneuvers corresponding to the current execution plan

Contextual Observation System for Autonomous Vehicles 725

happens to be an unexpected traffic jam). Figure 4 shows how the management
of such a case is dealt with by E-HoA. Consider an action issued by the Execution
process and sent to the Action process, which in turn asks the Learning process to
give back the correct sequence of maneuvers to be performed (2). Once the sequence
is obtained, the corresponding list of maneuvers is executed in order (3). The ROS
Acquire node may notify the Observation process with the event of an intractable
maneuver (4), corresponding to an rl2 reflex. In that case, the Action process has
to request from the Learning process an alternative action, with its associated ma-
neuvers m′

0 to m′
n (5). The calculated sequence of maneuvers is then executed as

a whole (6), provided no blocking event is detected during this re-execution (7).

Execution
proc.

expa'

Observation
process

ROS
nodes

Learning
process

Planning
process

Action
process

a' r(a')

Mental
process

Context
process

*
a

r(a)

σ

rl3

acquire

get(expb)

getPlan(rl3)

b0;b1;...;bn

Execution plan
update

*

expa

r(σ)

Execution plan
update

Execution plan
modification

8

9

10

11
12

* δ(b)b

Figure 5. Functioning of action-reflex (rl3) strategy

The third reactivity level, rl3 or action-reflex, is activated when a specific action,
part of an execution plan cannot be achieved anymore, due to the accumulated
delays resulting from the execution of the previous actions in the execution plan or
due to specific and urgent conditions such a “battery low” event coming from the
Observation process. On the reaction diagram of Figure 5, this action-reflex occurs
during the nominal execution of an action (8). When this event occurs, originating
from the ROS Acquire node and Observation process, it is directly sent to the
Execution process, that has to take the appropriate steps to modify the current
execution plan, according to the new context (10). This involves recomputing the
new execution plan σ′, including the new actions b0 to bn (11). Once calculated,
the updated execution plan is communicated to the Execution process that obtains
a new chance to perform it until its successful completion (12).

The fourth reactivity level, rl4 or intent-reflex, impacts the whole E-HoA ar-
chitecture because it has a direct effect on the symbolic layer and the intentions
considered by E-HoA agent. Events that can lead to the global re-evaluation of in-
tentions can be related to global environmental conditions such as weather changes.
Considering a currently set of intentions I (13), if the sensors detect a major change
in a condition (snowfall in several but not all regions) that can sensibly modify the
correct achievement of the intention (14), the Mental process must be notified with
this global condition “snowfall forecast”, that is simultaneously saved in the context
database. Once warned, the Mental process deliberates and possibly discards the

726 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

σ'

I'

Execution
proc.

Observation
process

ROS
nodes

Learning
process

Planning
process

{σ0 , ...}
I

Action
process

Mental
process

Context
process

σ acquire

rl4

Intention
revising

{σ'0 , ...}

r(σ')

set(rl4)

abort Execution plan
abortion

13

14

15

16

Figure 6. Functioning of intent-reflex (rl4) strategy

intention (15) and a new planning-execution schema is generated that takes this
global contextual change into account (16).

4 CONTEXTUAL OBSERVATION SYSTEM

Context-aware systems are responsible for raw data acquisition from sensors, noise
reduction, and data-clearing. The acquired data passed then into features extrac-
tion. This low level data is used in the reasoning process for aggregation and com-
position then for validating the consistency of these acquired data.

battery_state

S
e

n
s o

 r
s

ROS

laser_scan

temperature

relative_humidity

rain

image

odometry

 Acquire E-HoA Client

E-HoA

Observation
process Perception

messages

ROS topics
messages

ROS topics
messages

Phase 1 Phases 2 & 3

sync. msg

Process
ROS node

subscription

Figure 7. Observation System Architecture

The proposed architecture in Figure 7 describes a distributed context aware
system which uses a blackboard model to serve context data acquired by sensors.
Components of the system use neither the same protocols nor the same type of
messages, however, each two components directly connected must use the same
protocol to be able to send and receive messages between each other.

The proposed contextual observation system is organized in three segments:
Sensors, ROS and E-HoA. This allows us to divide the complex tasks into smaller
and simpler ones while adding more flexibility to the system. Moreover, a whole
segment may be distributed or replaced without any breaking changes to the other
segments.

Contextual Observation System for Autonomous Vehicles 727

The Sensors segment represents sensors of all types, having one basic goal which
is sending raw data from sensors to the ROS segment. Sensors may use any
protocol and any type of message when sending their data as long as the adapter
node in the ROS segment implements the same protocol.

The ROS segment is a software part that acts like a bridge between Sensors and
E-HoA layers. In particular, Acquire node is responsible for frequency control
and noise-reduction of sensed raw data: It reads data from sensor adapters us-
ing ROS topics in subscriber mode; Once the data is acquired, it controls the
frequency and reduces noise; Then, it analyzes processed data and outputs per-
ception messages.
Acquire node implements an E-HoA client in order to send synchronously per-
ception messages to the Observation process of E-HoA.

The E-HoA segment includes all the E-HoA processes, in particular Observation
one. After receiving filtered context data from Acquire node, the Observation
process applies low level and high level processings: First, it symbolizes the
filtered context data with a fuzzy logic mechanism, then the resulting data can
be processed with a first order logic technique which applies composition or
aggregation to them.

In order to obtain relevant context data, we proceed in three successive stages:
The acquisition of context data, its symbolization and reasoning about.

4.1 Data Acquisition Phase

In this phase, the Acquire node applies noise reduction and frequency control of
sensed raw data. The fact that the sensors are not precise even if the quality
of the sensor is high, a noise reduction mechanism is necessary to eliminate the
inaccurate values. Noise reduction also called data clearing may be achieved using
many different models. Regression models are considered among the most efficient
models, these models compute the dependency from sensor value with respect to
time, and then consider the regression curves as standards over which the sensor
values reside. Otherwise, probabilistic models can also be used for data clearing.
The expected natural range for the next sensed value is calculated based on the
previous values. As in [15], the value is then excluded if it is outside the calculated
field.

In our approach, we use the Savitzky-Golay smoothing filter [20] which performs
a local polynomial regression of degree K on a series of sensed values to determine
for each one the smoothed value. It thus preserves distribution features of values
such as relative maxima, minima and width.

Let D be the set of all possible sensed values. Applied in a period of time ∆t,
we use the Savitzky-Golay filtering function filter : 2D ×N×N → 2D. The applying
of filter(D,win, deg) corresponds to filtering the set D of input raw values, such
that win is the number of values to consider when smoothing each value, and deg
is the order of the polynomial that will be fitted to those raw data (deg < win).

728 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

For example, to filter the raw data from temperature sensor, we can apply Ftemp =
filter(Dtemp, 5, 2).

In addition to noise, the frequency of sensing can vary according to the physical
sensor types. In the case of very high frequency sensors, the observation system can
be quickly overwhelmed with a massive amount of data. Although we can decrease
this frequency and save energy by configuring sensors, we can take advantage of
high frequencies to increase the accuracy of information. One solution would be
to collect the filtered values in a container for a specific period, then calculate
only one value that represents all the other ones. We use the frequency control
function freq : 2D → D. For instance, we can simply use the average function
freq(F) =

∑
v∈F v/|F |, where F is the set of filtered raw data.

Indeed, this solution should not be overused at the expense of other proper-
ties such as excessive energy consumption or over-exploitation of computational
resources.

Once filtered and smoothed, the sensed data is wrapped by the Acquire node
in a standard message, called the Perception message. In addition, the Perception
message contains the information of the sensor which acquired the data as well as the
moment of acquisition. Thus, the Acquire node swallows different types of messages
(via ROS topics) into a one standard perception message, which has the following
global shape:

PerceptionMessage = {

"type" : "temperature",

"params" : { "value" : 21, "unit" : "C", "seq" : 101,

"timestamp" : 1594672461 }

}

4.2 Symbolization Phase

The goal of context symbolization is to transform raw data into atoms, called context
information. Upon receiving a perception message from Acquire node, the Obser-
vation process performs the extraction of context information. There are many
techniques that can be used to give the received raw data specific meanings. Each
of these techniques has a particular goal in a particular use case as stated by [12]:
Some techniques have been used for detection, classification and identification, like
neural networks or Bayesian networks. Other techniques have been proposed to
deal with uncertainties of data, such as logical templates, knowledge bases and
fuzzy logic.

In our symbolization approach, we opt for fuzzy logic for its expressiveness and
flexibility. The fuzzy logic can handle problems with imprecise and incomplete data.
Further, at the symbolization level, it should not have a strict judgment on the con-
text information, which helps the Observation process to reevaluate these judgments
in the reasoning phase to be consistent with the other context information.

Contextual Observation System for Autonomous Vehicles 729

Definition 1 (Context information). The context information is a tuple ⟨element ,
value, certainty⟩, where element is the context element to be described, value is
either a value/state of this element, and certainty ∈ [0, 1] is the extent of the credi-
bility of the information.

The Observation process receives a sensor acquired value as an input and pro-
duces a context information as an output. Processing a sensor value without con-
sidering other sensor values around its context could lead to undesirable results.
Therefore, all relevant values from other sensors are merged together to obtain more
precise and relevant context information. For instance, the weather context infor-
mation does not only depend on the temperature value, other factors such as relative
humidity, altitude, season, and day period also matter.

In the following example, weather context information is produced from only
temperature and relative humidity. The possible labels for these variables are:

• temperature ∈ {low , average, high},
• humidity ∈ {low , average, high},
• weather ∈ {cold , normal , hot}.

Many fuzzy membership functions exist, the ones which can be applied for tem-
perature variables are: linear function for low and high, and triangular function for
average. The set of rules for this example is:

• if temperature is average and humidity is average then weather is normal ,

• if temperature is low and humidity is high then weather is cold ,

• if temperature is high and humidity is low then weather is hot .

For example, if the temperature is 26◦C and humidity 43% then the resulting
weather context information is ⟨weather , cold , 0.1⟩ and ⟨weather , normal , 0.7⟩ and
⟨weather , hot , 0.2⟩.

As with weather context, all other types of context can be symbolized in the
same way but using different variables and rules. However, object detection in
image raw data is achieved using the YOLOv3 algorithm [21], as it is one of the
best algorithms for applying real time detection accurately. The YOLOv3 classi-
fication process produces also context information with the same parameters, like
⟨TrafficLight , red , 0.75⟩ and ⟨TrafficLight , orange, 0.25⟩.

4.3 Reasoning Phase

In the reasoning phase, we first represent context information in a consistent form us-
ing first order logic predicates by using Prolog language, then we apply composition
and aggregation of context information and a consistency validation. For context
modeling, we need to represent information in a generic, consistent and expressive
model which makes reasoning more efficient and easy to do.

730 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

In this paper, the context information are written in logic expressions by using
SWI-Prolog tool [22]. In fact, SWI-Prolog is the most popular implementation of
Prolog and supports a large number of features.

In this phase, we consider two types of context information: knowledge or
facts that have certainty equaling to 1, and assumptions that have certainty be-
tween 0 and 1. In Prolog, the context information is expressed by the predi-
cate ctx (element , value, certainty). For the sake of clarity, the knowledge predicate
ctx (element , value, 1) is simply expressed as ctx (element , value). For example, the
assertion “It is hot in Paris at night”, can be expressed in SWI-Prolog as:

ctx(temperature , hot) * ctx(place , ’Paris ’) * ctx(period ,

’night ’).

In order to group many context information having the same context, we use
the binary operator “*”, instead of operator “and”, to make the final expression
unbreakable. This operator already exists in SWI-Prolog, however we simply define
it in any other logical language.

Relations between context information is a critical factor in reasoning, thus
a good representation of relations makes reasoning more efficient. Relations are
expressed with only one predicate, like for context information.

Definition 2 (Context relation). A context relation is a binary relation represented
by a tuple ⟨term1, relation, term2, correlation⟩, where term1 and term2 are the re-
lated operands of the relation, relation is the name of relation and correlation ∈ [0, 1]
is the relation value for some relations that needs to be estimated.

In Prolog, the context relation is simply expressed by the predicate rel(term1,
relation, term2, correlation).

Relations are defined by their properties before they are used. We use the
predicate define(relation, property) to define the logical property relation relation
with the binary relation property property . All the possible relation properties are
supported. Using SWI-Prolog, we can trivially define the axioms for the most used
properties (reflexive, transitive and antisymmetric):

rel(A, R, A, V) :- define(R, reflexive).

rel(A, R, B, V) :- define(R, symmetric), break(B, R, A, V).

rel(A, R, B, V) :- define(R, transitive), break(A, R, I, V),

rel(I, R, B, V).

In order to avoid infinite loops in axiom definitions, we use break predicate to
break it. Like for context information predicate, we simply express the relation with
absolute correlation rel(term1, relation, term2, 1) as rel(term1, relation, term2).

Contextual Observation System for Autonomous Vehicles 731

4.4 An Illustrative Sample

Specifically, to apply the reasoning phase, we need to define each relation by its
properties, then we specify rules and facts. Finally we query the knowledge base for
results.

Rules Definition: In the following sample, we use three relations locatedIn, near
and surroundedWith.

define(locatedIn , transitive)

define(near , symmetric)

Rule Set: We add two rules to demonstrate the efficiency of reasoning phase and
the simplicity of rules definition:

Rule 1: If PLACEA is located in PLACEB and temperature is TEMP in
PLACEB with certainty of CERT , then the temperature is TEMP in
PLACEA but with lower certainty say like 0.9 ∗ CERT .

ctx(temperature , TEMP , NEW_CERT) * ctx(place , PLACE_A ,

1) :-

rel(PLACE_A , locatedIn , PLACE_B ,1),

(ctx(temperature , TEMP , CERT) * ctx(place , PLACE_B , 1)),

NEW_CERT is (0.9 * CERT).

Rule 2: If PLACEA is surrounded with mountains and PLACEB is near
PLACEA and temperature is normal in PLACEA with certainty of CERT ,
than the temperature is cold in PLACEB but with lower certainty say like
0.8 ∗ CERT .

ctx(temperature , cold , NEW_CERT) * ctx(place , PLACE_B ,

1) :-

rel(PLACE_A , surroundedWith , mountains , 1),

rel(PLACE_B , near , PLACE_A , _),

(ctx(temperature , normal , CERT) * ctx(place , PLACE_A ,

1)),

NEW_CERT is (0.8* CERT).

Facts:

rel(’Ile -de -France ’, locatedIn , ’France ’, 1).

rel(’Paris ’, locatedIn , ’Ile -de -France ’, 1).

rel(’Sorbonne -Univeristy ’, locatedIn ,’Paris ’,1).

rel(’Versailles ’, near , ’Paris ’, 0.7).

rel(’Paris ’, surroundedWith , mountains , 1).

ctx(temperature , normal , 0.9) * ctx(place , ’France ’, 1).

732 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

Results:

ctx(temperature: normal , 0.90), ctx(place:’France ’)

ctx(temperature: normal , 0.81), ctx(place:’Ile -de -France ’)

ctx(temperature: normal , 0.72), ctx(place:’Paris ’)

ctx(temperature: normal , 0.65),

ctx(place:’Sorbonne -Univeristy ’)

ctx(temperature: cold , 0.65), ctx(place:’Versailles ’}

Remarkably, by defining relations with axioms, the temperature in one place
allows us to conclude the temperature in the places related to.

We can increase, decrease and make decisions depending on the value of cer-
tainty for context information. Moreover, using different relation properties like
reflexive and transitive leads to many results about the same context information.
In case many concluded assumptions give the same value with different degrees of
certainty, an average function can be applied to produce a more accurate result.
Otherwise, when some of these results are inconsistent assuming that the defined
rules are reliable and do not produce contradictions, it is possible to identify the
wrong assumptions.

5 USE CASE

5.1 Physical Implementation: E-HoA on a Robotic Platform

The E-HoA agent can be implemented on many robotic platforms. For the purpose
of validation, we used the widely available Robotis Turtlebot3 Burger1. TurtleBot3
is a small, affordable, programmable, ROS-based mobile robot for use in education,
research, hobby, and product prototyping. It is composed like a layered infrastruc-
ture with spacers that can host the different electronic and mechanical parts, such as
the continuous servo-motors with encoders for accurate ground movements, a board
for controlling these motors and acquiring measures from different sensors (OpenCR
for Turtlebot3), and a Raspberry PI 3 Model B2 on which runs the ROS framework3.
Connected to this board, a LIDAR continuously scans the surrounding walls and
obstacles. In addition to this standard Turtlebot3 setup, we have added two com-
plementary cameras, one connected to the Raspberry PI 3 for road tracking, and
an independent IP camera for observation and detection of objects of interest. The
stream captured by the wireless cameras can be transmitted to an off-vehicle GPU-
equipped device, an Nvidia Jetson AGX Xavier, for processing object recognition
and tracing.

1 https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
2 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
3 https://www.ros.org/

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.ros.org/

Contextual Observation System for Autonomous Vehicles 733

Sensors and actuators

OpenCR

Planning
process

Execution
processMental

process
Observation

process
Action
process

Context
process

Learning
process

Acquire

Context
DB

Drive

rl subscription
Process

ROS node

rl2

rl1

Raspberry Pi 3

Nvidia Jetson AGX Xavier

Base station computer

rl3

ROS Nodes

Wireless comm.

External services

Traffic API

Direction API

Geocoding API

Weather forecast API
Perc.

orl4

Figure 8. A possible hardware deployment for E-HoA architecture

5.2 Software Considerations: Mapping the E-HoA Processes
to Computing Resources

From a system process viewpoint, the E-HoA agent is nothing more than a reduced
set of communicating processes that need to be mapped on available computing re-
sources for efficient execution. Due to the demanding amount of computer resources
needed by certain tasks (for instance, the observation process requires efficient im-
age processing), some processes or subprocesses may be distributed to computing
resources off-vehicle, such as running Convolutional Neural Network software. Also,
external services provided in the cloud can be useful to adapt the robot behavior.
Figure 8 highlights how the four layers of the E-HoA architecture can be efficiently
distributed other a hardware:

• The Mental and Planning processes support the BDI information for mobile
applications. Put on the same computer, the Mental process can easily request
one or possibly several occurrences of the Planning process to finally develop
an execution plan solution.

• The Learning process supported by the Context process relies on an efficient
management of history, experience and road map data. For that purpose, we
took advantage of the Neo4j graph-oriented database4, that is particularly good
at handling consistency of the acquired spatio-temporal data. This NoSQL
Database Management System (DBMS) has been selected because of its intrinsic
ability to represent relevant history, experience, map and execution plan with
a simple paradigm, nodes containing properties and connected by relations also
having properties. This way, experiences are not only spatially specified but also
temporally, thus defining a global spatio-temporal context for each experience.
The Neo4j DBMS can even run on the Nvidia Jetson AGX Xavier card with
noticeable performance that brings great flexibility in the actual mapping of
E-HoA processes onto computing resources.

4 https://neo4j.com/

https://neo4j.com/

734 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

• The execution chain, from the Execution and Action processes to the various
ROS nodes, is deployed on a Raspberry Pi 3 directly embedded on the Turtle-
bot3, so that all the operational activities of the guidance mechanism are con-
centrated on a single card. The Observation process also runs on the same
card, which reveals an efficient way to feedback the environmental information
in symbolic terms for playing the nominal and reactive routines.

Choosing ROS as the underlying operating system for E-HoA is natural for de-
velopment simplicity and portability. Thanks to ROS-compatible tools like Gazebo5,
the E-HoA vehicle and its operating environment can globally be modeled and sim-
ulated in 3D, prior to any physical implementation. Once the Gazebo graphical
simulation running the E-HoA agent operates correctly, a standard ROS methodol-
ogy exists that allows to seamlessly shift from virtual simulation to a real physical
vehicle operating in a real full-fledged environment. A meta-tool named E-HoA
editor has specifically been designed to encapsulate Gazebo in order to automati-
cally perform the correct-by-construction and parameterized procedural generation
of scalable use cases.

5.3 Motivational Example: Pharmacy Drug Delivery
with Opportunistic Situations

We consider an imaginary city with pharmacies situated in an urban region. Phar-
macies handle client prescriptions and transmit the corresponding drug orders to the
drug deposit when they do not have the prescribed drugs in their local stock. The
drug deposit receives a list of orders/intentions coming from different pharmacies
and enjoins an autonomous vehicle to deliver the prescriptions to the appropriate
pharmacies, on a daily basis. The targeted vehicle is an electrical autonomous robot
equipped with all the previously described features. Assuming a daily order per
each pharmacy, the Mental process of the E-HoA agent for contextual execution is
helped by the Planning and Learning processes to select the best road sections to
schedule the deliveries in a daily tour. The Execution process is then in charge of
supervising this daily tour while the Action process can control the execution of each
underlying symbolic action, mainly some move operations targeting pharmacies, to
be converted on maneuvers over the road map. These processes may delegate to
the context process the checking of contextual constraints put on the execution of
actions, from those directly solved through the neo4j request language to the more
complex prolog-based logical formulas.

It may appear that the delivery truck somewhere can suffer from an event “bat-
tery low”, due to unexpected traffic jam in some sections or cross-sections of the
city map. As the Action process is the single one specified to react at level rl2, it
has subscribed to the Observation process to be informed about this kind of event.
Once detected, the current move is stopped by the Action process, so that to be

5 http://gazebosim.org/

http://gazebosim.org/

Contextual Observation System for Autonomous Vehicles 735

replaced by a move to the closest garage, as precised by the Learning process. Once
refueled, the Action and Execution processes can offer different ways to resume the
daily tour. Thus, the Action process helped by the Learning process could positively
evaluate a new series of maneuvers to reach in time the target of the move currently
stopped. On the contrary as a service result, the Action process must inform of the
failure the Execution process which must try in its turn to find a way to finish the
remaining actions in the tour, from the garage location.

It is worth noting that the more ‘low’ in the layers is the event taken into account
the more efficient is the reaction. In particular, when the computation of a totally
new execution plan is finally required due to the fact the execution fails to maintain
the remaining current one, this should require a deliberation by the Mental process
and a heavy activity of the Planning process over a set of intentions.

6 DISCUSSION

The design of context aware systems is an active area of research and a major chal-
lenge from raw data acquisition, context modeling and reasoning. Many frameworks,
toolkits and middlewares tried to overcome various challenges, like [23, 24].

For the acquisition of context information, diverse models were proposed in [11]
from the direct access to sensors to complex proxy middleware. For the sake of
robustness and availability, the E-HoA architecture privileges an hybridization of
the context information models; The Acquire ROS node implements direct access to
field values while the Context process implements both a basic synchronous service
and a (asynchronous) blackboard data-centric approaches.

When developing a context-aware system, the choice of a context information
model is a corner point since this has impacts on the complexity of context-aware
applications, their maintainability and evolvability. Existing approaches vary from
the very simple models, which support basic reasoning algorithms that could be
deployed in limited use cases, to the powerful ones supporting sophisticated rea-
soning [13]. In [14], six types of models are mentioned: key-value models, markup
scheme models, graphical models, object oriented models, logic-based models and
ontological models. The authors conclude that the ontological models are the most
promising for the reasoning requirements. But according to [13], an ontological
model taken alone is generally unsuited for the recognition of even simple context
data. Data cleaning operations and statistical machine learning methods are often
required.

Other works promote logic-based modeling. The claim in [25] is that logic
approaches appear to be the more expressive although requiring much effort of
standardization to improve their re-usability and applicability. Context informa-
tion is introduced as an abstract mathematical entity with useful additional prop-
erties adapted to the artificial intelligence topics. Mainly, an additional relation
named ist(c; p) is introduced to assert that the proposition p is true regarding
some context c, and a recipe is formalized to perform context lifting from that.

736 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

In [26], first order logic predicates are used to describe typed context informa-
tion. The authors enhance the interest of type checking, considering for instance
Location(Chris, entering, room3231) as a typed element, where the first argument
must be a person or an object. In [27], a first order logic is used to define context in-
formation in a more generic and consistent way, introducing one predicate to model
whatever context element(entity, state/value, time).

The E-HoA software architecture also privileges an hybrid approach to model
and manage the context information, as a third-part approach:

• The Acquire ROS node acts as a preprocessor to clean up input context data.

• With respect to the ontology representing the context information, some typed
data and relations are specified in a based-graph database (Neo4j) which is
known to be scalable, able to handle huge datasets.

• As the Context process handles the former database, it is able to perform even
complex requests on context data and on their relations. In fact, there are three
ways yielding values of context data:

1. The Context process can serve any other E-HoA process subscribing to the
truth of some context-based logic formula in order to react to the possible
changes on-the-fly;

2. The Context process can request some machine learning process, e.g. to
compute mean traffic information according to some spatio-temporal con-
straints [18];

3. And as stated in this paper, context data can also be evaluated with a degree
of certainty due to the specification of context data relations.

7 CONCLUSION

Dedicated to context-aware autonomous vehicles, the E-HoA scalable multi-process
architecture combines deliberative intentional concepts and reactive capabilities.
From the observed events, it is used to guide the vehicle to satisfy some sets of
intentions, while adapting its behavior under the dynamic environmental circum-
stances. The proposed functionalities can be adapted to whatever vehicles which
run the known ROS system.

With respect to the existing layered architectures, all the E-HoA processes
are context-centric and are supervised by a context layer which handles both con-
crete/symbolic information and offer estimation services based on previously learnt
experiments.

In order to improve the relevance of the contextual information that can be
deduced from the observed data, we have investigated the way to formalize the
acquisition of contextual information in three successive stages:

1. The acquisition of the raw contextual information (sensors) comes with a low
level data processor exploiting noise filtering and frequency control;

Contextual Observation System for Autonomous Vehicles 737

2. The symbolization mechanism based on fuzzy logic, it helps certifying the con-
text data properties;

3. The context reasoning introduces first order logic to make the higher level in-
formation emerge.

Furthermore, thanks to the correct handling of four reactivity levels (from arch-
reflex to intent-reflex), intentions (globally converted into an optimized sequence of
atomic vehicle maneuvers) and events can be tightly and consistently intertwined as
the spatio-temporal context evolves, and the computed execution plan can accord-
ingly be updated in real-time.

Although promising, we consider this work as a foundation. Concrete bench-
marking approaches are required to evaluate the proposed observation mechanisms
and measure its impact on the dynamic of the vehicle behavior. An immediate
perspective of improvement would consist in pushing deeper machine learning tech-
niques on data observation, both to help configuring the deduction system and to
discover alternative opportunities of actions.

REFERENCES

[1] Van Brummelen, J.—O’Brien, M.—Gruyer, D.—Najjaran, H.: Autonomous
Vehicle Perception: The Technology of Today and Tomorrow. Transportation Re-
search Part C: Emerging Technologies, Vol. 89, 2018, pp. 384–406.

[2] Long, L.N.—Hanford, S.D.—Janrathitikarn, O.—Sinsley, G. L.—
Miller, J.A.: A Review of Intelligent Systems Software for Autonomous Vehicles.
2007 IEEE Symposium on Computational Intelligence in Security and Defense
Applications, IEEE, 2007, pp. 69–76, doi: 10.1109/CISDA.2007.368137.

[3] Fróes, E.—Gudwin, R.R.: Building a Motivational Subsystem for the Cognitive
Systems Toolkit. SCASBA, 2017, pp. 1880–1886.

[4] Gudwin, R.—Paraense, A.—de Paula, S.M.—Fróes, E.—Gibaut, W.—
Castro, E.—Figueiredo, V.—Raizer, K.: The Multipurpose Enhanced Cog-
nitive Architecture (MECA). Biologically Inspired Cognitive Architectures, Vol. 22,
2017, pp. 20–34.

[5] Paraense, A. L.—Raizer, K.—de Paula, S.M.—Rohmer, E.—
Gudwin, R.R.: The Cognitive Systems Toolkit and the CST Reference Cognitive
Architecture. Biologically Inspired Cognitive Architectures, Vol. 17, 2016, pp. 32–48.

[6] Bordini, R.H.—Dastani, M.—Dix, J.—El Fallah Seghrouchni, A.: Multi-
Agent Programming. Springer, 2009, doi: 10.1007/978-0-387-89299-3.

[7] Ziafati, P.—Dastani, M.—Meyer, J.—van der Torre, L.: Event-Processing
in Autonomous Robot Programming. AAMAS ’13, 2013, pp. 95–102.

[8] Kortenkamp, D.—Simmons, R.—Brugali, D.: Robotic Systems Architectures
and Programming. Springer Handbook of Robotics, Springer, 2016, pp. 283–306, doi:
10.1007/978-3-319-32552-1 12.

https://doi.org/10.1109/CISDA.2007.368137
https://doi.org/10.1007/978-0-387-89299-3
https://doi.org/10.1007/978-3-319-32552-1_12

738 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

[9] Alzetta, F.—Giorgini, P.: Towards a Real-Time BDI Model for ROS 2. Proceed-
ings of the 20th Workshop From Objects to Agents, Parma, Italy, June 26th–28th,
2019, 2019, pp. 1–7.

[10] Martinez, A.—Fernndez, E.: Learning ROS for Robotics Programming. Packt
Publishing, 2013.

[11] Baldauf, M.—Dustdar, S.—Rosenberg, F.: A Survey on Context-Aware Sys-
tems. International Journal of Ad Hoc and Ubiquitous Computing, Vol. 2, 2007,
No. 4, pp. 263–277, doi: 10.1504/IJAHUC.2007.014070.

[12] Loke, S.: Context-Aware Pervasive Systems: Architectures for a New Breed of
Applications. Auerbach Publications, 2007.

[13] Bettini, C.—Brdiczka, O.—Henricksen, K.—Indulska, J.—Nicklas, D.—
Ranganathan, A.—Riboni, D.: A Survey of Context Modelling and Reasoning
Techniques. Pervasive and Mobile Computing, Vol. 6, 2010, No. 2, pp. 161–180, doi:
10.1016/j.pmcj.2009.06.002.

[14] Strang, T.—Linnhoff-Popien, C.: A Context Modeling Survey. Workshop on
Advanced Context Modeling, Reasoning and Management as Part of Ubicomp, 2004.

[15] Sathe, S.—Papaioannou, T.G.—Jeung, H.—Aberer, K.: A Survey of Model-
Based Sensor Data Acquisition and Management. In: Aggarwal, C.C. (Ed.): Man-
aging and Mining Sensor Data. Springer US, Boston, MA, 2013, pp. 9–50, doi:
10.1007/978-1-4614-6309-2 2.

[16] Ilié, J.M.—Chaouche, A.C.—Pêcheux, F.: E-HoA: A Distributed Layered
Architecture for Context-Aware Autonomous Vehicles. Procedia Computer Science,
Vol. 170, 2020, pp. 530–538, doi: 10.1016/j.procs.2020.03.121.

[17] Chaouche, A.C.—El Fallah Seghrouchni, A.—Ilié, J.M.—
Säıdouni, D. E.: A Higher-Order Agent Model with Contextual Management
for Ambient Systems. TCCI XVI, Springer Berlin Heidelberg, LNCS, Vol. 8780,
2014, pp. 146–169, doi: 10.1007/978-3-662-44871-7 6.

[18] Ilié, J.M.—Chaouche, A.C.—Pêcheux, F.: A Reinforcement Learning Inte-
grating Distributed Caches for Contextual Road Navigation. International Journal of
Ambient Computing and Intelligence (IJACI), Vol. 13, 2022, No. 1, pp. 1–19, doi:
10.4018/IJACI.300792.

[19] Chaouche, A.C.—Ilié, J.M.—Pêcheux, F.: Dealing with Failures for Exe-
cution Consistency in Context-Aware Systems. Vol. 177, 2020, pp. 212–219, doi:
10.1016/j.procs.2020.10.030.

[20] Schafer, R.W.: What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal
Processing Magazine, Vol. 28, 2011, No. 4, pp. 111–117.

[21] Redmon, J.—Farhadi, A.: YOLOv3: An Incremental Improvement. 2018, arXiv:
1804.02767.

[22] Wielemaker, J.—Schrijvers, T.—Triska, M.—Lager, T.: SWI-Prolog. 2010,
arXiv: 1011.5332.

[23] Park, J.—Moon, M.—Hwang, S.—Yeom, K.: Cass: A Context-Aware Simula-
tion System for Smart Home. 5th ACIS International Conference on Software Engi-
neering Research, Management Applications (SERA 2007), 2007, pp. 461–467.

https://doi.org/10.1504/IJAHUC.2007.014070
https://doi.org/10.1016/j.pmcj.2009.06.002
https://doi.org/10.1007/978-1-4614-6309-2_2
https://doi.org/10.1016/j.procs.2020.03.121
https://doi.org/10.1007/978-3-662-44871-7_6
https://doi.org/10.4018/IJACI.300792
https://doi.org/10.1016/j.procs.2020.10.030
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1011.5332

Contextual Observation System for Autonomous Vehicles 739

[24] Zeynalvand, L.—Luo, T.—Zhang, J.: COBRA: Context-Aware Bernoulli Neural
Networks for Reputation Assessment. 2019, arXiv: 1912.08446.

[25] McCarthy, J.—Buvac, S.: Formalizing Context (Expanded Notes). Technical Re-
port. Stanford University, Stanford, CA, USA, 1994.

[26] Ranganathan, A.—Campbell, R.H.: An Infrastructure for Context-Awareness
Based on First Order Logic. Personal and Ubiquitous Computing, Vol. 7, 2003, No. 6,
pp. 353–364.

[27] Miraoui, M.—El-Etriby, S.—Abed, A. Z.—Tadj, C.: A Logic Based Context
Modeling and Context-Aware Services Adaptation for a Smart Office. International
Journal of Advanced Studies in Computers, Science and Engineering; Gothenburg,
Vol. 5, 2016, pp. 1–6.

http://arxiv.org/abs/1912.08446

740 A.-C. Chaouche, J.-M. Ilié, A. Hebik, F. Pêcheux

Ahmed-Chawki Chaouche has received his Ph.D. in com-
puter science from both Sorbonne University (former UPMC) in
France and University of Abdelhamid Mehri, Constantine 2 in
Algeria (2015). Currently, he is an Associate Professor at the
Constantine 2 University. He is also a Permanent Researcher in
computer science and Accredited Research Director at the MISC
Laboratory. His research interests include ambient intelligence
systems, autonomous vehicles, implementation of IoT and con-
nected objects, planning mechanisms and learning approaches.

Jean-Michel Ili�e obtained several degrees in electronics and
informatics among with the Ph.D. thesis from the University
Pierre and Marie Curie in France (1990). Currently, a mem-
ber of the Paris City University in its conference master higher
grade (2009), he is also a Permanent Researcher of the LIP6
laboratory at the Sorbonne University. The fields of his research
concern the formal validation of complex embedded distributed
systems and the emergence of adapted behaviours when coping
with dynamic contexts. In the last 15 years, he has tackled the
way to define intelligent software agents in complex ambient sys-

tems for autonomous activity. His research keywords include spatio-temporal planning,
autonomous guidance, intelligent transportation.

Assem Hebik received his Master’s degree in science and tech-
nologies of information and communication (2020) from the Uni-
versity of Constantine 2 with excellence. Previously he had ob-
tained a License degree with the first class honors from the same
university. Currently, he has been Top rated plus freelancer
on Upwork for more than three years during which he had the
chance to work with international software development teams
across the globe. His primary focus is scientific research, that is
why he volunteers with research teams when he gets a chance.

François Pêcheux is Full Professor at the Sorbonne Univer-
sité, Paris, France. He is currently heading the Polytech Sor-
bonne Engineering School. His research activities focus on the
modelling and simulation of digital-centric heterogeneous sys-
tems. He participated in the development of numerous CAD
tools for electronic design automation, especially event-driven
and analogue simulators. He published more than 80 journal
and conference papers in this domain.

