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Abstract. The domains of a protein provide an insight on the functions that the
protein can perform. Delineation of proteins using high-throughput experimental
methods is difficult and a time-consuming task. Template-free and sequence-based
computational methods that mainly rely on machine learning techniques can be
used. However, some of the drawbacks of computational methods are low accu-
racy and their limitation in predicting different types of multi-domain proteins.
Biological language modeling and deep learning techniques can be useful in such
situations. In this study, we propose BERTDom for segmenting protein sequences.
BERTDOM uses BERT for feature representation and stacked bi-directional long
short term memory for classification. We pre-train BERT from scratch on a corpus
of protein sequences obtained from UniProt knowledge base with reference clus-
ters. For comparison, we also used two other deep learning architectures: LSTM
and feed-forward neural networks. We also experimented with protein-to-vector
(Pro2Vec) feature representation that uses word2vec to encode protein bio-words.
For testing, three other bench-marked datasets were used. The experimental re-
sults on benchmarks datasets show that BERTDom produces the best F-score as
compared to other template-based and template-free protein domain boundary pre-
diction methods. Employing deep learning architectures can significantly improve
domain boundary prediction. Furthermore, BERT used extensively in NLP for fea-
ture representation, has shown promising results when used for encoding bio-words.
The code is available at https://github.com/maryam988/BERTDom-Code.
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1 INTRODUCTION

Protein domain boundary are the residues on a protein sequence where a domain
starts and ends. A protein sequence or chain can consist of single domains or mul-
tiple domains where each domain is comprised of its own folded and independent
sub-structures [1]. Protein domains are structural or functional units of a protein.
Domains are recurring sequences that give very important information for the pre-
diction of protein structure, function, and evolution. Numerous modular proteins
families can have domains of different degrees of quantity and order [2]. Protein
domains are building blocks of protein and so they can be arranged in different
combinations to form proteins with more complex functions. Therefore, accurate
identification of domains in protein is key to understanding the evolutionary mech-
anisms and protein function [3].

There are two ways of identifying domains in proteins: the first one is to pre-
dict boundaries of the domain from proteins having known three-dimensional (3D)
structures, and the second one is the protein domain identification of those having
unknown 3D structures. Domain boundary prediction is the first crucial step in pro-
tein classification and predicting protein 3D structures, which is a high-complexity
problem [1]. Precise and accurate prediction of domain boundaries is the basis of
various kinds of protein research because these researches start with the segmenta-
tion of a protein into its domains, which are its functional units [4]. The domain
boundary prediction can optimize search methods for templates used in compara-
tive modeling as the classification of templates is based on protein domains. Also,
accurate prediction for homologous domains plays a central role in reliable MSA
(multiple sequence alignment) [5].

Currently, the most accurate and reliable depiction of the protein domain is
by experimental methods. Experimental methods for identifying protein domains
require huge amount of proteins, effort and time. High-throughput technologies
generate a large amount of data, so it is not possible to manually detect protein do-
main. This is why computational protein domain prediction methods are preferred.
Computational methods use protein sequences to predict and identify protein do-
mains. The delineation of protein domains using only protein sequences is still
difficult. The computational domain boundary prediction methods mainly consist
of template-based methods and ab-initio. Template-based methods use patterns or
templates of existing similar protein sequences with known domain information for
the prediction of proteins with unknown boundary information. Ab-initio methods
use machine learning and statistical algorithms for prediction. These methods are
more popular than template-based methods because they can be applied to any
protein sequence. Some examples of these methods are DomPro [4], PPRODO [2],
DROP [6], and DeepDom [3]. They are mostly used because they can predict any
protein. However, the major drawback of ab-initio methods is low accuracy and
precision as compared to template-based methods [3].
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1.1 Motivation

Characterization of proteins using high-throughput experimental methods is diffi-
cult. Most of the template-free computational methods proposed for protein bound-
ary domain prediction rely on machine learning techniques. To the best of our
knowledge, not much work has been done to predict the domain boundary using
deep learning methods except [3].

1.2 Objectives

The primary objective of this study is to predict the protein boundary domain
using deep learning techniques. Furthermore, this study also aims to explore if deep
learning techniques used in conjunction with biological language modeling and NLP
techniques like bi-directional encoder representations from transformers (BERT) [7]
can improve prediction.

Protein domain boundary prediction pipeline usually has the following steps.
Protein sequences are segmented. For this purpose there are various techniques
such as wordPiece, sentence-piece, or TAPE tokenizers like IUPAC and UniRef.
Then the tokens or bio-words are encoded. BERT is a popular method for language
representations. It provides a contextual representation of every bio-word in a se-
quence and can therefore be used for encoding. Other encoding schemes include
word2vec and pro2vec. Finally, these representations are used to train classifiers.
Thus, every step can be performed using a number of techniques. Another objective
of this paper is to experiment with different combinations of segmentation-encoding-
classification techniques and identify which combination works best for protein do-
main boundary classification. For this purpose, various deep learning architectures
and methods like BERT, long short-term memory (LSTM) and fully convolutional
neural networks (FCNN) are used which are extensively applied in other NLP and
bio-informatics tasks. The prediction models are trained on protein sequences alone
and does not rely on features engineering like sequence profile, solvent accessibility
(SA), secondary structure (SS), etc.

1.3 Contributions

Following are the main contributions of this study.

• A protein domain boundary prediction model called BERTDom is proposed
using deep learning techniques, BERTDom outperforms other template-based
and computational techniques on benchmark datasets.

• Pre-trained BERT from scratch for protein bio-word embeddings for the first
time.

• Protein vector representations created using pro2vec are used as features for
protein domain boundary prediction.
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• A multi-facet comparison is done involving two feature representations, three
segmentation techniques and three deep learning models.

The rest of the paper is organized as follows. Section 2 presents necessary
background required for understanding the problem of protein domain boundary
prediction. Section 3 presents literature review on relevant work related to this
study. Section 4 presents methodology used for protein domain boundary prediction
in this study and Section 5 presents experimental details. Section 6 presents results
and discussion and Section 7 concludes the study.

2 EXTENDED BACKGROUND

In this section, all the necessary concepts concerned with protein domain boundary
are presented.

2.1 Protein and Its Domains

Protein performs a wide range of functions within living organisms, including trans-
porting molecules from one location to another, responding to stimuli, providing
structure to cells and organisms, DNA replication, and catalyzing metabolic reac-
tions [8]. Protein is composed of amino acids and typically, 20 types of amino acids
are found in proteins. Depending on the protein sequence, i.e., the position of amino
acids in the protein chain, proteins fold into the specific 3D structure that allows
them to do their functions and interact with other molecules and proteins. Proteins
that have a common ancestor or diverged from the same ancestral gene are called
homologous and have similar sequences [8].

Protein domain is a constant part of a protein sequence and makes a compact
3D structure that can fold independently. The length of a domain can be anywhere
from 50 to 250 residues [9]. Due to molecular evolution, protein domains can be
used as building blocks and they can be combined in different ways to form proteins
with distinct structures and functions [10]. Each domain contributes to the overall
functions of the protein. For instance, enzyme phospholipase D1 protein is a multi-
domain protein since it has 3 different types of domains each performing a different
sub-function to achieve an overall function of breaking down phosphatidylinositol.

Most domains comprise one continuous segment; some domains may consist of
several discontinuous polypeptide segments [3]. The prediction and identification of
discontinuous domains is still a very challenging problem.

2.2 Methods for Predicting Protein Domain Boundary

Methods for predicting protein domain boundaries are of two types: experimental
and computational. These are discussed next.
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2.3 Experimental Methods

Experimental methods are procedures performed on actual proteins. These methods
use the particular biophysical or biochemical attributes of protein complexes. They
can be done in a controlled lab environment (in-vitro) or inside a living organism (in-
vivo). To speed up the process, high-throughput large-scale experimental methods
have been designed to identify domains in a protein on a proteomic-wide scale. High-
throughput experimental methods used for identifying domains are NMR (Nuclear
Magnetic Resonance) analysis [9], and X-ray crystallography [11]. These methods
are expensive in terms of labor, money, and time. These methods also need large
quantities of proteins. Their results have high false negatives and false positives
because the experiment’s quality is affected by many factors [12]. Due to these
limitations, computational methods are needed in the domain boundary prediction.
Hence, it is of great practical importance to design accurate, reliable, and efficient
computational methods to predict domains in less time, with high efficiency and at
low cost.

2.4 Computational Methods

Computational methods for the prediction of protein domain boundary can be classi-
fied as template-based methods or template-free/ab-initio methods. The template-
based methods search for similar protein sequences whose domain information is
known and them map this information to the protein with unknown domain.

Some template-based approaches use sequence alignment in which the query and
target protein sequences are aligned to predict the domain [13]. While other methods
predict by aligning the secondary structure (SS) of a protein against the known
domain boundary information of proteins given in class, architecture, topology, and
homology (CATH) database [4].

Ab-initio or template-free methods are based only on the primary 1D protein
sequence instead of any specific target protein [14]. These methods are more com-
monly used as compared to template-based methods since ab-initio methods can
predict the domain boundary of any protein.

Ab-initio based machine learning (ML) methods directly or indirectly use the
amino acid sequence as features to predict whether an amino acid is situated at
a domain boundary. Ab-initio techniques are assisted by the accessibility of protein
domain information databases. Ab-initio methods usually use the same input fea-
tures like sequence profiles (SP), predicted solvent accessibility (SA) and predicted
secondary structure (SS). For example, [15] also used amino acid composition and
solvent accessibility to predict secondary structure.

The prediction accuracy of the ab-initio methods is usually lower than the
template methods because of the lack of complete domain boundary information
in protein sequence [3]. Most ab-initio methods are effective and successful in
predicting domain boundaries when the target protein sequence has obvious re-
semblances to other sequences in domain classification databases or if the new
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domains’ length does not significantly differ from the average length of known
protein sequences. In this paper, the focus is on identifying boundaries for pro-
teins with two domains. The accuracy for one-domain proteins using computa-
tional methods is only 75–85%, and it is significantly less for multi-domain pro-
teins [5].

3 LITERATURE REVIEW

In this section, various computational methods for predicting protein domain bound-
aries are discussed. As mentioned earlier, computational methods can be ab-initio
or template-based. A few hybrid techniques are also presented.

3.1 Template-Based Methods

Although the focus of this paper is the ab-initio methods, some template-based
methods TBMs are briefly discussed.

Bondugula et al. [16] proposed FIEFDom, a homology-based approach for pro-
tein domain boundary prediction for multi-domain protein using features such as
sequence profile and protein sequence using an FMO (fuzzy mean operator). The
FMO assigns a likelihood score for each amino acid of the target sequence as corre-
sponding to a domain boundary or not by using the NR (non-redundant) sequence
database along with an RPS (reference protein set) database comprising already
identified domain boundaries. This method vigorously identifies adjoining bound-
ary sites. Authors claim the average prediction accuracy for single-domain and
multi-domain proteins is 97% and 58% respectively. The proposed model has the
ability to use new structure/sequence information after each RPS update without
re-parameterization. When tested on other datasets having different domain infor-
mation, this method consistently produced the same accuracy while other existing
methods could not.

Zhidong Xue et al. [17] proposed another technique called ThreaDom, which
infers protein domain boundary regions using multiple threading alignments. The
key to this approach is that it can calibrate sequence alignment information and
composite structure by generating a domain boundary profile from the multiple
threading templates for exact domain prediction. ThreaDom correctly classifies 81%
of single-domain and multi-domain proteins when 78% proteins have the domain
linker allotted in the range of ±20 residues. Finally, George et al. [18] developed
SnapDRAGON, a 3D template-based approach for domain boundary prediction. It
predicts domain boundary based on features from a secondary structure prediction
and multiple alignments of protein sequences. SnapDRAGON utilizes the DRAGON
method to generate a large set of alternative 3D models for a given multiple sequence
alignment (MSA). Then it assigns domain boundaries automatically to each of the
3D model structures. Domain boundary assignment seen in the largest number of
3D models is selected. Model generation using this method leads to alternative 3D
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model structures that differ in structure with associated boundary positions and
have different domain contents. This technique used on NR dataset consisting of
414 multiple sequence alignments constitutes, 231 multiple-domain and 185 single
protein chains registered an accuracy of 72.4%.

3.2 Ab-Initio/ML-Based Methods

Sim et al. [2] proposed an ab-initio method for prediction of protein domain bound-
aries called PPRODO. PPRODO uses a feed-forward fully connected neural network
with one hidden layer. A neural network is trained and tested for each residue in
the protein sequence [19]. Amino acid residues in a protein sequence may mutate
and this is more regular if the residues are close to domain boundaries. However,
during the evolution some residues close to the domain boundaries may be con-
served despite the usual movement of the domain. Analyzing the patterns in the
position-specific scoring matrix can detect these features.

Cheng et al. [4] propose DOMpro that uses recursive neural networks to pre-
dict domain boundary using profiles, predicted secondary structure, and predicted
relative solvent accessibility. This paper used the dataset from CATH database.
The solvent accessibility and relative secondary structure are predicted for each
sequence using ACCpro [20] and SSpro[21]. DOMPro can accurately predict the
domain boundary and domains number for 25% of the proteins that have two do-
mains.

Yoo et al. [5] proposed the method DomNet that uses an enhanced general re-
gression network (EGRN) specially created for managing high-dimensional protein
sequences. DomNet uses a novel compact domain profile so that it can obtain more
structural information efficiently from target sequences. The input features used by
this method for training are predicted solvent accessibility information, predicted
secondary structure, inter-domain linker index that detects the target protein se-
quence’s possible domain boundaries and a compact domain profile. DomNet uses
methods proposed by [22] for noise reduction, smoothing and searching vectors cen-
ter by quantizing input vectors. DomNet reports the 71% accuracy for proteins
with multiple domains.

Ebina et al. [6] used a support vector machine (SVM) for prediction. This
paper also used random forest to compute optimal input features which are then
used to train SVM. Each amino acid residue is encoded into a 3000-dimensional
vector. Various SVM classifiers were trained with different optimal feature candidate
sets. SVM hyper-parameters were optimized using a SVMLab [23]. The proposed
model named DROP, had sensitivity and precision values of 19.9% greater than
SVMs trained with non-optimized features using the same parameters. SVM was
also used by Chakraborty et al. [24] based on input features composed of physio-
chemical properties of amino acids in protein sequence (obtained from AAIndex [25]
database), predicted solvent accessibility and predicted secondary structure. Physio-
chemical properties of amino acid residues are linker index, hydrophobicity, linker
propensity indices, polarity, and average flexibility indices. This method achieved
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a precision, recall and accuracy of 0.79%, 0.91% and 78.58% respectively, on the
CASP10 dataset.

Eickholt et al. [14] developed DoBo, which also used SVM to classify the putative
domain boundary signals. These signals are extracted from MSA generated by PSI-
BLAST [17]. These MSA helps to detect assumed signals of domain boundary in
a query protein by leveraging evolutionary information. MSAs often disclose the
query protein’s domain architecture by returning proteins comprised of domains
analogous to the query protein sequence. DoBo has a recall and precision rate
of 0.6. Finally, Bi-Qing Li et al. [26] also combined SVM with multiplefeature
selection methods. This paper reported about 58–70% higher specificity, 24–31%
greater MCC, and 28–40% more accuracy than the DoMpro, Globplot, and Domcut
methods but 20% less sensitivity.

Hwan Hong et al. [1] proposed ConDo that used a 4-layer neural network for
prediction of domain boundary. This method employed both short-range features
such as sequence information, as well as long-range sequence information like evo-
lutionary information and partially aligned sequences (PAS) in MSA. Long-range
features are beneficial for deciding whether two residues belong to either separate
domains or the same domain. Short-range features are residue position in a se-
quence, whether the residue is outside of the target chain, the number of residues in
a sequence, sequence profile, predicted SA, and predicted SS. HHblits generates the
sequence profile with UniRef20 database. SANN [27] predicted SA. PSIPRED [28]
predicted SS. Neural networks’ output layer has four units, which state whether or
not the amino acid was within 20, 15, 10, or 5 amino acids from the correct domain
boundary.

Jiang et al. [3] proposed DeepDom, a deep learning domain boundary prediction
method that uses LSTM. DeepDom stacks multiple bi-directional LSTM layers to
fit a non-linear high-order function with the aim of predicting the signal pattern of
complex domain boundary. It uses a window sliding strategy to encode an input
sequence into fixed-length protein fragments without considering the original length
of the protein sequence. The majority of existing ab-initio domain boundary clas-
sifiers only permit users to provide and predict one protein sequence at one time.
DeepDom does not perform the time-consuming and computationally intensive task
of sequence profile generation method.

3.3 Hybrid Methods

Hybrid methods combine both ab-initio and template-based techniques. Walsh
et al. [29] used bi-directional recurrent neural networks for predicting protein do-
main boundaries. The work also used structural classification of proteins (SCOP)
and protein data bank (PDB) template profiles. Using template information im-
proves the performance of ab-initio. Cheng et al. [30] describe DOMAC, a hybrid
domain boundary prediction technique that integrates domain parsing, ab-initio, and
homology modeling methods. This hybrid approach uses neural networks and the
homology-based method to predict domain boundaries for proteins having homolo-
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gous template structures in PDB to predict domain boundaries for new proteins.

4 METHODOLOGY

A protein sequence can be segmented using a number of techniques. The segmented
bio-words can further get encoded using different techniques. For classification, a va-
riety of deep learning models are available. In this section, we not only highlight the
proposed BERTDom model, but also specify different combination of segmentation-
encoding-classification techniques that were used in this paper for experimentation
and comparison with BERTDom.

The high-level block diagram for BERTDom is given in Figure 1. In the first
step, protein sequence is segmented into bio-words using wordPiece segmentation
algorithm. Then every bio-word is encoded using BERT. Finally, the entire encoded
protein sequence is fed to the stacked biLSTM classifier that predicts the domain
boundary. Each of these step are discussed next. The state-of-the-art deep learning
and NLP components of BERTDom model are also sufficiently discussed due to the
multi-disciplinary nature of the current study.

Figure 1. Architecture of BERTDom based on BERT and stacked biLSTMs for protein
domain boundary prediction
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4.1 WordPiece Algorithm for Bio-Word Segmentation

WordPiece algorithm [31] is a tokenizer that splits sentences into words and then
words into sub-words. It is used in natural language processing (NLP) and deep
learning architectures like BERT. WordPiece is trained for protein sequences and
can therefore be used for segmenting protein sequence. The training parameters
include the vocabulary size: 80 000, minimum words frequency: 2, and maximum
sequence length: 256. WordPiece outputs a vocabulary file containing all words,
sub-words, and individual characters in protein sequences. The trained wordPiece
tokenizer is fed this vocabulary file along with the protein sequences and it segments
them into bio-words.

4.2 Pre-Training of BERT Language Model
for Protein Word Embeddings

Bidirectional encoder representations from transformers (BERT) is developed by
Google AI researchers [7]. BERT consists of two steps: pre-training and fine-tuning.
In pre-training, a large amount of unlabeled text is input to the BERT model for
training where it learns the contextual relations between words and sentences in the
language. BERT has two sub-models: masked language modeling (MLM) and next
sentence prediction (NSP). MLM takes in a sentence with some masked words and
it needs to predict the masked words. During fine-tuning, the last output layer of
BERT is replaced by a new fully-connected layer that is trained for the specific task.
Although each task is initialized with the same pre-trained weights in the non-final
layers, the last layer of BERT is fine-tuned. The same pre-trained BERT weights
can also be used to initialize other deep learning models for any sequence based
prediction task. Protein domain boundary prediction can be modeled as a sequence
based prediction task. This study proposes to use BERT for feature representations
of protein sequences. Since there is no pre-trained BERT model available for pro-
tein bio-words, BERT had to be pre-trained for protein bio-word embeddings from
scratch.

Figure 2 shows the architecture of one encoder state of BERT. BERT has
multiple encoder states. Each encoder state has the same architecture. BERT
processes sequence-based information by using a multihead attention mechanism.
The input to BERT is a vector of words that have positional encoding informa-
tion added to them. The self-attention layer takes the dot product of the input
word with all query vectors of all other words in the sequence. A normalization
layer is added after the self-attention layer. The next layer is the feed-forward
neural network layer. The output of one encoder is passed as input to the next
encoder state. The final output is the vector representation of input words such
that the representation of each word has information of surrounding words baked
into it.

The vocabulary file is converted to TFRecord format which is then used to pre-
train BERT. The model configurations are given in Table 1. This BERT model’s
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configuration is the same as BERT-Medium uncased configuration – only difference
is vocabulary size, which is changed from 30 500 to 80 000.

Figure 2. Architecture of BERT encoder [32]

Batch size of input examples 16

Maximum sequence length 256

Maximum predictions per sequence 35

Number of Training steps 30 000

Learning Rate 1e−4

Optimizer Adam

Table 1. Hyper-parameters for pre-training BERT

The proteins can be of variable-length, so they are broken down into fixed-
length protein sub-sequences using a sliding window strategy. The optimal values
of window and stride were found to be 200 and 80 respectively. Each of these
protein sub-sequences are tokenized using WordPiece tokenizer and then vectorized
by the pre-trained BERT. BERT gives an embedding of 512 dimension for each
token.

For fine-tuning BERT, BERTDom uses stacked biLSTM. However, we also per-
formed experiments using 2 other deep learning techniques. These are also discussed
in the following sub-sections.
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4.3 BERTDom: Stacked Bi-LSTM and BERT’s Language Model

For fine-tuning BERT, three models were used. The first model is stacked bidirec-
tional LSTMs. LSTM [33] is a deep learning architecture that can process a se-
quence of data such as speech, text, or time-series. The true power of LSTMs
lies in their ability to model longer sequences. LSTM is modified form of recur-
rent neural network (RNN) which were proposed for representation of sequence
data. RNN suffer from the problem of vanishing gradient which occurs for long
sequence of data. The gradient can become very small during back propagation
in long sequences, this is called vanishing gradient problem [34]. LSTM over-
come this problem by using a cell state for remembering only important informa-
tion.

BiLSTM has one LSTM that processes sequence from start-to-end and another
LSTM that processes the same sequence backwards. These two LSTMs are combined
using the concatenation operator. Stacked biLSTM has multiple layers of biLSTM
stacked n top of one another. The pre-trained BERT model is attached to stacked
bidirectional LSTMs that has four bidirectional LSTM layers. The softmax is used
as the activation function. The number of output units in last layer of each LSTM
is equal to the maximum length of protein sequence which is 200.

The second deep learning model used for fine-tuning BERT is LSTM. The num-
ber of output units in the last layer is 200 with the softmax as the activation function.

Finally, the third deep learning model used for fine-tuning BERT is a deep
feed-forward neural network. The network has 4 hidden layers with 1500 units and
dropout values of 0.5, 0, 0, and 0.5 respectively. ReLU and sigmoid are used as
activation functions. The number of output units in the last layer is equal to the
length of the protein sequence – 200.

4.4 Feature Representation for Protein Bio-Word
Using Protein-to-Vector (pro2vec)

In this study, for comparison purposes, we also used another feature representa-
tion method for segmented protein bio-words called pro-to-vector (pro2vec)[35] in-
stead of BERT. For pro2vec model, word2vec algorithm called the skip-gram is
used. Word2vec’s skip-gram is used for learning the distributed representation
for every protein word in proteins. We also trained word2vec from scratch on
185 000 protein sequences obtained from UniRef dataset [36] in sequence clusters
with identity of 50% (UniRef50). For classification, bidirectional LSTM is used.
For segmentation, sentencePiece segmentation, [37] and K-mer segmentation tech-
niques are used instead of wordPiece. The same window size and stride of 200 and
80 respectively, are used. Lastly, all protein word vectors of a protein sequence
are combined together to form the embedding matrix of the protein sequence and
then fed to a bidirectional LSTM for prediction of domain boundaries in a pro-
tein.
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4.4.1 SentencePiece Segmentation

SentencePiece is a language independent tokenizer which is used when size of vocab-
ulary is already known. It is trained directly from raw text using unigram language
model (ULM). The sentencePiece library is used to implement this technique [38].
SentencePiece is an unsupervised method for tokenizing text.

4.4.2 K-mer Segmentation

K-mers are subsequences of length k in a protein sequence. For a given protein
sequence, k-mer segmentation is used to divide them into bio-words. For example,
the sequence MSLQ would have four monomers (M, S, L, and Q), three 2-mers
(MS, SL, LQ), two 3-mers (MSL and SLQ) and one 4-mer (MSLQ). For length Z of
a given protein sequence, we will get Z − k + 1 k-mers or bio-words.

4.5 Comparison with Other Methods

We have compared our proposed methods with existing template-based approaches
such as Pfam [39], and FIEFDOM [16]. In addition to template-based methods we
have also compared our proposed methods with statistical and machine learning
approaches such as DomPro [4], PPRODO [2], and DROP [6]. DeepDom [3] is
a recently proposed deep-learning-based method that uses LSTM for protein domain
boundary prediction. DeepDom [3] has shown superior performance as compared
to many template-based and statistical methods so we also compared our proposed
methods with DeepDom.

5 EXPERIMENTAL SETUP

This section presents details of training and test data used in experiments. The
evaluation measures are also discussed.

5.1 Training Dataset

For training, 46 000 domain boundary annotations of proteins from the CATH [40]
version 4.2 database were collected. Uniprot database [41] is used for downloading
corresponding sequences of these proteins. After downloading proteins, CD-HIT [42]
tool is used to cluster similar proteins that meet the predefined 40% similarity
threshold. The representative protein sequences have sequence similarity less than
40% with every other protein [43]. The similarity threshold (40%) is used to make
sure sufficient diverse data is available for the training of LSTM and BERT mod-
els.
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5.2 Test Dataset

The proposed methods are tested on the proteins in the critical assessment of
techniques for protein structure prediction (CASP) dataset which is a benchmark
dataset. CASP protein domain prediction competition provided the annotations of
domain boundaries of test proteins. Proteins in the training dataset that have at
least 40% similarity with any test proteins were removed from the training dataset.
CASP provided three types of test datasets for bench-marking. These test datasets
are listed below. Their details can be found in [3].

1. Free modeling (FM) target proteins from CASP 9.

2. Multi-domain proteins from CASP 9.

3. Discontinuous domain targets from CASP 8.

Dataset # of Proteins Single Domain Multiple-Domain

Free Modeling 22 12 10
Multi-domain 14 0 14
Discontinuous domain 18 1 18

Table 2.

5.3 Dataset Used to Pre-Train Language Model – UniProt UniRef50

The UniRef50 protein dataset was used for pre-training language models (BERT and
Word2vec) is obtained from UniProt Knowledge base (UniProtKB) with reference
clusters (UniRef). UniRef gives clustered sequences’ sets from the chosen UniParc
records and UniProt. It removes protein sequences that are redundant and acquires
whole coverage of the sequence space at 3 resolutions, which are UniRef50, UniRef90,
and UniRef100. UniRef50 dataset was used for pre-training the language model.
UniRef50 dataset contains 185 000 protein sequences.

5.4 Parameter Settings

DeepDom [3] is trained on 57 000 protein sequences while our proposed BERT model
is trained on the dataset described above. Word2vec is trained on UniRef50 dataset
with a window size of 10 and word vector dimension of 50 for ULM and K-Mer
methods. The ULM is implemented using the sentencePiece library. It trains on
UniRef dataset with a maximum vocabulary size of 50 000. Word2vec is also trained
on a training dataset with a window size of 10.

5.5 Evaluation Measures

The proposed methodology is evaluated using benchmark classification evaluation
measures, precision, recall, F-score, and accuracy. The formulas for these measures
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are given as follows:

precision =
TP

TP + FP
,

recall =
TP

(TP + FN)
,

Accuracy =
TP + TN

FP + FN + TP + TN)
,

F-score =
2 ∗ precision ∗ recall
precision + recall

,

where, when a residue is predicted a domain boundary region, then it is checked if it
is within ±20 residues of the actual domain boundary region. If yes, then it is a true
positive (TP). If no, then it is a false positive (FP). When a residue is predicted
outside the domain boundary region, then it is checked if it is within ±20 residues
of the actual domain boundary region. If yes, then it is a false negative (FN). If no,
then it is a true negative (TN).

6 RESULTS AND DISCUSSION

In this section, the results of the proposed methods are discussed for all datasets.
Performance comparison between all methods is discussed in the following sec-
tions.

6.1 Performance on Free Modeling (FM) Targets

Table 3 presents the results of our proposed methods using free modeling (FM)
targets from CASP9. Our proposed methods can be categorized into two main
categories based on feature representation. The first is BERT encoder and the
second is pro2vec. BERT is used as an encoder for protein sequences and then
it is fine-tuned using three different deep learning models (LSTM, BiLSTM, and
FCNN). BERTDom (BERT fined tuned with BiLSTM) performs best as compared
to other models. The F-score is 0.58. Pro2vec is the second feature representation
method in our experiments. Pro2vec was used with K-mer and unigram language
model for segmenting a sequence into bio-words. Different values of k (3,4, and 5)
have been tried, it is shown by results that 3-mer performs better than 4-mer and
5-mer segmentation. The F-score using pro2vec with 3-mer is also 0.58. The results
of pro2vec with unigram model (0.57) are also close to pro2vec with 3-mer. The
performance of BERT fined tuned with LSTM and FCNN is much inferior to BERT
fine-tuned with biLSTM. The reason for this difference can be the bidirectional
nature of biLSTM which takes into account the context from both directions.
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Accuracy Precision Recall F-Score

BERT fine-tuned with LSTM 0.53 0.70 0.42 0.52
BERT fine-tuned with Stacked
biLSTM (BERTDom) 0.74 0.74 0.47 0.58
BERT fine-tuned with Deep FCNN 0.71 0.69 0.43 0.53
Pro2Vec with 3-mer (biLSTM) 0.73 0.71 0.49 0.58
Pro2Vec with ULM (biLSTM) 0.76 0.84 0.43 0.57

Table 3. Comparison of proposed methods for FM dataset

Accuracy Precision Recall F-Score

BERT fine-tuned with LSTM 0.48 0.75 0.39 0.51
BERT fine-tuned with Stacked
biLSTM (BERTDom) 0.76 0.82 0.45 0.58
BERT fine-tuned with Deep FCNN 0.74 0.79 0.38 0.51
Pro2Vec with 3-mer (biLSTM) 0.74 0.70 0.51 0.59
Pro2Vec with ULM (biLSTM) 0.76 0.84 0.41 0.55

Table 4. Comparison of proposed methods for multi-domain protein dataset

Accuracy Precision Recall F-Score

BERT fine-tuned with LSTM 0.50 0.75 0.43 0.55
BERT fine-tuned with
stacked biLSTM (BERTDom) 0.70 0.82 0.33 0.47
BERT fine-tuned with Deep FCNN 0.70 0.81 0.32 0.46
Pro2Vec with 3-mer (biLSTM) 0.67 0.66 0.37 0.47
Pro2Vec with ULM (biLSTM) 0.68 0.79 0.28 0.41

Table 5. Comparison of proposed methods for DCD Dataset

Precision Recall F-Score

Template based
methods

Pfam [39] 0.32 0.49 0.39
FIEFDOM [16] 0.23 0.18 0.2

Statistical and
machine learning
methods

DomPro [4] 0.50 0.18 0.26
PPRODO [2] 0.33 0.49 0.39
DROP [6] 0.43 0.18 0.25
DeepDom [3] 0.89 0.41 0.56

Proposed methods

BERT fine-tuned
with stacked
biLSTM (BERTDom)

0.74 0.47 0.58

Pro2Vec with
3-mer (biLSTM)

0.71 0.49 0.58

Table 6. Comparison of proposed method (BERT with stacked biLSTM) with other meth-
ods for FM dataset
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Precision Recall F-score

Template based
Pfam [39] 0.50 0.55 0.52
FIEFDOM [16] 0.34 0.23 0.27

Statistical and
machine learning
methods

DomPro [4] 0.50 0.14 0.22
PPRODO [2] 0.5 0.52 0.51
DROP [6] 0.68 0.26 0.38
DeepDom [3] 0.76 0.45 0.57

Proposed methods

BERT fine-tuned
with stacked
biLSTM (BERTDom)

0.82 0.45 0.58

Pro2Vec with
3-mer (biLSTM)

0.7 0.51 0.59

Table 7. Comparison of proposed method (BERT with stacked biLSTM) with other meth-
ods for multi-domain dataset

6.2 Performance on Discontinuous Domain Targets (DCD)

Table 4 presents results on discontinuous domain targets. The results on this
dataset are similar to results on the FM dataset. Pro2vec with 3-mer performs
best with an F-score of 0.59, whereas, BERTDom has similar results with an F-
score of 0.58. The rest of the models do not perform as well as these two models.
Pro2vec, based on word2ec, learns a representation of bio-words based on the con-
text. This contextual information helps in learning a better representation of the
input data.

6.3 Performance on Multi-Domain Targets

Table 5 presents results using multi-Domain targets. BERTDom shows best results
for multi-domain targets with an F-score of 0.55. This model has good precision as
well as better recall as compared to other models. The rest of the models have good
precision but low recall so the F-score of the rest of the models is less than BERT
fine-tuned with LSTM. BERT fine-tuned with FCNN has inferior performance as
compared to BERT fine-tuned with LSTM or biLSTM. The reason for this perfor-
mance is the sequential nature of protein sequence data. LSTM and biLSTM are
sequence-based models which remember context information.

6.4 Comparison with Other Methods

Table 6 and Table 7 present a comparison of our best performing proposed models
(BERTDom and pro2vec with 3-mer) with existing work. Existing work can be
divided into two categories. The first category is template-based methods. Our
proposed method BERTDom outperforms template-based methods using F-score
with a large margin. The F-score with BERTDom is 0.58 for FM dataset as shown
in Table 6, whereas, Pfam [39] and FIEFDOM [16] have very low F-score of 0.39
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Dataset Precision Recall F-Score

FM

Template based
methods

Pfam [39] 0.32 0.49 0.39
FIEFDOM [16] 0.23 0.18 0.2

Statistical and
machine learning
methods

DomPro [4] 0.50 0.18 0.26
PPRODO [2] 0.33 0.49 0.39
DROP [6] 0.43 0.18 0.25
DeepDom [3] 0.89 0.41 0.56

Proposed methods

BERT
fine-tuned
with stacked
biLSTM
(BERTDom)

0.74 0.47 0.58

Pro2Vec
with 3-mer
(biLSTM)

0.71 0.49 0.58

Multi-
domain

Template based
Pfam [39] 0.50 0.55 0.52
FIEFDOM [16] 0.34 0.23 0.27

Statistical and
machine learning
methods

DomPro [4] 0.50 0.14 0.22
PPRODO [2] 0.5 0.52 0.51
DROP [6] 0.68 0.26 0.38
DeepDom [3] 0.76 0.45 0.57

Proposed methods

BERT
fine-tuned
with stacked
biLSTM
(BERTDom)

0.82 0.45 0.58

Pro2Vec
with 3-mer
(biLSTM)

0.7 0.51 0.59

Table 8. A Summary table for comparison of proposed method (BERT with stacked biL-
STM) with other methods

and 0.2 respectively. Similarly, on the multi-domain dataset, our proposed methods
have superior results as compared to template-based methods as shown in Table 7.
We have also compared our proposed models with other statistical and machine
learning models. Overall, our proposed models outperform the compared methods.
DeepDom [3] performs best among the compared methods and our proposed models
outperform DeepDom [3] as well. These results strengthen our belief that BERT
and pro2vec give superior representations for protein sequences as compared to ex-
isting approaches. Table 8 presents results summary of comparison of our proposed
methods with other methods. The best results are highlighted in bold. This table
clearly shows the superior performance of our proposed deep learning methods for
protein domain boundary prediction as compared to other approaches (template
based, machine learning and statistical).
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7 CONCLUSIONS

Protein domain boundary prediction is an important step in understanding the
function of a protein. Most of the template-based methods have low accuracy so in
recent years many computational approaches have been proposed for this problem.
In this study, we have proposed a novel method BERTDom which trains the BERT
model for the problem of protein domain boundary prediction. BERT is a popular
model for the representation of text due to the sequential nature of the text. The
protein sequence is also an example of sequence data so experimented with BERT
for protein sequence data. The results are encouraging and show the potential of
this multi-head attention-based model for protein sequence problems. The results
are superior to many existing machine learning and template-based methods. We
have also tried pro2vec for this problem. Pro2vec is inspired from word2vec for
context-based words representation. The results with pro2vec are also superior as
compared to exiting computational and template-based approaches.

The performance of deep learning models highly depends on the amount of
training data. Google’s BERT models are trained for at least 1 000 000 steps and
are fed millions of documents, whereas we have trained the BERT model with only
10 000 steps and 185 000 sequences. The reason for the small training size is the
lack of computational resources. Having said that, the results are promising. Thus,
this study shows the potential of pre-trained BERT for protein domain boundary
prediction even when trained on a small data. It is expected that if BERT is pre-
trained with more data, the results can further improve.
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