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Abstract. Many of the deep learning solutions for time-series forecasting reported
in the literature include complex neural networks that may not be directly employed
by the practitioner in the field. In this study, we demonstrate how the standard
deep neural network types, convolutional neural network (CNN) and long short-term
memory (LSTM) network can be applied in the field of time-series forecasting. This
study consists of two parts. The first part is to compare CNN and LSTM models
with classical methods like Random Forest (RF) and ARIMA for the univariate
electric power consumption task. The second part is to use the best performing
model from the first part in the hybrid model and perform data fusion with the
newly built hybrid model for the electric power consumption forecasting task. CNN
and LSTM models outperform traditional methods when their performances are
evaluated on the univariate electric power consumption data of Illinois, USA. We
also illustrate the use of hybrid deep learning models composed of standard CNN
and LSTM for data fusion with the aim of time-series forecasting. When the hybrid
models are applied to the fused data of the electric power consumption data and the
multivariate weather data of Illinois, USA, the forecasting performance is improved
compared to that when only univariate data is used.
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1 INTRODUCTION

Time series is used essentially in any domain of applied science and engineering
that comprises temporal measurements. Time-series forecasting is to forecast future
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values based on previously observed values by using a model. Time-series forecast-
ing has recently become more popular because of the radical rise in the amount of
available temporal data across various domains such as weather, climate, finance,
health, and agriculture. Linear models such as autoregressive, moving average and
their combinations are frequently used in univariate time series forecasting. How-
ever, most of the problems defined in terms of time series involve several variables.
Furthermore, these problems originate from complex systems that can be better
analyzed by non-linear models. The recent success of applying deep learning mod-
els in the fields such as natural language understanding, speech recognition, image
analysis, and bio-informatics [T, 2, [3, 4 5, [6] has motivated researchers in the field
of time-series forecasting to make use of these non-linear models [7, 8, 9, 10]. Hence,
it has been demonstrated that it is possible to learn temporal information and dy-
namics through deep neural networks in a data-driven manner. However, many of
the deep learning solutions reported in the literature include complex deep learn-
ing models which may not form a convenient alternative for a practitioner in the
field.

Data fusion is the process of integrating multiple data sources and the aim
is to generate more effective and accurate forecasting than that provided by any
individual data source. The literature on data fusion is vast and rich [I1]. However,
the use of deep learning for data fusion has not been exploited sufficiently. An
important aspect of deep learning is that hybrid models can be easily constructed
by combining various types of networks. This aspect coincides very well with the
concept of data fusion in the sense that a single deep neural network (DNN) model
can be used to process each data source and even an additional deep neural network
model can be selected for the fusion phase which would overall lead naturally to
a hybrid model. Alternatively, in a hybrid deep neural network model, an initial
network can be used to extract features and a successive network may perform the
regression task. In this way, featurization or feature engineering that requires domain
knowledge and expertise are alleviated and commissioned to the neural network. Of
course, there is a cost: an appropriate neural network model has to be selected along
with its hyper-parameters and the overall system should be fine-tuned as well.

In this study, we aim to demonstrate the use of standard and established neural
network types such as convolutional neural networks (CNN) and long short-term
memory (LSTM) networks for time-series forecasting and the use of hybrid deep
learning models for data fusion. CNN and LSTM networks are already available in
the popular open-source programming frameworks.

We first conduct an experimental study to compare the performance of some
traditional forecasting models, machine learning forecasting techniques and the two
deep neural networks, CNN and LSTM networks. For demonstration purposes,
univariate electric power consumption data and multivariate weather data from
Chicago, Illinois, USA between 2005 and 2011 are employed as data sources. We
then illustrate the use of hybrid deep learning models for data fusion with the aim
of time-series forecasting and we present the results and compare the performance
of various models.
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2 RELATED WORK

In this section, we review time-series forecasting studies that used deep neural net-
works (DNN) and that were related particularly to energy consumption. In recent
years, DNNs have been extensively applied to time series forecasting. We start with
the studies using a single DNN with a univariate data type and then proceed with
the studies having multivariate data type, employing hybrid neural network models
and furthermore fusing different types of data.

Individual Household Electric Power Consumption (IHEC) dataset contains
measurements of electric power consumption in one household in Paris, France with
a one-minute sampling rate over a period of almost four years and it is a very popu-
lar multivariate dataset from UCI Machine Learning Repository [12]. Various types
of deep neural networks have been applied to the IHEC dataset and in many of
these studies, the results have been compared with other deep neural network types
and traditional machine learning algorithms as well [I3, [T4} [15], T6]. In general, re-
sults showed that deep neural networks obtained better performance. Particularly,
Marino et al. used two long short-term memory (LSTM) network-based models in
which the first network had the traditional LSTM network model while the sec-
ond one was LSTM network-based Sequence to Sequence model (Seq2Seq) [I7].
Seq2Seq consisted of two consecutive LSTM networks where the first one is for en-
coding the input and the other is for decoding. Although both Seq2Seq and the
traditional LSTM network performed well on hourly resolution datasets, Seq2Seq
has outperformed the traditional LSTM network on one-minute resolution data.
Amarasinghe et al. compared convolutional neural network (CNN) with other DNN
types on the same THEC dataset [I4]. The challenge was to forecast the electric
power consumption of the household for the next 60 hours in which CNN out-
performed the multi-layer perceptron (MLP) neural network and support vector
machine (SVM), but fell well below of Seq2Seq model. On the IHEC dataset,
Kim and Cho have shown that the hybrid CNN + LSTM network model outper-
formed models composed of single CNN, single LSTM network and single model-
based traditional regressors [I6]. Building Energy Consumption (BEC) dataset is
another energy-related dataset on which various deep neural networks have been
shown to outperform the traditional machine learning methods and shallow neu-
ral networks [I7, I8]. It was also possible to improve the CNN to obtain better
performance [19].

Several studies using hybrid models constructed with multiple DNNs reported
having better performance than when a single DNN is employed. This seems to
be logical since components of a hybrid model can handle different tasks of learn-
ing. Usually, the first part of a hybrid model performs the feature extraction task
and the second part handles the prediction task. Similarly, Yan et al. used a hy-
brid CNN + LSTM network model on UK Domestic Appliance-Level Electricity
(UK-DALE) dataset [20] for forecasting household electricity consumption and this
hybrid CNN + LSTM network model had better performance than that of tradi-
tional Autoregressive Integrated Moving Average (ARIMA) model, single LSTM
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network, and single CNN as well [2T]. Ospina et al. applied a hybrid model com-
posed of an LSTM network and deep MLP [22] on photo-voltaic power generation
data (PVGD) [23]. In this study, wavelet transform was applied to the input signal,
then fed to LSTM networks and LSTM network outputs were subsequently given to
deep MLP with an extra temperature variable. The final prediction was observed as
the output of deep MLP. The hybrid LSTM network-deep MLP model outperformed
single support vector regression (SVR), single shallow MLP and single LSTM models
too.

Data fusion is popularly used for time-series forecasting. For example, Kong
et al. have shown that when appliance-based electricity consumption data (AM-
Pds) [24] were fused by the LSTM network, it had better performance than that
when only household level electricity data was used for forecasting home electric
power consumption [25]. In a similar manner, the LSTM network was applied to
forecast household heat gain (HHG) in buildings by fusing self-collected data from
multiple resources such as electric power consumption of office devices, lighting, oc-
cupant count and wi-fi counts [26]. Results showed that the LSTM network with
data fusion had lower error values than those of the baseline American Society of
Heating and Air-Conditioning Engineers model.

A data fusion architecture was proposed [27] to forecast Spanish Electricity
Market [28] price. The first stage of this architecture is composed of 3 models which
were MLP neural network, adaptive neuro-fuzzy inference system and autoregressive
moving average. The output of each model was the electricity price value and these
were fed to an ordered weighted average model to get the final forecasted value.
Results showed that the fusion architecture outperformed each one of the single
models.

As a popular data fusion approach, traffic and weather data were fused in a
study to forecast traffic density [29]. Forecasting was performed by considering only
traffic flow data and also by using fusing traffic flow and weather data. Data used
in this study were collected from stations in San Francisco, Bay area. It was shown
that the fusion model outperformed the single data model. In addition, the deep
belief network outperformed MLP neural network and ARIMA models for traffic
density forecast in this study.

In a recent study carried out by Kong et al. [30], a multivariate ensemble method
based on a dynamic transfer model is proposed for air pollution prediction. This
model consists of two parts. The first part is an autoregressive dynamic transfer
model and the second part is an ensemble of this model. The proposed model
showed a good performance. Sanhudo et al. [31] have used the k-medoids clustering
algorithm to rectify missing or erroneous values. After this process, ANN and SVM
are used for temperature prediction. ANN has outperformed the SVM in prediction
accuracy. These studies form good examples of the usage of hybrid models for the
task of time-series forecasting.
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3 METHODS

Time-series forecasting problem can be defined as predicting future values of histor-
ical time-series data. Let X = X1, X5, ..., X;. A model is trained on this historical
data in order to predict Xy 1, Xiio0,..., Xy1x where k is called prediction bound.
Let prediction vector be Y = Y;,1,Yiyo,...,Yiyr. Then, the task of the model
is to minimize the error £ = Zfifﬂ |Y; — X;|. Here, if X € R/ where j = 1,
the data is called univariate, otherwise it is called multivariate. For this task, we
have designed hybrid deep models together with a data fusion approach. We ad-
dressed the problem of electric power consumption forecasting under two configura-
tions.

Configuration 1. In the first configuration, only the previous electric power con-
sumption data is given as input. Therefore, the input is univariate data. Remark
that the output is also the electric power consumption data. Within this con-
figuration, we used a prediction architecture composed of a single model. Single
models that we have used are the ARIMA method, Random Forest, CNN and
LSTM network. ARIMA and Random Forest are selected as traditional pre-
diction methods and they are considered baseline methods. CNN and LSTM
networks are chosen as single deep neural network models for this configura-
tion.

Configuration 2. In the second configuration, we have fused weather information
with the electric power consumption data as the input. In this way, we had
multivariate data at the input and the output is always the electric power con-
sumption data. In this configuration, we have employed hybrid deep neural
network models composed of combinations of CNN and LSTM network models
as the prediction method.

3.1 Baseline Methods for Univariate Input Data

Autoregressive Integrated Moving Average (ARIMA) model is a generalization of
an autoregressive moving average model. ARIMA is expected to model the linear
relationship between the variables of a data [32]. It is the combined form of Autore-
gressive, Integrated and Moving Average models and it has three hyperparameters
which are p, d and ¢. p is used to model autoregressive part AR(p) where p is the
degree of autoregression; that is the number of past time steps to be included to
forecast the current value of the series. An integrated model, I(d), is used to remove
seasonal trends where d is the number of times that the seasonal differencing will
be applied to the time series data.

The last component of ARIMA is the Moving Average model, M A(g). In the
Moving Average model, the current value of the series is predicted using past er-
ror values of the series. As a result, these three models are combined to form
ARIMA(p,d,q) and as the ARIMA model is trained on data, it learns the model
parameters. There are several problems with ARIMA when it is used for time-series
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forecasting tasks. First of all, ARIMA needs some pre-processing work on data.
Data has to be free of seasonality and trend. Another drawback is that ARIMA
is good at revealing the linear relationship between past lags and current instances
of data. It is not good at revealing complex and non-linear relationships hidden
inside the dataset. Lastly, ARIMA works on univariate time-series data. When
there is a case of multivariate time-series forecasting, ARIMA can not extract the
relationship between these multiple series.

Random forest (RF) can be used for time-series forecasting tasks. RF is a set
of decision trees where the mission of each decision tree is to learn a different part
of the training dataset. At each node of the tree, there is a comparison of a variable
with a random value or a comparison of a set of variables with a set of random values
in the case of the multivariate dataset. Hence, it can be said that each decision tree
is responsible for learning different relationships between variables of the dataset.
Lastly, the average prediction of decision trees becomes the final prediction result
of RF. Like ARIMA, RF has also problems in revealing the complex relationships
between input variables.

All these problems with the classical approaches made the deep neural networks
popular for the time-series forecasting task. These networks are able to extract non-
linear complex relationships hidden in both univariate and multivariate datasets by
optimizing various hyperparameters.

3.2 Single Deep Neural Network Models

Long Short-Term Memory network (LSTM) is a type of recurrent neural network
used in deep learning. An LSTM network has memory blocks that are connected
through layers instead of neurons. Each memory block acts like a mini-state machine
and takes the long-term dependency in the data into consideration using memory
gates and the weights of the memory gates are learned during the training proce-
dure.

Convolutional Neural Network (CNN) is a class of deep neural networks in which
the hidden layers include layers that perform convolutions. The hidden layers learn
to optimize the convolution filters through training for extracting features from input
data. A CNN often includes pooling layers in addition to the convolutional layers.
Pooling layers decrease the dimensions of data by combining the outputs of a group
of nodes in one layer into a single node in the subsequent layer.

3.3 Hybrid DNN Models for Multivariate Input Data

Hybrid models are formed from various combinations of CNN and LSTM networks.
Some examples are as follows:

e CNN + LSTM,

e LSTM + LSTM (which is also called the Seq2Seq model),

e CNN + LSTM + CNN,
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e LSTM + CNN + LSTM.

The logic behind the hybrid models is the separation of feature extraction and
learning the relation between these features. Feature extraction is handled by the
first part of the hybrid models. The second part is responsible for the use of these
features. In the case of the first two models, the first part of the models, CNN and
LSTM, are responsible for feature extraction. In both models, the second LSTM
learns how to use these features to make future predictions. The logic behind using
CNN and LSTM as feature extractors is that both are good at learning long-term
sequential relations in time-series datasets. This way, we want to compare which is
more effective when used as a hybrid with the LSTM model.

Furthermore, we want to analyze the effect of an extra model in the hybrid
model. We created third and fourth models to test the effect of the extra CNN and
LSTM layers respectively. We wanted to question whether adding an extra model
would improve the learning efficiency of the hybrid model.

The model for data fusion is presented in Figure [, Univariate electric power
consumption data is processed by Submodel-1 and the forecast horizon is (that
is, predictions are obtained for the next) 120 hours. Electric power consumption
and weather data are combined and given as input to Submodel-2. The forecast
horizon is still 120 hours. The predictions from Submodel-1 and Submodel-2 are
then fed into Submodel-3 which generated the final value. Submodel-1 is selected
among the univariate models that give the best performance as the result of a series
of evaluations as described in Section BH Submodel-2 is selected as one of the
CNN+LSTM or LSTM +LSTM or CNN+LSTM + CNN or LSTM 4+ CNN+LSTM,
according to their performance given in Section 5.5} Submodel-3 is an MLP neural
network that has outputs of Submodel-1 and Submodel-2 as its input. Submodel-
3 uses these inputs to decide the final electric power consumption prediction. As
a result, it is important to note that there is a single model that consists of 3 sub-
models. Submodel-1 runs on univariate electric power consumption data. It accepts
the past 1200 hours of electric power consumption data and predicts the next 120
hours of electric power consumption. Submodel-2 takes 1200 hours of multi-variate
data (electric power consumption and eight weather variables) and produces the
prediction for the next 120 hours of electric power consumption. Submodel-3 takes
these two predictions coming from the outputs of Submodel-1 and Submodel-2 and
generates a prediction by means of linear regression. This is the final prediction
of electric power consumption. Hence, there is a single model consisting of 3 sub-
models.

We wanted to compare the performances of the single models and hybrid models
and evaluate the effect of data fusion on forecasting performance. We have also
investigated the effect of the level of hybrid models on forecasting performance.
CNN + LSTM and LSTM + LSTM are common models that are widely used in
time-series forecasting [33, 34, 35, 36, B7, B8]. We have additionally tested the
performance of CNN+LSTM+CNN and LSTM +CNN+LSTM. The basic question
is whether a third model improves forecasting performance or not. The intuition
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Figure 1. Data fusion architecture used in the models.

behind the three-level hybrid models comes from the question of whether adding an
additional model at the start or at the end of the two-level hybrid model increases
the forecasting performance or not. The additional model incorporated into the
start might help the model to better extract the features. Similarly, the model
incorporated at the end of the two-level model might increase the performance of
sequence learning.

4 DATA

We used weather data and electric power consumption data from Chicago, Illi-
nois and Pittsburgh, Pennsylvania. Electric power consumption data is extracted
from [39] while weather data is taken from [40]. Data is in hourly resolution starting
from 2011/1/1 until 2016/12/31 which makes up 52607 data points in total. All
data points are normalized into the interval [0, 1] by min-max normalization. B.6:
In order to make the dataset size multiple of 5, because of the 5-fold partition, the
last two data points are discarded. Missing data points are just discarded. Electric
power consumption data is univariate, meaning that it consists of only one electric
power consumption variable in terms of Megawatts as the unit. It contains a region-
based aggregation of electric power consumption data from Chicago. Weather data
contains a population-weighted average of weather variables and these variables are
precipitation, temperature, irradiance surface, irradiance top of atmosphere, snow-
fall, snow depth, cloud cover, and air density. For data fusion, the electric power
consumption variable is incorporated into the weather dataset, making it 9 variables
in total. Our motivation to fuse weather and electric power consumption datasets
is because their correlation level seems to be good for fusion. Effects of weather
variables may have results on electric power consumption, i.e. during hot or cold
days, it would be meaningful to see a rise in electric power consumption. Moreover,
increasing the number of input variables gives better prediction results as indicated
in Section 2] The information regarding the datasets used in the study is given
in Table [l The correlations between the variables of the weather data and the
electric power consumption are also investigated and Figure 2 shows the correlation
map of the variables of weather data and the variable of electric power consump-
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tion data. Correlation analysis is performed using the Spearman method to reveal
the monotonic relationship between variables. We avoided using Pearson since it
only reveals linear relationships between variables. It is observed that eight vari-
ables of weather data and the single variable of electric power consumption data
are neither highly correlated nor not correlated. The correlation level is just enough
to provide new information. The correlation values in column (or row) nine are
between —0.1 and 0.5. This means that weather and electric power consumption
variables are neither uncorrelated nor highly correlated. In the former case, it would
be meaningless to use uncorrelated data and in the latter case, it would be a re-
dundant variable since they are highly correlated. The datasets can be accessed at
https://github.com/serkanozen/FusionElectricityForecast/.
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Figure 2. Correlation map of weather data variables and electric power consumption.
0: Precipitation, 1: Temperature, 2: Irradiance surface, 3: Irradiance top of atmosphere,
4: Snowfall, 5: Snow depth, 6: Cloud cover, 7: Air density, 8: Electric power consumption.

Name # of Variables | Type
Chicago-electric power consumption 1 | univariate
Chicago-weather 8 | multivariate

Table 1. Properties of datasets used in this study. All datasets cover hourly data from
2011 to 2016 and their sizes are all the same: 52607 data items.
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Figure 3. Nested cross-validation method. Training and validation size reduces as the
k-fold value increases whereas test size remains the same in all folds. Size of each partition
can be seen in Table 2l

5 EXPERIMENTAL SETUP AND RESULTS

In this section, experiments carried out with hybrid models using a data fusion
approach are presented and the results are discussed in detail. Additionally, the
hyperparameter tuning used to find optimal parameter configurations for models is
discussed.

5.1 Nested Cross Validation

The methodology in k-fold nested cross-validation is that time series data is divided
into partitions without a random process since the order of the data of the time series
is important. Time series data can not be randomly chosen as in the traditional
k-fold cross-validation since it would modify the time-series nature of the data,
making it unordered. As it can be seen in Table , n* is the number of data in
k™ fold of nested cross-validation and n* = %(5 — k + 1) where S is the total
dataset size. At every fold of the nested cross-validation, the size of the test set is
fixed, nf ., = Ny + Nour + N = 1370 for k = 1, 2, 3, 4, 5 where N = 50. Then,

1 of the remaining data points is used for validation and % is used for training;

4 .

nFuiq = (0F —np,,) and g, = 3(n* —nf,,). To demonstrate an example, the
above explanations yield dataset partitions that are shown in Figure Bl The sizes
of training set nf . = validation set n*,,, and test set nf._, across different k values

(folds) are given in Table

5.2 Error Metrics

The prediction error is evaluated in terms of the three most popular metrics in time
series forecasting: Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
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Table 2. Size (in terms of hour) of the dataset n*, training set n¥ . = validation set n

and test set n¥,, across various k values (folds)
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Figure 4. Submodel-1 forecasting errors Chicago, Illinois electric power consumption
dataset. The horizontal axis represents the forecasted hour, the vertical axis represents
the error value.

and Mean Absolute Error (MAE).

1
MSE = Ez?d(]?i - )’ (1)

RMSE = 1/ 257 (i — a)2, @)
n

MAE — <%> EZ; Ipi — ail (3)

where p; is the predicted value and a; is the actual value of data item 1.

Experiments are performed with a 5-fold nested cross-validation scheme ex-
plained in the previous subsection and the average MSE, RMSE and MAE values
are calculated on the test dataset. These metrics are selected since they emphasize
different aspects of the error. MSE penalizes large errors since it takes the square of
the difference between the predicted value and the actual value. RMSE is the square
root of the MSE value. MAE on the other hand directly measures the difference
between the predicted value and actual value.

5.3 Selection of Hyperparameter Values

The hyperparameter values of ARIMA, RF, CNN and LSTM network models have
to be selected. Since the number of hyperparameter value combinations is very large
for CNN and LSTM networks, we limited our search for best parameter values to
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Model Name | Parameter Values RMSE Value
Model Name | Name
Layer size 11,3,5,10] 10.23,0.15,0.19,0.18}
# of Filters {12,5,3}, {12,2,1}, {8,5,3}, {5,5,3} {0.19,0.16,0.14,0.15}
Kernel size {10,6,3}, {8,6,3}, {3,3,2}, {1,1,2} {0.29,0.26,0.18,0.13}
CNN Pool size (4,2}, {4,4}, {2,2} {0.14,0.15,0.18}
Batch size {32,256,1024} {0.24,0.19,0.16}
# of Epochs {5,10,15} {0.21,0.16,0.15}
Input time steps {240, 1 200, 2400} {0.25,0.11,0.13}
Layer size (1,2,4,8) {0.22,0.24,0.23, NA}
4 of Units {1,3,8} {0.25,0.22,0.36}
LSTM Batch size {32, 256,1 024} {0.43,0.45,0.26}
# of Epochs {5,10,15} {0.39,0.24,0.26}
Input time steps {240,1200,2400} {0.28,0.21,0.29}
ARIMA p.d.a {8,4,4), {4,441, {4,4,1], {4,2,17, {2,0,1} | {0.25,0.31,0.17,0.16, 0.2}
Random Forest | Number of estimators | {10, 25,50, 100} {0.25,0.13,0.14,0.35}

Table 3. Grid of hyperparameters for deep learning and classical models. Hyperparameter values that are indicated in bold are the
ones used to obtain the results in this study.

138
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some predetermined set of values and we applied a forward-search mechanism by
using RMSE value as the criterion to be minimized. The predetermined sets for
the hyperparameter value search are shown in Table |3 along with the corresponding
average RMSE values. The first elements of sets were taken as the initial parameter
values and for each hyperparameter, alternative values in the corresponding set
were used with this initial configuration. For example, in the case of CNN, the
hyperparameter values of the initial experiment were 1 layer, 12 filters, 10 kernels,
pool size of 4, batch size of 32 and 5 epochs. With this configuration, layer size
was changed to 3, 5 and 10 by keeping the values of all other hyperparameters fixed
and average RMSE values are recorded. The lowest error was obtained when the
layer size was 3 and therefore, the other experiments were conducted with 3 three
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Figure 5. Fusion model forecasting errors for Chicago, Illinois datasets. Here the ex-
periment is realized by setting Submodel-2 to one of CNN + LSTM, LSTM + LSTM,
CNN + LSTM + CNN and LSTM + CNN + LSTM, Submodel-1 is set to CNN since it has
the lowest error for univariate forecasting task and Submodel-3 is set to its default value
MLP. The horizontal axis represents the forecasted hour. The vertical axis represents the
error value.

layers for CNN. After having decided for CNN to have 3 layers, configurations with
a varying number of filters for each layer were run and the configuration with the
lowest error value (that is {8,5,3}) was selected. The number of kernels is another
parameter that is associated with the convolutional layer. After trying {10, 6,3},
{8,6,3}, {3,3,2}, and {1, 1,2} for a set of 3 parameters, each for a layer, the lowest
error was obtained with {3,3,2}. Two Max-Pooling layers were added after the first
and second CNN layers. Layer size of {4,2} had the lowest error value. Batch size
experiments were performed with three different values that were {32,256, 1024}.
The best result was obtained with batch size being 1024. For the epoch size, the
lowest error was obtained by 10 epochs. The input size of 1200-time steps gave the
lowest RMSE value among the set of values {240, 1200, 2400}.

Model-specific hyperparameters of the CNN model obtained as a result of these
experiments can be seen in Table [l During the experiments with CNN, we ob-
served that using more than three convolutional layers made the training process
longer, though it did not provide important accuracy gain. Therefore, the number
of convolutional layers is fixed to 3. The number of “MaxPooling” layers is di-
rectly related to the number of convolutional layers. The numbers of “flatten” and
“fully connected” layers are both 1 since the first one flattens output to 1 dimension
and the latter one gives the final output vector. Keeping “Kernel Size” and “Pool

Size” values low at convolutional layers gave better results than the higher values
do.
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A similar methodology was used for LSTM hyperparameter tuning. The initial
setup consisted of one layer, one unit, a batch size of 32, and 5 epochs. After having
tried various layer sizes of {1,2,4,8}, the lowest error was obtained by 1 layer.
Among the alternatives for the number of units, the lowest error was obtained by 3
units. For the LSTM network model, batch size and the number of epochs showed
similar characteristics to those of CNN and the lowest error was obtained by the
batch size of 1024 and 10 epochs. For input time steps, the LSTM model gave
the lowest error when 1200-time steps were fed into the model.

Model specific
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Figure 6. Submodel-2 forecasting errors for Chicago, Illinois datasets. The horizontal axis
represents the forecasted hour. The vertical axis represents the error value.

hyperparameters of LSTM network model are given in Table f| For the LSTM
network, during the experiments, we observed that a single LSTM layer with 3
hidden units has a good performance. Increasing or decreasing the size of hidden
units or layers did not improve the performance of the model.

The values for ARIMA hyperparameters (p, d, ¢) were selected by grid search and
{2.0,0.0,1.0} gave an acceptable RMSE value in addition to removing some season-
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Figure 7. Fusion model forecasting errors for Pittsburgh, Pennsylvania datasets. Here the
experiment is realized by setting Submodel-2 to one of CNN + LSTM, LSTM + LSTM,
CNN + LSTM + CNN and LSTM + CNN + LSTM, Submodel-1 is set to CNN since it has
the lowest error for univariate forecasting task and Submodel-3 is set to its default value
MLP. The horizontal axis represents the forecasted hour. The vertical axis represents the

error value.
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ality and trend patterns. For the Random Forest model,

was selected to be 25 by grid search.

100

120

the number of estimators

Layer Parameters

# Nodes|# Channels | # Filters | Kernel Size|Act. Func. Pool Size
Convolution 1200 1or8 8 3|Relu —
MaxPooling 1198 lor8 - |- 2
Convolution 599 lor8 5 3|Relu —
MaxPooling 597 1lor8 - —|- 2
Convolution 298| 1lor8 3 2| Relu
Flatten 297 - —|Flatten -
Fully connected 120 Fully connected

Table 4. Model specific hyper-parameters of the CNN model

Layer Parameters

# Units | Act. Func.
LSTM 3 | Relu
Fully connected 120 | Linear

Table 5. Model specific hyper-parameters of the LSTM model

5.4 Evaluation on Electric Power Consumption Data

ARIMA, RF, CNN and LSTM network models were trained on univariate electric

power consumption data for a forecast horizon of 120 hours.

That is, the model

would predict the electric power consumption for the subsequent 120 hours (or
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Figure 8. Submodel-1 forecasting errors running on IHEC univariate electric power con-
sumption dataset. The horizontal axis represents the forecasted hour, the vertical axis
represents the error value.

for the 5 days). The reason for choosing the prediction bound as 5 days is be-
cause it is a common number of days that the weather forecasting services use and
it is an empirically determined value to achieve good test performance. Error-
values in the models are obtained as follows. Size of test dataset is fixed and
equal to nfest = Ninp + Nour + N = 1370 where N = 50, meaning that model
performs 50 different run sessions in order to predict next 120 hours. Each of
these sessions is run by a different input set. Input and output sets are formed
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by shifting these sets right by one hour. That is, if first input and output sets
are Groupl : X1, Xo, ..., X1900, Y1, Yo, ..., Yioo then second ones become Group?2 :
Xo, X3, ..., X101, Y2, Ys, ..., Yia1. This way, the 50™" input and output sets become
Group50 : X0, X51, ..., X1249, Y50, Y51, - - -, Yig9. MSE, RMSE and MAE values are
calculated for each predicted hour over related hours of all groups. For example,
Average error for hour-1 is calculated by running MSE, RMSE and MAE on the set
Groupl Yy, Group2_Ys, Group3_Ys, ..., Group50_Ysy and average error for hour-50 is
calculated on the set Groupl_Yso, Group2_Ysy, Group3_Yss, ..., Group50_Ygg. This
way, the error values of all predicted hours are plotted on the error figures.

5.5 Evaluation on Fused Electric Power Consumption and Weather Data

We evaluated and investigated hybrid deep neural network models in terms of the
fused data. Observing that CNN has the best performance on the univariate elec-
trical consumption dataset, Model 1 is set to be a CNN. Model 2 is selected to be
one of the following models: CNN + LSTM, LSTM + LSTM, CNN + LSTM + CNN
and LSTM + CNN + LSTM models.

CNN + LSTM and LSTM + LSTM are common models that are widely used
in time-series forecasting. We have additionally tested the performance of CNN +
LSTM + CNN and LSTM + CNN + LSTM. The basic question is whether a third
model improves forecasting performance or not. The intuition behind the 3-level
hybrid models comes from the question of whether adding an additional model at the
start or at the end of the 2-level hybrid model increases the forecasting performance
or not. The additional model put to the start might help the model to better extract
the features hidden in the dataset. Similarly, a third model inserted at the end of
the 2-level model might increase the performance of sequence learning.

We have also questioned the effect of the level of hybrid models on forecast-
ing performance. However, we could not find any enhancement in errors when we
increase the hybrid level.

MSE, MAE and RMSE values of single models (Submodel-1), run on univariate
electric power consumption data from Chicago, Illinois can be seen in Figure[d] Like-
wise, Figure |5 shows the MSE, MAE and RMSE values of hybrid models (Submodel-
3), run on combined electric power consumption and weather datasets of Chicago,
Illinois. In order to clarify the advantage of data fusion and hybrid models, MSE,
MAE and RMSE values of single models, run on univariate electric power con-
sumption data (Figure @ and hybrid models, run on combined electric power con-
sumption and weather datasets (Figure of Chicago, Illinois can be compared.
LSTM + LSTM hybrid model has the lowest RMSE value among other hybrid mod-
els, that are, CNN + LSTM, CNN + LSTM + CNN and LSTM + CNN + LSTM.
Among the hybrid models with data fusion, the configuration, that is LSTM+LSTM
running on multivariate and CNN on the univariate dataset, has the lowest error
range that lies in the interval of 0.07 and 0.95. Similar observations are made for
MSE and MAE. The results suggest that the hybrid model for fusion outperforms
the single CNN model’s electric power consumption forecasts. Moreover, in order
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to question the effect of the proposed Fusion model, we compare the error values
of Submodel-1 and Submodel-2 with the proposed model. As it can be seen in
Figure [f] and Figure [f] the Fusion model has lower error values since it utilizes pre-
dictions coming from both Submodel-1 and Submodel-2. As a result, it has lower
error values than the other two models. The proposed fusion model, consisting of
all 3 sub-models, is run on Pittsburgh, Pennsylvania dataset and similar results are
obtained; that is, a hybrid model with the configuration LSTM + LSTM running
on multivariate and CNN running on univariate gave the lowest error values among
other models as it can be seen in Figure [l The reason for the decrease in error
values over predicted days is that the model can learn future time steps well enough
since the input size is high enough. Feeding the network with 1200 time steps and
predicting the next 120 hours is not a hard problem for the model. Further time
steps could even be predicted better than the former ones as the number of the
predicted time steps is much lower than the number of the input time steps. IHEC
is one of the popular univariate electricity consumption datasets as mentioned in
Section Bl We have run our univariate models on the THEC dataset and observed
their performances based on various error metrics. Results of Submodel-1 for uni-
variate lies between 0.14 and 0.18 (see Figure [§). CNN has the lowest error values
across various runs. Fusion model is tested by using IHEC and weather dataset
of Paris, obtained from [40]. Both datasets intersect between the years 2007 and
2010. As it can be seen in Figure [0 results suggest that Fusion model predicts
better in most of the predicted hours. The RMSE error is below 0.14 until the
80 predicted hour and then it lies between 0.14 and 0.18. On average, it per-
forms better than Submodel-1. Moreover, this time Fusion model performs best
when its Submodel-2 is set to LSTM + CNN + LSTM. That is IHEC dataset is
more suitable for the hybrid model to extract meaningful information. Similar to
the experiments held by various studies (see Section 7 CNN has good performance
among other baseline methods such as ANN, ARIMA and SVM, since the univari-
ate electric power consumption dataset does not include long-term relationships to
be revealed by LSTM. Its short-term relationships are enough to be captured by
CNN.

In order to demonstrate the efficiency of our fusion model, we compared it with
ECNN-LSTM [4T]. kCNN-LSTM was used for forecasting the energy consumption
of a building in IIT-Bombay. The dataset was composed of electric power consump-
tion values with 15 minutes intervals. The dataset was divided into three clusters
each of which contains similar consumption patterns and kK CNN-LSTM was executed
separately on each cluster. Since weather data is necessary for our fusion model we
have obtained the weather data for the specific time interval [40]. We were then
able to compare the evaluation results of ACNN-LSTM with our CNN (univariate),
LSTM + LSTM (multivariate) and Fusion (multivariate) models. The evaluation
results of kKCNN-LSTM are presented in Table [fl. CNN is our univariate model that
runs only on univariate electric power consumption data and it generated worse
results than KCNN-LSTM. Our LSTM + LSTM model was not also better than
kCNN-LSTM. On the other hand, our Fusion model generated better results than
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all other models.

In order to demonstrate the effect of the fusion model, we compared its results
with the results of Submodel-1 and Submodel-2 where each sub-model is set to
various prediction models. As it can be seen in Table [7, the fusion model gives
better results than individual prediction models set for Submodel-1 and Submodel-2.
Submodel-1 is set to one of the following models: Random Forest, ARIMA and CNN.
Remark that Submodel-1 runs only on a univariate electric power consumption
dataset. Submodel-2 is set to CNN + LSTM and LSTM + LSTM which are the best
performing among other multivariate models. The models set for Submodel-2 run
on electric power consumption and Weather datasets. Our fusion model is composed
of Submodel-1 which is set to CNN and Submodel-2 which is set to LSTM + LSTM.
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Figure 9. Fusion model forecasting errors running on IHEC and Paris weather datasets.
The horizontal axis represents the forecasted hour, the vertical axis represents the error

value.

Type Metrics Models
kCNN-LSTM CNN | LSTM + LSTM | Fusion
MSE 0.0095 | 0.0398 0.0239 | 0.0079
Cluster-1 | RMSE 0.0974 | 0.1726 0.1178 | 0.0889
MAE 0.0711 | 0.1653 0.0778 | 0.0701
MSE 0.0212 | 0.0428 0.0339 | 0.0104
Cluster-2 | RMSE 0.1456 | 0.2068 0.1841 | 0.1019
MAE 0.0997 | 0.1123 0.0861 | 0.0911
MSE 0.0010 | 0.0248 0.0013 | 0.0007
Cluster-3 | RMSE 0.0303 | 0.1574 0.0361 | 0.0264
MAE 0.0165 | 0.0732 0.0256 | 0.0231

Table 6. A.1: Comparison of univariate CNN model, multivariate LSTM + LSTM and
our fusion model with kKCNN-LSTM [41]

As Table [] demonstrates, the results of our Fusion model are better than those
generated by Submodel-1 and Submodel-2.

Diebold-Mariano test is popularly used for testing the statistical significance of
forecasting results [42], [43]. Diebold-Mariano test is run on the error results of
models running on univariate electric power consumption dataset and separately on
the error results of models running on multivariate (electric power consumption +
weather) datasets of Chicago, Illinois. Diebold-Mariano test result is demonstrated
by a heat map. The green cell means that the p-value is closer to zero which means
that the result of the model on the X-axis is statistically more significant than the
models on the Y-axis.
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Datasets |Metrics Submodel-1 Submodel-2 Fusion
Random F.|Arima| CNN|CNN + LSTM|LSTM + LSTM
MSE 0.055310.0477|0.0325 0.0224 0.02520.0076
Chicago |RMSE 0.2351/0.2184|0.1802 0.1496 0.1587/0.0871
MAE 0.1735/0.1566|0.1436 0.1189 0.1218/0.0742
MSE 0.0419/0.038410.0418 0.0578 0.0345/0.0245
Pittsburgh| RMSE 0.2046|0.1960|0.2062 0.2404 0.1857/0.1565
MAE 0.16810.1512|0.1542 0.1983 0.15480.1358

Table 7. Comparison of Submodel-1 and Submodel-2 results with the result of Fusion
model across different datasets

As it can be seen in Figure [I0, heat maps suggest that for the green cells, the
model on the X-axis produces statistically more significant values than the models on
the Y-axis. Specifically, in Figure the CNN model performs statistically better
than other models. For the multivariate (electric power consumption + weather),
as it can be seen in Figure the LSTM + LSTM model performs statistically
better than other models. Figure represents the result of Diebold-Mariano test
of models. In these tests, the results of 3 different executions are compared. In the
first execution, Submodel-1 is set to CNN and it is run on the univariate electricity
consumption dataset. In the second execution, Submodel-2 is set to LSTM + LSTM
and is run on the multivariate weather 4 electricity consumption dataset. Lastly, the
Fusion model, where Submodel-1 is set to CNN, Submodel-2 is set to LSTM+LSTM
and Submodel-3 is set to MLP, is run on the weather + electricity consumption
dataset. As can be seen in the Figure, the Fusion model produces more significant
results than any of the Submodels.

We have managed to reduce error amounts with this data fusion and hybrid
model approach without requiring too much additional computational effort. There
is not much difference in the total training time of a hybrid model than training the
components of the hybrid model, since the outputs of the Submodel-1 and Submodel-
2 are fed to an MLP which is composed of a single hidden layer of 10 nodes. In
addition, as a result of the recent advances in hardware technologies and access to
GPUs, the computational effort was not a problem for this study.

6 CONCLUSION

In this study, we have shown that data fusion and hybrid models can improve electric
power consumption prediction tasks. Firstly, we have shown that CNN performs
best for the electric power consumption prediction tasks. Then, we have shown that
the data fusion model with a hybrid model consisting of CNN as Submodel-1 and
LSTM + LSTM as Submodel-2, performs best among other hybrid alternatives. To
the best of our knowledge, this study is the first in utilizing a mix of single and
hybrid models in fusion architecture for the electric power consumption prediction
task. We have shown that hybrid models together with data fusion architecture
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Figure 10. Heat map of p-values of Diebold-Mariano test. Closer to the values to 0,
Models on X-axis have more significant results than those on Y-axis.

work better than the non-hybrid models used with the univariate dataset. This
study shows that when there is an available weather dataset for a region, it can be
used to enhance the electric consumption prediction. As a future study, we consider
applying transfer learning of these models on a target dataset with insufficient data
size. We aim to show that these models learn the relation in the features of the
domain dataset and can be used to predict future electric power consumption on
the target dataset.
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