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Abstract. 3D recovery approaches require a variety of clues to obtain shape infor-
mation. The shape from shading (SFS) method uses shading variations in images
to estimate depth maps. Although shading contains detailed information, it causes
some well-known ambiguities such as convex-concave ambiguity. In this study, a sys-
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tem installation using red, green, and blue illumination and an algorithm processing
reflections on the surface were proposed to accurately analyze surface orientations
and solve ambiguity problems. The algorithm evaluated combinations of light hit-
ting the surface from different directions and detailed surface orientations to avoid
erroneous predictions. The proposed system was tested with eight different methods
in the literature developed from the earliest times to the present, and the initially
erroneously predicted surface orientations were improved. Consequently, the cor-
rect orientation of the surface points was determined by removing the ambiguities
in images taken without considering the location of illumination, and all the tested
methods provided successful results using the proposed system.

Keywords: 3D reconstruction, shape from shading, scene understanding, ambigu-
ity
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1 INTRODUCTION

Obtaining 3D shapes of objects in the images is one of the main and interesting re-
search topics in computer vision. 3D reconstruction approaches try to obtain depth
information from various clues provided by the images. The spatial pattern of light
reflected from surfaces, the shading, is one of the most important clues providing de-
tailed information about 3D shapes [1, 2, 3]. Shape from shading (SFS) was initially
introduced by Horn [4] as the solution of the first-order nonlinear partial differential
equations. It is a classical 2D to 3D inverse problem in computer vision [5]. SFS
tries to obtain 3D shape information by using shading as a clue to understand how
the observed intensity variation across surfaces of objects provides conclusions about
the local topography. It is required to make various assumptions in order to find
a solution. In literature, SFS methods have been classified in many different ways,
and representative methods selected from such classifications have been compared
with each other [6, 7].

In addition to the popularity of mathematical and algorithmic developments
about SFS methods, the shape information obtained with SFS is used in many
different fields such as surface topography and terrain analysis [8, 9], biometric
studies [10, 11], industrial quality control [12, 13], and medical diagnosis and treat-
ment [14, 15]. Although shading serves as an important means for shape recon-
struction, it is an ambiguous clue of relief [3, 16]. SFS is one of the powerful 3D
reconstruction methods, but it spans some well-known ambiguities, and is consid-
ered ill-posed due to the ambiguities such as convex-concave ambiguity, and bas-
relief ambiguity [5, 17, 18]. The convex-concave ambiguity is of interest not only in
computer vision, but also in the context of understanding models of human percep-
tion [19].



1138 M. Kotan, C. Öz, M.R. Bozkurt

Pentland [20] implied that the convexity of the surface cannot be determined
unless something is known about the direction of illuminant. Among the works
that considered the question of uniqueness and ambiguity, most of them considered
restricted versions of the problem such as constraints and limitations on the environ-
ment (surface, the light source, camera model, multi-view images), or information
used in the solution such as boundary conditions, singular points, or graphs [17, 21].
The ambiguity in Figure 1 is due to a change in the estimation of illumination
parameters.

Figure 1. SFS ambiguity: perceiving two craters or volcanoes according to the position
of light source [5, 20, 22]

The brightness variations, observed in a single image, indicate variations in the
normal, and in geometry [23]. In a single gray level image, both the indentation
(yellow-green gradients in Figure 2), and the protrusion (red-blue gradients in Fig-
ure 2) are possible geometric configurations. Most shape from shading methods
require a highly controlled illumination, and often fail when deployed in real-world
conditions [23].

Figure 2. Possible geometric configurations of convex-concave ambiguity [24]

The main difference here is to suggest a method that will allow the algorithms to
perform an accurate surface analysis by two images in total using color reflections
and shading. Unlike photometric stereo setups, color reflections give information
about surface orientations, and the effect of the light source’s position is reduced
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by them even on surfaces with near-point illumination, thus allowing the existing
SFS algorithms to create satisfying surface reconstructions. The wall in Figure 3
is illuminated only with red, green, and blue colors. When illuminated simultane-
ously with all three colors, the wall surface is perceived as white, but when there
is an obstacle that refracts the light, only the reflections of certain colors are per-
ceived.

Figure 3. A wall illuminated by red, green, and blue color illuminants. Different color
patterns form on the wall as the result of the combination of lights.

In this paper, a calibrated illumination environment, specifically chosen in order
to be directly informative about shape, was used to improve the surface reconstruc-
tion of well-known SFS methods. The surface was illuminated by three (red, green,
blue) monochromatic directional light sources lit from different directions. The im-
ages of the synthetic surfaces, produced in the modeling environment using a point
light source, were initially assigned to eight basic SFS methods without information,
and then assigned with color reflection information, and the surfaces created by the
methods were examined. Thanks to the developed algorithm interpreting color pat-
terns on the surface, efficient and high-quality surface recovery from a single image
is possible. The proposed framework is shown in Figure 4.

Basically, the color distributions, formed on the surface through illumination
at the same time by different color light sources, were processed algorithmically,
and details about the orientation of the surface points were provided for the SFS
methods. Concave and convex regions were detected without being affected by
the position of the light source, and a system was proposed for accurate analysis
of surface orientations. The algorithm was tested on two of the preferred synthetic
surfaces in the ambiguity problems [18, 21], and the deviations and errors of the SFS
methods arising from the change of the light source’s position were eliminated. By
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Figure 4. Proposed framework

being aware of the locations of illuminants, and by calculating the color reflections,
surface normals and orientations were determined correctly.

The rest of the study can be summarized as follows: In Section 2, literature
studies are discussed. In Section 3, the modeling of the proposed system is described.
In Section 4, the surface reconstructions and comparisons are given in detail. Finally,
future studies and results are discussed.

2 LITERATURE REVIEW

The traditional shape from shading, with a single light source and Lambertian re-
flectance, is a challenging problem. The constraints implied by the illumination are
not sufficient to specify the local orientations [17]. In order to solve the general
ambiguities, many approaches have been emphasized in the literature.

Woodham [25] introduced a technique called photometric stereo. The ambi-
guities in determining the local surface orientation from intensity measurements
were eliminated by varying the direction of illumination between successive images.
Johnson and Adelson [17] estimated surface normals from a single image of a diffuse
object under natural illumination. They assumed uncontrolled natural illumina-
tion variability to reduce ambiguity in surface orientation. The surface normals of
a diffuse object were estimated from a single image captured under known but un-
controlled illumination. Xiong et al. [26] developed a framework for obtaining shape
information from diffuse shading, and used the combination of dense local estimation
and globalization for traditional SFS assuming known albedo and a single known
directional light. Chakrabarti and Sunkavalli [27] employed a similar framework
developed in [26], and obtained geometric details from images captured under the
RGB-photometric stereo setup in the presence of spatially varying albedo. A dif-
fused surface was illuminated by three-directional monochromatic light sources, sim-
ilar to the environment described here. They performed local inference on a dense
set of overlapping patches to produce distributions of candidate shapes for every
patch and each candidate corresponded to a different assumed albedo. Harmonizing
the local distributions resulted in the creation of a surface normal map. Prados and
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Faugeras [5] described basic ambiguities of SFS, and assumed that all the parameters
of the light source, the surface reflectance, and the camera were known. Yu et al. [28]
used Microsoft Kinect to resolve ambiguities in SFS, and proposed a shading-based
shape refinement algorithm. Noisy, incomplete depth maps obtained were used to
resolve bas-relief ambiguity, and they clustered the pixels with similar normal direc-
tions. Zhu and Shi [29] used the singular points, the points where surface normals
are frontal to the illumination direction, in order to determine the local ambiguity.
Abada et al. [21] stated that singular points are necessary but not sufficient to re-
solve local ambiguity, and that it is required to have further information. They also
stated that whenever the number of edges between the singulars points increases,
the ambiguity decreases. Figure 5 is taken from their study to show local ambiguity
for a graph configuration, and the surface shown was also studied in this study.

Figure 5. Local ambiguity for a graph configuration [21]

Unlike single-view reconstruction and a utilized orientations matrix derived from
color illuminated surface, Quéau et al. [23] introduced a variational method for multi-
view SFS under natural illumination. A fusion of multiple-view reconstruction and
SFS was proposed for accurate dense reconstructions. The key idea is to couple
partial differantial equation based solutions for single-image based SFS problems
across multiple images and multiple color channels by means of a variational formu-
lation. They modeled the brightness variations of each color channel and each image
through a partial differential equation, and used an Alternating Direction Method
of Multipliers (ADMM) algorithm to solve the nonlinearly coupled optimization
problem. Belhumeur et al. [16] emphasized that neither shading nor shadowing
reflects the true 3D structure of the object from a single viewpoint. Henderson
and Ferrari [30] illustrated that directional color illumination provides strong clues
for surface orientation. Class-specific 3D reconstruction from a single image, and
the generation of new 3D shapes were studied. Their method exploited shading in
training images, and tested in both illuminations by three directional color illumi-
nants, and by illumination with one white directional illuminant. Breuss et al. [19]
explained the convex-concave ambiguity in the perspective SFS model. By address-
ing the light source attenuation factor, they looked for an answer to the question
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of whether all ambiguities are being eliminated by the use of the perspective SFS
model, or not. They showed that ambiguity situations are still occurring in practical
calculations, and proposed an algorithm for complex surfaces. 3D recovery methods
are frequently used in inspection works [12, 13, 31], and the method proposed here
covers especially inspectable surfaces and systems in which color illumination can
be installed.

3 SYSTEM PROPOSITION

A system based on three color illumination was proposed to prevent incorrect 3D
reconstruction due to ambiguities and shading tricks. For example, the surface,
preferred in ambiguity studies [18, 21], given in Figure 6, can be considered.

Figure 6. Example of synthetically formed surface with indentation and protrusion regions

The above surface was obtained using the formulation in Equation (1):

Z = 2 ∗
(

1

e((x−5)2+y2)
− 1

e((x+5)2+y2)

)
{x, y|x, y ∈ R}. (1)

By changing the location of the light source of the above surface, many different
shading images can be obtained. Assuming that the observer’s direction (camera
view) is fixed, some image examples and (x, y, z) locations are shown in Figure 7.

Satisfactory convergent results can be obtained if the shading information is
used to obtain the above surface shape in cases where the indentations and pro-
trusions of the surface are compatible with the shading image and the illumination
direction. Sample gray level image by the use of the distant light source, and the
shape estimation of the surface in Figure 6 are given in Figure 8.

The surface has been properly estimated by considering the low surface points
as darker, and the high surface points as brighter. When the surface in Figure 6 is
illuminated from different positions, different shading images and surface orienta-
tions may cause erroneous estimation. In Figure 9, the situation, where the same
surface is illuminated from above by a near-point light source without changing the
observer direction, is discussed. In such a case, the gray level image, and the surface
prediction of the most shading interpreter algorithms will be erroneous.
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Figure 7. Images of the same surface illuminated from different locations

a) b)

Figure 8. a) The gray level image of the surface in Figure 5, and b) predicted surface
shape with high accuracy by interpreting shading information

By illuminating the surface at the same time with different color light sources,
it is intended to process the color distributions on the surface algorithmically, and
to provide accurate information about the orientation of the surface points to SFS
methods. The sample surface, and scene design were addressed using the Blender
3D [32] modeling environment in order to examine the color reflections. Color illumi-
nants are positioned on a certain small portion of the surface. The scene design, and
sample color reflections (rendering) formed on the surface are shown in Figure 10.

The images obtained by illuminating the surface from three different directions
using red, green, and blue colors simultaneously and separately are shown in Fig-

a) b)

Figure 9. a) The gray level image of the surface in Figure 6 illuminated by near-point
light source, and b) approximate surface estimation according to the some shading-based
algorithms
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a) b)

Figure 10. a) Proposed scene design and b) sample rendering of the given surface

ure 11. The developed method sorts the input color image as per all color bands,
and creates color distribution masks.

The color decomposition is achieved by converting each color component in the
received RGB image (ImRGB) into separate 2D color band arrays according to the
image color map. Separate color bands and mask images are obtained by applying
the threshold value ImRGB [R,G,B] > 0 to the generated sequences. Thanks to the
generated 2D arrays, the mixed color bands can easily be detected by comparing
specific color bands. The calculated band images of the color reflections are shown
in Figure 12. The regions, where none of the red, green, and blue colors are lit,
are the black band, and the regions lit by the red and green colors are yellow band,
and the regions lit by the red and blue colors are magenta band, and the regions lit
by the green and blue colors are cyan band, and the regions lit by all three colors
together are masked as a white band.

A separate histogram can also be used to detail red, green, and blue pixels as
well as total pixel counts. Figure 13 illustrates the histogram of all colors between
[80–120] values when all color band arrays are scaled to a gray level of [0–255]. The
threshold values can be updated and objects or noise under certain pixels in the
image eliminated by using specific threshold values or methods such as Otsu.

Even if different shading images are obtained by illuminating the surface from
different positions, thanks to the correct processing of color reflections, SFS algo-
rithms can distinguish concave and convex regions correctly, and can make correct
interpretations about surface orientations. After processing the decomposed color
bands, the erroneous surface orientation shown in Figure 9 b) was calculated more
accurately as in Figure 14 b).

4 DETERMINATION OF ORIENTATIONS AND TEST RESULTS

In order to examine the shading sensitivity of SFS methods, and the effectiveness of
the proposed approach on different methods, synthetically produced surfaces con-
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a) Illumination of the surface simultaneously
with all colors

b) Illumination of the surface with red color

c) Illumination of the surface with green color d) Illumination of the surface with blue color

Figure 11. Illumination of the surface with different colors

taining single indentation were used. The gray level image of the surface was first
assigned to eight different SFS methods, and 3D surface estimates were obtained.
Then, the same image was assigned to the same methods by using the developed
surface orientation algorithm, and the new results obtained were compared with the
previous surface estimates.

4.1 Description of Selected Methods

Lee and Rosenfeld [33] assumed an isotropic distribution of surface orientation.
With the help of a coordinate system with one axis in the assumed direction
of the light source, a method for estimating Lambertian surface shape from
shading information was developed. The image was rotated from viewer to light
source coordinates to compute the intensity gradient in terms of light source
coordinates.

Frankot and Chellappa [34] described a method for enforcing integrability, pro-
jecting the possibly nonintegrable surface slope estimates onto the nearest in-
tegrable surface slopes. The surface slopes were represented by finite sets of
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Figure 12. Decomposition of the surface illuminated with red, green and blue colors into
color bands

orthogonal integrable basis functions. The integrability constraint led to the
reconstruction of surface height by integrating surface slope estimates.

Pentland [35] employed the linear approximation of the reflectance function in
terms of the surface gradient. To get a closed form solution for the depth at
each point, Fourier transform was used on the linear function.

Figure 13. The histogram of all R, G, B bands in the value range [80–120]
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a) b)

Figure 14. Surface estimation after processing color information

Tsai and Shah [36] utilized the discrete approximations of gradients using finite
differences in order to linearize the reflectance map in terms of depth (Z). Using
a Jacobi iterative scheme, their algorithm recovered the depth at each point.

Zheng and Chellappa [37] computed the surface by implementing the smooth-
ness constraint requiring the gradients of reconstructed density to be close to
the gradients of the input image. Euler equations were simplified by taking the
first-order Taylor series of the reflectance map.

Barron and Malik [38] introduced a model, SIRFS (shape, illumination, and re-
flectance from shading), taking a single image and producing the estimate of the
shape, surface normals, reflectance, shading, and illumination. They defined the
approach as an optimization problem recovering surface characteristics under
specific priors.1

Quéau et al. [39] presented a numerical solution based on an augmented Lagran-
gian approach for solving a generic PDE-based SFS model which handles a vari-
ety of models for the camera and the lighting. They offered an ADMM approach
to solve the resulting system of PDEs, which separates the difficulty due to non-
linearity from that related to gradient dependency.

Kotan et al. [40] obtained the depth map by using different spatial coefficients of
numerical gradients of images as an initial state and linearizing the reflectance
map in terms of depth. A hybrid linearization based SFS is presented.2

4.2 Test Results

The surface shown in Figure 15 a) was generated by using Equation (2) and the
image in Figure 15 b) was obtained as the result of illuminating the surface by using
a near point light source.

Z =
−2

e((x+0.1)2+y2))
{x, y|x, y ∈ R}. (2)

1 Sample code implementations are available at https://jonbarron.info/.
2 Sample code implementations are available at https://github.com/

muhammedkotan/hybridSFS.

https://jonbarron.info/
https://github.com/muhammedkotan/hybridSFS
https://github.com/muhammedkotan/hybridSFS
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a) b)

Figure 15. a) Synthetically generated surface with an indentation and b) the result of
illuminating from above with a near-point light source

Many SFS algorithms assume that although the direction of illumination is pro-
vided, the surface begins to rise as the brightness increases at the deepest point
of the surface. Prior to provision of the color reflection information, the surfaces
produced by the eight methods for the image in Figure 15 b) are shown in Fig-
ure 16.

When the results are visually evaluated, it is obvious that the methods ad-
dress the brightness in the center of the indentation region as an increase, and
produce inaccurate surface estimations. The color image of the surface in Fig-
ure 15 a), and decomposed color bands in the application developed are shown in
Figure 17.

As the selected methods perceive the gradations at the center of the indenta-
tion area as elevation, the incorrectly reconstructed surface shapes are improved
by using the color reflection algorithm developed. Since the locations of color light
sources are known, the orientation of the surface points can be determined easily
by interpreting the color bands. Color reflections are analyzed, and the surface is
decomposed into color bands. The direction of the surface points is determined
using color patterns and illumination directions. In addition to the visual compar-
ison of the orientation, we compared the depths produced by the methods with the
ground-truth depth map as benefiting from various metrics used in image analysis:
Mean Squared Error (MSE), Structural Similarity Index (SSIM), Peak Signal-to-
Noise Ratio (PSNR). Regarding the first metric, the lower the value is, the more
convergent the result is. The other two metrics show the similarity ratio, and the
higher value indicates a more similar result. The new surface estimates, created by
the methods for the same surface using the color processing algorithm, are shown
in Figure 18.

Note that the algorithms contain many parameters and pre-processing steps.
In addition, some of them have an iterative nature. Therefore, they can produce
different results according to the selected parameters and values. The emphasis
here is not on the performance comparisons of the algorithms against each other
but on the proposed method based on color reflection analysis, it is showing that
the results are better visually and metrically. The technique developed improves the
performance of all SFS methods in all of the selected metrics and provides 100%
performance.
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a) Lee and Rosenfeld b) Frankot and Chellappa c) Pentland

d) Tsai and Shah e) Zheng and Chellappa f) Barron and Ma-
lik

g) Quéau et al. h) Kotan et al.

Figure 16. The surfaces estimated by eight different SFS methods

SFS Method Before-Proposed System After-Proposed System

MSE PSNR SSIM MSE PSNR SSIM

Lee and Rosenfield 0.0619 12.0796 0.8496 0.0274 15.6299 0.8937

Frankot and Chellappa 0.0219 16.6041 0.8831 0.0201 16.9723 0.9340

Pentland 0.0214 16.6931 0.9163 0.0162 17.9112 0.9377

Tsai and Shah 0.1622 7.8999 0.6194 0.1203 9.1969 0.6644

Zhang and Chellappa 0.6699 1.7402 0.1000 0.0114 19.4290 0.9206

Barron and Malik 0.0041 19.0570 0.6793 0.0033 19.9514 0.8181

Quéau et al. 0.3246 4.8862 0.2903 0.2171 6.6329 0.4084

Kotan et al. 0.0515 12.8801 0.8529 0.0488 13.1183 0.8569

Table 1. Performance measurement of the proposed system
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Figure 17. Decomposition of the surface illuminated with red, green and blue colors into
color bands

5 FUTURE WORK AND CONCLUSION

Using a system prepared in a 3D modeling environment, a solution was proposed
for the ambiguity of surface reconstructions, and especially for the convex–concave
ambiguity. The gray level image, and color reflections of the surface illuminated with
3 different colors at a certain height and position were interpreted correctly, and the
orientations of the surface regions were predicted more accurately regardless of the
lighting direction. Synthetic, white, and matte surfaces, produced in a 3D modeling
environment, were used. The scene was illuminated simultaneously with red, green,
and blue color illuminants. The orientations of the surface points were correctly
analyzed by using the color patterns formed on the surface. The image, taken from
the above of the surface, was assigned to eight different well-known SFS methods
as the input image, and they ensured the prediction of the surface shape. The
selected SFS methods were first applied on the generated synthetic surfaces without
the knowledge of color reflections. And then they were applied to the same surfaces
with the color reflection algorithm developed. Due to the illumination position and
shading, the initially estimated incorrect surface reconstructions were improved by
the use of the proposed method, and the SFS methods were enabled to make a more
accurate surface estimation as independent from the illumination direction. The
results were compared qualitatively and quantitatively. The technique developed
enabled the methods to calculate surface orientations accurately, and to estimate
more convergent surface reconstructions.
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a) Lee and Rosenfeld b) Frankot and Chellappa c) Pentland

d) Tsai and Shah e) Zheng and Chellappa f) Barron and Ma-
lik

g) Quéau et al. h) Kotan et al.

Figure 18. The new surfaces estimated by eight different SFS methods

The application spans some limitations, and they can be addressed in future
studies:

1. The surfaces used were based on the assumption of matt and white-colored
surfaces with very low reflectivity. Complex images may occur due to the re-
flection of colors in highly reflective surfaces such as metals. Sample images,
showing different reflections that may occur on the surface when the same
surface has parametrically different reflectivity coefficients, are shown in Fig-
ure 19.

2. Color bands, reflected by the surface, should be considered on different color
surfaces. The algorithm developed may need to be customized according to the
object’s surface.
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3. The studies were carried out theoretically using virtual environments. The re-
action of the system under real environmental conditions can be investigated in
the next stage of the study.

a) b)

Figure 19. Different reflection images obtained by changing the surface reflectivity coef-
ficient

In future studies, highly reflective surfaces, or improvements and customizations
of the algorithm can be studied according to the surface to be examined. It can be
ensured for the algorithm developed to be used for parts and surfaces having different
properties and sizes. With the adaptation of the system to the real environment,
the proposed design can be used in many fields such as inspection and surface
analysis systems. The algorithm developed can be used to detect surface orientations
or defective areas by eliminating reflections, and by using appropriate hardware
components. In industrial quality control systems, it can be used to detect defects
such as dents, scratches, holes, cracks, etc.
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