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Abstract. A method of repairing process models with non-free-choice constructs
is proposed based on logical Petri nets, aiming at the problem of low precision
in the existing repair methods. An extended successor matrix of transitions is
determined according to the distance between any two transitions. There are two
types of choice-construct transitions. One is a non-free-choice construct transition,
and the other is a general choice construct transition. The type of choice-construct
transitions can be determined based on the extended successor matrix and the
relationship between the front and back sets of transitions. The location of the
deviations is calculated by an improved replaying method. Finally, a model can be
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repaired according to remaining-token places and missing-token places. Based on
the experiments on real event logs, the method proposed in this paper has a better
performance in fitness, precision, and simplicity compared with its peers.

Keywords: Model repair, non-free-choice constructs, logical Petri net, token replay,
process model, event logs

1 INTRODUCTION

Process mining is a new emerging discipline and can improve and perfect the pro-
cesses in various application fields [1]. One of the foundations of process mining is
data mining. However, it is different from data mining. They are data-driven mining
technologies essentially, and can analyze data and find out some valuable informa-
tion. There are some differences between them, such as the field of use, algorithm
technology, and storage mode. Process mining based on event logs mines real process
models from different perspectives. It can find the similarities and differences with
standard process models and provide a basis for improving the model. Data mining
does not focus on the process and cannot realize the end-to-end process discovery.
It focuses on the valuable information of the data. Process mining can use Play-In,
Play-Out, and Replay to create valid associations between the process model and
the ”reality” captured from the event logs. It uses Petri nets as input information
for Play-Out, and it finally generates its described behaviors by making tokens re-
peatedly execute on the net. Play-In is the opposite of Play-Out. It uses behaviors
as input information and a process model as output information for Play-In. All
process discovery methods belong to the case of Play-In technology [1, 2]. Replay
takes event logs and process models as inputs according to different purposes. Event
logs are re-executed on the process model in the operation process. The deviations
between event logs and process models can be detected and quantified by replaying
the event logs.

Many process mining algorithms have been proposed, since the concept of Petri
nets was founded by German scientist Dr. Carl Adam Petri in 1962. A process
model can be mined based on α algorithm [3] according to the order of event logs.
However, the deficiency of α algorithm is that the logs are required to be complete.
α # is an improved algorithm of α algorithm for solving the problem of invisible
transitions [4]. An extended method of α algorithm is proposed in [5] for dealing
with non-free-choice constructs. The integer linear programming (ILP) algorithm
is proposed in [6]. It can solve the short loop mining problem to a certain extent,
while it is slow for processing event logs, so its efficiency is low. A new process
model can be mined from event logs by mining algorithms. However, some of the
existing models cannot be repaired by mining algorithms. Many existing process
models are inconsistent with event logs, they need to be repaired. Hence, it is not
enough to rely only on mining algorithms. A similar optimal alignment computing
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method is proposed based on Petri nets with basic structures in [7], which does not
focus on process repairing. Fahland et al. propose a repairing method with high
fitness but low precision [8, 9]. Goldratt’s method adds self-loops when repairing
the model, which increases the complexity of the model [10]. A testability modeling
method based on colored generalized stochastic Petri nets is proposed in [11]. It
can solve the problem when failure modes are ignored in the existing testability
mode. A repairing method for concurrent event process models based on Petri nets
is proposed in [12]. The repaired model can completely replay the given event log
and can avoid the occurrence of redundant activities caused by the loop. Sheng
proposes a modular process model repairing method based on the behavioral profile
in [13], and a process model is divided into five small modules by a divide and
conquer method. A process variant merging method based on Petri nets is proposed
in [14] to recognize the common characteristics of existing business flows and to
eliminate the process redundancy.

Logical Petri nets [15, 16, 17] are high-level abstractions or extensions of Petri
nets and high-level Petri nets. The uncertainty of logical transitions is restricted by
logical expressions. Therefore, logical Petri nets can effectively avoid invisible tran-
sitions and self-loops. Many methods based on logical Petri nets for repairing and
mining models have been proposed. Zheng’s method [15] is a model repair method
for non-free-choice structures based on logical Petri nets, and it is improved by the
proposed method in this paper. An extended colored logical Petri net is proposed
in [16]. Li et al. [17] analyze the application of logical Petri nets to E-commerce
systems. A soundness checking method based on logical Petri net modeling for a file
merging process is proposed in [18]. Guan et al. [19] propose modeling and analysis
of parking reservation system based on logical time delay Petri nets to solve the
problem that the logical Petri net cannot fully describe the time of transitions.

In this paper, a new model repairing method by token replaying based on log-
ical Petri nets is proposed for non-free-choice constructs. The proposed method
has high fitness and precision compared with Fahland’s method [8] and Goldratt’s
method. Fahland’s method [8] and Goldratt’s method focus on the fitness while
pay insufficient consideration for simplicity and precision. Compared with Zheng’s
method [15], the proposed method has low time complexity, and they have similar
simplicity, precision and fitness. The contribution of this paper is as follows.

1. Event logs are forced to fire by the improved replaying algorithm in the workflow
nets, and the deviations between an original model and event logs are found.
The repairing positions can be determined by the deviations.

2. Several basic concepts are defined such as extended successor, extended suc-
cessor matrix and set of choice relationship to repair an original model. The
type of choice relationship transitions is distinguished by the number of pre-set
transitions and post-set transitions. Finally, an original model can be repaired
according to different choice relationship types.

3. A simulation experiment is conducted in this paper. The process model and
the event logs used in the experiment are produced from a hospital in Qingdao.



Repairing Process Models with Non-Free-Choice 1057

Experimental results show that the proposed repairing method has high fitness
and precision compared with some other methods.

The rest of this paper is organized as follows. Section 2 presents some basic
concepts on multi-set, trace, event log, pre-set, post-set, Petri nets, logical Petri
nets, and workflow nets. Section 3 proposes an approach to repair models with
non-free-choice constructs via logical Petri nets. Simulation experiments are carried
out and the analysis of the experimental results is given in Section 4. Section 5
summarizes this paper and discusses the future work.

2 PRELIMINARIES

Some basic concepts are reviewed and briefly introduced in this section including
multi-sets [20], event logs [21, 22], pre-set, post-set [15, 16], Petri nets [23, 24, 25],
logical Petri nets [16, 17], and workflow nets [26].

Definition 1 (Multi-Sets [20]). Ψ is a set. A multi-set D over Ψ is denoted by
D : Ψ→ N+, where N+ represents a set of positive integers. All multi-sets over Ψ
are denoted by β(Ψ).

For example, for a multi-setD over Ψ, D = [b2, c3, d] where b, c, d ∈ Ψ, D(b) = 2,
D(c) = 3, and D(d) = 1. D1, D2 ∈ β(Ψ) are two multi-sets. D3 ∈ β(Ψ) is the union
of D1 and D2, D3 = D1

⊎
D2, and for ∀b ∈ Ψ : D3(b) = D1(b)+D2(b). D4 = D1\D2

is the difference of D1 and D2, where ∀a ∈ Ψ : D4(a) = max{0, D1(a)−D2(a)}.

Definition 2 (Sequence). Let A be a set. w = ⟨w[1], w[2], . . . , w[n]⟩ is a sequence
over A, where w[i] ∈ A (1 ≤ i ≤ n) denotes the ith element of w.

Definition 3 (Trace [27, 28, 29]). A is a set of activities. A trace σ ∈ A∗ is a se-
quence of activities, and |σ| represents the length of σ, where 1 ≤ i < j ≤|σ| : σ[i] ̸=
σ[j].

Definition 4 (Event log [21, 22]). A is a set of activities. σ ∈ A∗ is a trace.
An event log denoted by L ∈ β(A∗) is a finite multi-set over σ. &(σ) represents
a collection of all activities of σ.

For example, given an activity set A
′
= {t1, t2, t3, t4}, σ′

= {t2, t3, t4} is a trace,
and L′ = {⟨t2, t3, t4⟩6, ⟨t1, t2, t3, t4⟩7} is an event log with 13 traces. There are
3× 6 + 4× 7 = 46 events in total.

Definition 5 (Net [21, 22]). N = (P, T ;F ) is a net, where

1. P is a finite set of places;

2. T is a finite set of transitions, and T ∩ P = ϕ, T ∪ P ̸= ϕ; and

3. F ⊆ (P × T ) ∪ (T × P ) is a directed arcs set.
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Definition 6 (Pre-Set and Post-Set [16]). Let N = (P, T ;F ) be a net. For x ∈
P ∪ T , •x = {y|y ∈ P ∪ T ∧ (y, x) ∈ F} denotes the pre-set of x, x• = {y|y ∈
P ∪T ∧ (x, y) ∈ F} denotes the post-set of x, and •x∪x• denotes the extension of x.

For example, a net N1 = (P, T ;F ) is shown in Figure 1, where P = {p1, p2, p3, p4,
p5, p6}, T = {t1, t2, t3, t4, t5, t6, t7}, and F = {(p1, t1), (p1, t2), (p2, t3), (p2, t4), (p3, t5),
(p4, t6), (p5, t7), (p6, t7), (t1, p2), (t2, p2), (t3, p3), (t4, p4), (t5, p5), (t6, p6), (t7, p1)}. For
the net N1, the pre-set and post-set of •p1 = {t7}, p•1 = {t1, t2}. The pre-set
and post-set of •t7 = {p5, p6}, t•7 = {p1}.

p1
t2 p4

p2

t3 p5

p6

t1 p3

t4

t5

t6

t7

Figure 1. A net model N1

Petri nets are a type of bipartite-directed graphs. The graph has three types of
objects named places, transitions, and directed arcs connecting places to transitions
and transitions to places [23, 24, 25], respectively.

Definition 7 (Petri net [23, 24, 25]). PN = (P, T ;F,M) is a Petri net. P and T
represent a finite set of places and transitions, respectively. F ⊆ (P × T )∪ (T × P )
is a finite arc set. M : P → {0, 1, 2, . . . } is a marking of PN , and the rules of
transition firing are as follows:

1. M [t⟩ represents that transition t ∈ T is enabled under M , where ∀p ∈• t :
M(p) ≥ 1;

2. If M [t⟩, t can be fired, and when t fires, a new marking M ′ is generated, denoted
as M [t⟩M ′, where for ∀p ∈ P , we have

M ′(p) =

 M(p)− 1, p ∈• t− t•;
M(p) + 1, p ∈ t• −• t;
M(p), otherwise.

A workflow net is a special Petri net that has been widely used in modeling
business process management systems [30, 31]. The soundness of workflow nets
is an important criterion. It has been proven that the soundness problem is de-
cidable [32, 33, 34]. For the correctness of workflow systems, some methods are
developed to detect and repair errors, such as literature [35].

Definition 8 (Workflow net [26]). WFN = (P, T ;F,M, i, o) denotes a workflow
net, where
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1. P , T , F and M are constituted a Petri net, and the meaning of P , T , F and M
is the same as Definition 7;

2. i ∈ P is an input place with •i = ϕ, and Mi denotes the initial marking where
Mi = 1 and others are 0;

3. o ∈ P is an output place with o• = ϕ, and Mo is the final marking where Mo = 1
and others are 0; and

4. ∀x ∈ P ∪ T is on the path from i to o.

Definition 9 (Logical Petri net [16, 17]). LPN = (P, T ;F, I, O,M) is a logical Pe-
tri net, where

1. P is a finite set of places;

2. T is the union of TD, TI and TO, which denotes a finite transition set, and
T ∩P = ϕ. TD is the same as Definition 7, which represents a set of conventional
transitions in Petri nets. TI and TO represent input and output transition sets,
respectively. For ∀t ∈ TI , fI(t) is a logical input expression that restricts •t; and
for ∀t ∈ TO, fO(t) is a logical output expression that restricts t•;

3. F ⊆ (P × T ) ∪ (T × P ) is a finite set of arcs;

4. I is a mapping of fI(t), and for ∀t ∈ TI , I(t) = fI(t);

5. O is a mapping of fO(t), and for ∀t ∈ TO, O(t) = fO(t);

6. M : P → {0, 1, 2, . . . } is a marking function of LPN , and the firing rules are as
follows:

(a) For ∀t ∈ TD, the transition firing rules remain the same with a Petri net;

(b) For ∀t ∈ TI , if fI(t)|M =• T•, then a logical input transition of t can fire,
denoted as M [t > M ′, and for ∀p ∈• t, M ′(p) = 0; and for ∀p /∈• t ∪ t•,
M ′(p) = M(p); and for ∀p ∈ t•, M ′(p) = 1; and

(c) For ∀t ∈ TO, if ∀p ∈• t, M(p) = 1, then a logical output transition of t
can fire, and for ∀p ∈• t, M ′(p) = 0. For ∀p ∈ t• : fO(t)|M =• T•, and for
∀p /∈• t ∪ t• : M ′(p) = M(p).

7. There are three symbols ⊗, ∨ and ∧ for I(t) and O(t). p1⊗p2 · · ·⊗pn represents
only one of p1, p2, . . . , pn has tokens; p1 ∧ p2 · · · ∧ pn represents each of p1, p2,
. . . , pn has tokens; p1 ∨ p2 · · · ∨ pn represents at least one of p1, p2, . . . , pn has
tokens; where n ≥ 2.

For example, a logical Petri net LPN 1 is shown in Figure 2. There are three
transitions in LPN 1: t1 is an input transition; t3 is an output transition and t2 is
a traditional transition. I(t1) = p1 ∨ p2 is the logical input function. By firing t1,
one of p1 and p2 gets a token at least. O(t3) = p5⊗p6 is the logical output function.
There are two situations when t3 is fired: p5 or p6 gets a token.
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p1

t1

p2

p3 t3

p5

p6

I(t1)=p1Úp2    O(t3)=p5Äp6

t2
p4

Figure 2. A logical Petri net model LPN 1

3 MODEL REPAIRING OF NON-FREE-CHOICE CONSTRUCTS

Conformance checking can detect the inconsistencies between a model and event
logs by comparing and analyzing the original model with the actual event logs.
There are many methods for conformance checking, such as token replay, alignment.
The method based on token replay will replay all traces of the event logs on the
process model. When deviations and other problems occur, the token replay will
be stopped and the fitness of the remaining traces could not be calculated. The
original model cannot be completely replayed by the event logs, so it needs to be
repaired. A repairing method with non-free-choice constructs based on token replay
is proposed next. The deviation positions between a model and event logs can
be calculated by replaying an event log L in a model. The original model can be
repaired via logical Petri nets according to the deviation positions. Tokens can be
dynamically evolved from the initial place to the final place if there is no deviation
between a model and event logs in the non-free-choice constructs. Otherwise, some
transitions cannot be fired due to lacking tokens. So tokens cannot be finally changed
to the final place. Whether there are deviations or not between a model with the
non-free-choice constructs and event logs, an improved replaying algorithm [20] is
proposed to ensure that tokens can be evolved from the initial place to the final
place.

Example 1. A workflow netWFN 1 is shown in Figure 3 where L1 = {⟨σ1, σ2, σ3, σ4,
σ5⟩} = {⟨t1, t4, t5, t7, t8, t10⟩, ⟨t1, t4, t5, t7, t8, t10, t9⟩, ⟨t2, t4, t5, t7, t8, t10, t9⟩, ⟨t1, t3, t4,
t6, t7, t9⟩, ⟨t2, t4, t5, t7, t8, t10⟩}. σ1 is replayed in WFN 1, and Table 1 shows the
changes of tokens based on the improved replaying algorithm [20].

p8

p10

t3

p11p1

t1 p2

p4 t5 t10

p9t4p3

t2

t9
p5

p7

p6

t6

t8

t7

Figure 3. Workflow net model WFN 1

If ∀i ∈ {1, . . . , 9} : M(pi) = 0 at the end of replaying, it means that the trace
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is completely fitted with the model; otherwise there are deviations between the
trace and the model. After executing the improved replaying algorithm [20] with
σ1, M(p4) = −1 and M(p2) = 1 represent the missing-token and the remaining-
token, respectively. For repairing the model, it is necessary to replay other traces
to determine the repair locations. Thus, σ2 is replayed in WFN 1, and M(p4) = −1,
M(p2) = 1, M(p8) = p9 = −1, M(p11) = 1 after replaying. It means that p8 and
p9 are the deviations besides p2 and p4. For repairing non-free-choice constructs
via logical Petri nets, it needs to determine the transitions set with a selection
relationship. Then the following concepts are given.

TransitionsM(p1)M(p2)M(p3)M(p4)M(p5)M(p6)M(p7)M(p8)M(p9)M(p10)M(p11)

Start 1 0 0 0 0 0 0 0 0 0 0

t1 0 1 1 0 0 0 0 0 0 0 0

t4 0 1 0 0 0 1 0 0 0 0 0

t5 0 1 0 −1 0 1 1 0 0 0 0

t7 0 1 0 −1 0 0 1 0 1 0 0

t8 0 1 0 −1 0 0 0 0 1 1 0

t10 0 1 0 −1 0 0 0 0 0 0 1

end 0 1 0 −1 0 0 0 0 0 0 0

Table 1. The change of tokens in WFN 1

Definition 10 (Extended successor). A is a set of activities. σ ∈ A∗ is a trace. In
trace σ, σ[i] occurs before σ[i+n], 1 ≤ i ≤|σ− 1|, n ≥ 1, then σ[i+n] is a successor
of σ[i]. The extended successor is denoted by σ[i] >>n σ[i+ n].

For example, σ = ⟨a, b, c, d⟩, the extended successor can be expressed as: a >>1

b, a >>2 c, a >>3 d, b >>1 c, b >>2 d, and c >>1 d.

Definition 11 (Extended successor distance). A is a set of activities. σ ∈ A∗ is
a trace. In trace σ, σ[i] >>n σ[i + n] where 1 ≤ i ≤|σ − 1|, n ≥ 1. The extended
successor distance can be expressed as: dis(σ[i], σ[i+ n]) = n and it represents the
shortest distance from σ[i] to σ[i+ n].

For example, L2 = {⟨σ1, σ2⟩} = {⟨a, b, c, d⟩, ⟨a, d, e⟩}. The extended successor
between a and d is a >>3 d and a >>1 d in trace σ1 and σ2, respectively. So the
extended successor distance from a to d is dis(a, d) = 1.

Definition 12 (Extended successor matrix). Let PN = (P, T ;F,M) be a Petri
net. ∀ti, tj ∈ T , AL(ti, tj) is an extended successor matrix of |T |, and dis(ti, tj)
is the shortest distance from ti to tj.

AL(ti, tj) =

{
n, (ti, tj) ∈ ti >>n tj;

0, otherwise.
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According to the above definitions, the algorithm for calculating the extended
successor matrix is given as follows.

Algorithm 1 Calculating the extended successor matrix

Input: A Workflow net WFN = (P, T ;F, i, o) and an event logL ∈ β(σ∗);
Output: AL.
1: σL ←|σ1|;
2: for (i = 0; i < |T |; i++) do
3: for (j = 0; j < |T |; j++) do
4: AL[i][j]← 0;
5: end for
6: end for
7: for (i = 1, σi ∈ L; i <= |L|; i++) do
8: if |σi| > σL then
9: σL = |σi|

10: end if
11: end for
12: TL = σL − 1;
13: for (n = 1; n <= TL; n++) do
14: for (i = 1, σi ∈ L; i <= |L|; i++) do
15: for (j = 1; (j + n) <= |σi|; j++) do
16: if AL[σi[j]][σi[j+n]] ̸= 0 and AL[σi[j]][σi[j+n]] > n or AL[σi[j]][σi[j+

n]] = 0 then
17: AL[σi[j]][σi[j + n]] = n;
18: end if
19: if (σi[j]

•, σi[j + n]) /∈ F and (σi[j],
• σi[j + n]) /∈ F then

20: AL[σi[j]][σi[j + n]] = 0;
21: end if
22: end for
23: end for
24: end for
25: return AL.

In Algorithm 1, the initialization is completed in Steps 1–6. The longest trace in
logL is calculated in Steps 7–11, and saved in σL. TL is assigned σL− 1 in Step 12.
AL is calculated in Steps 13–24. In Step 25, the results are returned. Algorithm 1
is simple and its computational complexity is O(n3).

Example 2. A workflow netWFN 1 is shown in Figure 3 where L1 = {⟨σ1, σ2, σ3, σ4,
σ5⟩} = {⟨t1, t4, t5, t7, t8, t10⟩, ⟨t1, t4, t5, t7, t8, t10, t9⟩, ⟨t2, t4, t5, t7, t8, t10, t9⟩, ⟨t1, t3, t4,
t6, t7, t9⟩, ⟨t2, t4, t5, t7, t8, t10⟩}. Then, the extended successor matrix of event log
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L1 is as follows.

AL =



0 0 1 1 2 3 3 4 5 5
0 0 0 1 2 0 3 4 6 5
0 0 0 1 0 2 3 0 4 0
0 0 0 0 1 1 2 3 3 4
0 0 0 0 0 0 1 2 4 3
0 0 0 0 0 0 1 0 2 0
0 0 0 0 0 0 0 1 1 2
0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1


.

Definition 13 (Set of choice relationship). Let PN = (P, T ;F,M) be a Petri net,
and ∀ti, tj ∈ T , AL(ti, tj) be an extended successor matrix of |T |. If ∀tc, td ∈ T ,
•tc∩• td ̸= ϕ, t•c ∩ t•d ̸= ϕ, |•tc| ≥ 1, |•td| ≥ 1 and AL(tc, tc) = AL(td, td) = AL(tc, td) =
AL(td, tc) = 0, then tc and td are non-free-choice relationship, and it is denoted by
the set of NCRT . If ∀tc, td ∈ T , •tc ∩• td ̸= ϕ, t•c ∩ t•d ̸= ϕ, |•tc| = 1, |•td| = 1
and AL(tc, tc) = AL(td, td) = AL(tc, td) = AL(td, tc) = 0, then tc and td have a
general choice relationship, and it is denoted by the set of CCRT . Algorithm 2 is
to calculate the sets NCRT and CCRT .

Algorithm 2 Calculating the set of choice relationship

Input: A workflow net WFN = (P, T ;F,M, i, o) and the extended successor matrix
denoted by AL;

Output: NCRT , CCRT .
1: CCRT ← ϕ, NCRT ← ϕ;
2: for (i = 1; i <= |T |; i++) do
3: for (j = 1; j <= |T |; j++) do
4: if •ti∩• tj ̸= ϕ, t•i ∩ t•j ̸= ϕ, |•ti| = 1, |•tj| = 1 and AL(ti, ti) = AL(tj, tj) =

AL(ti, tj) = AL(tj, ti) = 0 then
5: CCRT = CCRT ∪ ti ∪ tj;
6: end if
7: if •ti∩• tj ̸= ϕ, t•i ∩ t•j ̸= ϕ, |•ti| ≥ 1, |•tj| ≥ 1 and AL(ti, ti) = AL(tj, tj) =

AL(ti, tj) = AL(tj, ti) = 0 then
8: NCRT = NCRT ∪ ti ∪ tj;
9: end if

10: end for
11: end for
12: return CCRT , NCRT .

In Algorithm 2, the initialization is completed in Step 1. In Steps 2–11, all
transitions in WFN are travelled: if •ti ∩• tj ̸= ϕ, t•i ∩ t•j ̸= ϕ, |•ti| = 1, |•tj| = 1
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and AL(ti, ti) = AL(tj, tj) = AL(ti, tj) = AL(tj, ti) = 0, then ti and tj are saved in
CCRT ; if •ti ∩• tj ̸= ϕ, t•i ∩ t•j ̸= ϕ, |•ti| ≥ 1, |•tj| ≥ 1 and AL(ti, ti) = AL(tj, tj) =
AL(ti, tj) = AL(tj, ti) = 0, then ti and tj are saved in NCRT . In Step 12, the last
results are returned.

In Algorithm 3, the initialization is in Step 1. It calls Algorithm 1 to calculate
the extended successor matrix in Step 2. It calls Algorithm 2 to calculate the set
of choice relationship CCRT or NCRT in Step 3. The trace σi in event log L is
replayed to determine the repair locations. The results are saved in Pr and Pm for
the remaining-token places and missing-token places in Steps 4–14. The model is
repaired in Steps 15–46. It is to identify whether the front set of the remaining-token
places belongs to a general choice relationship or a non-free-choice relationship in
the first step. If •Pr belongs to the general choice relationship CCRT , it needs to
add an arc from •Px to Py and add a logical output function O(•Px) = O(ta)⊗O(tb)
for repairing the model. Otherwise, it needs to add a new place p′, two arcs p′ → tn,
tm → p′, and two logical functions O(tm), I(tn). At last, it returns the logical Petri
net LPN in Step 47. The computational complexity of this algorithm is O(n3).

Example 3. Workflow net WFN 1 can be repaired based on Algorithm 3, where
L1 = {⟨σ1, σ2, σ3, σ4, σ5⟩} = {⟨t1, t4, t5, t7, t8, t10⟩, ⟨t1, t4, t5, t7, t8, t10, t9⟩, ⟨t2, t4, t5, t7,
t8, t10, t9⟩, ⟨t1, t3, t4, t6, t7, t9⟩, ⟨t2, t4, t5, t7, t8, t10⟩}. The repaired model is shown in
Figure 4. According to Algorithm 3, the repairing process is given as follows.

1. Calling Algorithms 1 and 2 to calculate the extended successor matrix AL and
CCRT , NCRT , respectively. The result of AL is the same as Example 2, and
CCRT = {t1, t2}, NCRT = {t9, t10}.

2. σ1 is replayed in WFN 1 based on the improved replaying algorithm [20]. It
makes M(p4) equal to −1 and M(p2) equal to 1. Then they are saved in the set
of Pm and Pr, respectively.

3. The model is repaired according to the above results. The arc from •Pr to Pm is
added because of •Pr. And the logical output function O(t1) = (p3∧p4)⊗(p2∧p3)
is added too.

4. p2 is saved in the set of Pf .

5. σ2 is also replayed in WFN 1 based on the improved replaying algorithm [20],
and the results are M(p2) = M(p11) = 1, M(p4) = M(p8) = M(p9) = −1. They
are also saved in the set of Pr and Pm, respectively.

6. The deviation location of p2 is skipped because of Pf . A new place p′ is added
because of p11. Two arcs p′ → t9, t10 → p′ and two logical functions O(t10) =
p11 ⊗ p′, I(t9) = (p8 ∧ p9)⊗ p′ are added.

7. σ3, σ4, and σ5 are also replayed, but the results are already saved in Pf . So the
model is not repaired with the deviation which produced by σ3, σ4, and σ5.

8. Finally, we can obtain a repaired model shown in Figure 4. We can see that
the repaired model of WFN 1 by our method does not change its original model
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Algorithm 3 Model repairing method for non-free-choice constructs

Input: A workflow net WFN = (P, T ;F,M, i, o) and an event logL ∈ β(σ∗);
Output: A repaired logical Petri net, denoted by LPN = (P, T ;F, I, O,M).
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Algorithm 3 Model repairing method for non-free-choice constructs

1: LPN  WFN , O(Ta) �, O(Tb) �, Pf  �;
2: Calling Algorithm 1 to calculate the extended successor matrix AL;
3: Calling Algorithm 2 to calculate CCRT and NCRT ;
4: for (i = 1; �i 2 L; i++) do
5: Pr  �, Pm  �;
6: Calling the improved replaying algorithm to replay the trace �i in log L;
7: for (j = 1; j  |�i|; j++) do
8: if M(pj) > 0 then
9: Pr = Pr [ pj;

10: end if
11: if M(pj) < 0 then
12: Pm = Pm [ pj;
13: end if
14: end for
15: for each Px 2 Pr and Py 2 Pm do
16: if •Px 2 CCRT and •Py 2 CCRT and Px /2 Pf then
17: F = F [• Px ! Py;
18: for (k = 1; k  |T |; k++) do
19: if AL[•Px, Tk] == 1 then
20: O(Ta) O(Ta) ^• Tk;
21: end if
22: end for
23: AL[•Px, P

•
y ] = 1;

24: for (m = 1; m  |�i|; m++) do
25: if AL[•Px, Tm] == 1 and Tm 2 �i then
26: O(Tb) O(Tb) ^• Tm;
27: end if
28: end for
29: O(•Px) O(Ta)⌦O(Tb);
30: end if
31: if •Px 2 NCRT and Px /2 Pf then
32: if 8P •

y ==• Px then
33: Tn  • Px;
34: end if
35: Tm  NCRT � Tn;
36: add a new place p0

37: P = P [ p0, F = F [ p0 ! Tn;
38: F = F [ Tm ! p0, O(Tm) = Px ⌦ p0;
39: for each •Tn == Py do
40: I(Tn) = I(Tn) ^ Py;
41: end for
42: I(Tn) = I(Tn)⌦ p0;
43: end if
44: end for
45: Pf = Pf [ Px

46: end for
47: return LPN .
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structures. One place and two arcs are added to the repaired model. And it
does not add self-loops and invisible transitions.

p5

p7

t3

p11p1

t1 p2

p4 t5 t10

p6t4p3

t2

t9

p¢

O(t1)=(p2Ùp3)Ä(p3Ùp4)

I(t9)=(p8Ùp9)Äp¢

O(t10)=p¢ Äp11

p8

p10

t6

t8

p9t7

Figure 4. Repaired model of WFN 1 by our method

The models repaired by Fahland’s method and Goldratt’s method are shown in
Figure 5 and Figure 6, respectively. In Figure 5, ten directed arcs and three invisible
transitions are added to the model. Two self-loops, an invisible transition, and seven
directed arcs are added to the model in Figure 6. Therefore, the repairing method
proposed in this paper is more concise.

p8

p10

t6

p11p1

t1 p2

p4 t8 t10

p9t7p3

t2

t9p5

p7

t3

t5

p6t4
t9

p12

Figure 5. Repaired model of WFN 1 by Fahland’s approach
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p4 t5 t10

p6t4p3
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t9
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p10

t6

t8

p9t7

Figure 6. Repaired model of WFN 1 by Goldratt’s method
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4 SIMULATION EXPERIMENTS

The proposed method in this paper and other three repairing methods are simulated
in this section. The experimental results are compared and analyzed. The event logs
and process model used in the experiment are from the department of orthopedics
of a hospital in Qingdao, and they can be accessible at: https://pan.baidu.com/
s/17lFqUck3elCiNm2X0iRjhQ?pwd=xsp5. The repaired method of Fahland [8] is
implemented in ProM 6.10 obtained at http://www.promtools.org/. Goldratt’s
method [10] is achieved in the DOS window and processed in ProM 6.10. The model
repairing and analysis of our repair approach and Zheng’s method [15] use manual
simulation in this paper, as there are no corresponding experimental tools for mining
and repairing logical Petri nets.

The process model in Figure 7 shows a series of activities of patients in the
orthopedic department [15]. The activities range from making an appointment to
leaving the hospital. Table 2 shows the mapping relationship between transitions
and activities in Figure 7. The specific process is shown as follows. If the patient is
not an emergency case, she or he needs to make an appointment at the triage station
first, then queue up to register. At this point, she or he can choose a general clinic
or a specialist clinic. After that, the doctor will make inquiries according to the reg-
istration order, and make corresponding examinations for patients. The selection
after diagnosis will affect the choice of the non-free-choice construct subsequently. If
the patient has a severe problem, she or he needs to do more detailed examinations.
She or he will be hospitalized, pay, reimburse and finally leave the hospital. Other-
wise, she or he needs to do basic treatment, pay the fee, get the medicine from the
pharmacy with the prescription issued by the doctor, and then leave the hospital.
However, the actual business process is more complex than Figure 7 according to
the actual event logs. For example, patients do not want to be hospitalized after
more detailed examinations, or their condition is mild, and they do not need to be
hospitalized. With the continuous reform of medical insurance, some drugs can also
be reimbursed, etc. Thus, the model needs to be repaired.

t1

t2 t3
t4

t5
t6 t7

t8

t9
t10

t11

t12

t13

t14

t15

t16

t17
t18

Figure 7. A Petri net of hospital orthopedic department

https://pan.baidu.com/s/17lFqUck3elCiNm2X0iRjhQ?pwd=xsp5
https://pan.baidu.com/s/17lFqUck3elCiNm2X0iRjhQ?pwd=xsp5
http://www.promtools.org/
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Transitions Activities Transitions Activities

t1 Emergency case t10 Diagnosis

t2 Reservation at triage station t11 Further examination

t3 Queue up t12 Basic treatment

t4 General clinic t13 Hospitalization

t5 Specialist clinic t14 Payment

t6 Call number by order t15 Prescribe

t7 Doctor consultation t16 Apply for reimbursement

t8 Computed Tomography t17 Pharmacy taking medicine

t9 Magnetic Resonance Imaging t18 Leaving hospital

Table 2. The mapping relationship between transitions and activities in Figure 7

The event logs shown in Table 3 are in the XES format and are preprocessed. Ac-
tivities that deviated seriously from the actual business process are deleted through
preprocessing for the logs. Table 3 includes the number of traces, events, activities,
and the length range of traces.

Figures 8, 9 and 10 show the results of three different methods to repair the orig-
inal process model according to the event logs in Table 3. It is Fahland’s method [8]
shown in Figure 8, provided by the toolkit ProM 6.10. We can see that the repaired
model by Fahland’s method adds 2 invisible transitions and 1 self-loop comparing
with its original model. Goldratt’s method [10] is in Figure 9, and it is achieved
in the DOS window. The repaired model by Goldratt’s method adds 2 self-loops
and one invisible transition. The two repaired models which have some invisible
transitions or self-loops have low precision.

The repairing method based on the logical Petri nets proposed in this paper is in
Figure 10. We can see that the repaired model based on logical Petri nets maintains
its original model structures. It adds 3 arcs, 1 place, 2 logical output functions,
and one logical input function. The repaired model does not add self-loops and
invisible transitions. Two logical output functions are O(Further examination) =
(p9∧p10)⊗(p10∧p11), O(Pharmacy taking medicine) = p15⊗p17, and the one logical
input function is I(Apply for reimbursement) = (p12 ∧ p13)⊗ p17.

The comparison of the results by four repairing approaches is in Table 4. From
Table 4, 2, and 1 invisible transitions are added by Fahland’s and Goldratt’s meth-
ods, respectively, while it is not added by our method and Zheng’s method. From
the number of arcs, 8 and 7 arcs are added by Fahland’s and Goldratt’s meth-
ods, respectively, while 3 arcs are increased by our method and Zheng’s method.
There are no repeated transitions added by our approach and Zheng’s method,
while Fahland’s method and Goldratt’s method add 1 and 2 repeated transitions,
respectively. From the analysis, it can be concluded that our approach is simpler
than Fahland’s method and Goldratt’s method, and it is the same in comparison
with Zheng’s method.

There are four metrics to measure the quality of a process model. They are
fitness [9], precision, simplicity, and generalization.
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Event Number Number Number Length Range
Logs of Traces of Events of Activities of Traces

L1 136 1 622 18 9 ∼ 13

L2 232 2 841 18 9 ∼ 13

L3 334 4 112 18 9 ∼ 13

L4 452 5 504 18 9 ∼ 13

L5 523 6 354 18 9 ∼ 13

L6 622 7 509 18 9 ∼ 13

L7 739 8 843 18 9 ∼ 13

L8 869 10 430 18 9 ∼ 13

L9 954 11 480 18 9 ∼ 13

L10 1 043 12 597 18 9 ∼ 13

L11 1 169 14 087 18 9 ∼ 13

L12 1 235 14 860 18 9 ∼ 13

L13 1 359 16 326 18 9 ∼ 13

L14 1 456 17 428 18 9 ∼ 13

Table 3. Event logs

t1

t2 t3
t4

t5
t6 t7

t8

t9
t10

t11

t12

t13

t14

t15

t16

t17

t18

t11

Figure 8. The repaired model by Fahland’s method

Repairing Methods Added |T+ τ | Added |F| Added Repeat |T| Added |P|
Our approach 0 3 0 1

Fahland’s method 2 8 1 0

Goldratt’s method 1 7 2 0

Zheng’s method 0 3 0 1

Table 4. Comparison of the result by four repairing approaches
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t1

t2 t3
t4

t5
t6 t7

t8

t9
t10

t11

t12
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t16

t17
t18

t11

t16

Figure 9. The repaired model by Goldratt’s method
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p4 t6 p5 t7 p6
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t11
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p9t13
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p11
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p13
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p16

O(t11)=(p9Ùp10)Ä(p10Ùp11)

O(t17)=p15Äp17

I(t16)=(p12Ùp13)Äp17

p15

Figure 10. The repaired model by our approach

Fitness is the most important indicator, and indicates whether the event logs
could be replayed by a process model. A well-fitted model allows the event logs to be
replayed as much as possible. The fitness among the four different repairing methods
is analyzed in Figure 11. It is calculated by the tool of ProM 6.10 for Fahland’s and
Goldratt’s methods, and it is calculated manually according to reference [9] for our
approach and Zheng’s method. From Figure 11, the four different repairing methods
have high fitness.

Precision is another important metric for evaluating the process model. A pro-
cess model with high precision means that the model activities should be related
to those in event logs. The precision among the four different repairing methods is
analyzed in Figure 12. It is calculated by using the tool of “Check Precision based
on Align-ETConformance” in ProM 6.10 for Fahland’s and Goldratt’s methods, cal-
culated manually according to reference [9] for our approach and Zheng’s method.
The precision of Goldratt’s and Fahland’s methods is about 0.76 ∼ 0.79. The pre-
cision of our approach and Zheng’s method is about 0.9. Therefore, our approach
has higher precision than Fahland’s and Goldratt’s methods.
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Figure 11. The fitness between different models
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Figure 12. The precision between different models

The simplicity is another important evaluation index of Petri nets. Simplicity in-
dicates that a process model with fewer nodes can replay the activities in event logs.
According to the principle of Occam’s Razor [36], event logs should be presented
by using a simple model as much as possible. The simplicity of the four different
repairing methods is described in Figure 13. It is calculated by the following formula:

simplicity =

|σ|∑
i=1

σT
i

|σ| ∗NT

where |σ| represents the number of traces for a log. σT
i represents the events number

in the ith trace. NT represents the transitions number of the repairing models. The
larger the value is, the simpler the model is. The simplicity of Goldratt’s and
Fahland’s methods is about 0.58, and it is about 0.68 by our method and Zheng’s
method. Therefore, our approach is simpler than Fahland’s and Goldratt’s methods.

A process model with good generalization means that the model can both replay
the activities as seen in event logs and the new activities to occur in the future. The
model that is not generalized is overfitting. It will generate a very special model if
only the activities in the log are allowed to occur. A good process model needs to
balance the four metrics.

The comparison of time complexity of our approach and Zheng’s method is
as follows. There are 3 algorithms in this paper, and their time complexity are
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Figure 13. The simplicity between different models

O(n3), O(n2) and O(n3), respectively. Thus, the time complexities of our approach
is O(n3). There are 4 algorithms for Zheng’s method, and their time complexities
are O(n3), O(n3), O(n2) and O(n4), respectively. Then, the time complexity by
Zheng’s method is O(n4). Therefore, the method proposed in this paper is much
better in terms of time complexity compared with Zheng’s method, although they
have similar fitness, precision and simplicity.

5 CONCLUSIONS

This paper proposes a repairing method of process models with non-free-choice con-
structs based on logical Petri nets. An improved replaying algorithm is proposed
to calculate the deviations between a model and event logs. The location of the
remaining-token places and the missing-token places are calculated by using the im-
proved replaying algorithm. According to the order of transitions, the concepts of
extended successors, the extended successor distance and extended successor ma-
trix are put forward. It is distinguished whether the transition is a non-free-choice
relationship or a general choice relationship by using an extended successor matrix.
Finally, according to the remaining-token places and the missing-token places, the
original model is repaired based on logical Petri nets. The repairing method pro-
posed in this paper is compared with Fahland’s, Goldratt’s and Zheng’s methods
in three aspects of fitness, precision, and simplicity. It is verified that our method
has certain advantages. The repairing methods of process models with non-free-
choice constructs are discussed in this paper, but other more complex structures are
not analyzed. Therefore, our future research will analyze the repairing methods of
process models with more complex structures.
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