
Computing and Informatics, Vol. 41, 2022, 1025–1053, doi: 10.31577/cai 2022 4 1025

GUARD-FUNCTION-CONSTRAINT-BASED
REFINEMENT METHOD TO GENERATE DYNAMIC
BEHAVIORS OF WORKFLOW NET WITH TABLE

Jian Song

Department of Computer Science
Tongji University
201804 Shanghai, China
e-mail: 1910690@tongji.edu.cn

Dongming Xiang

School of Information Science and Technology
Zhejiang Sci-Tech University
310018 Hangzhou, China
e-mail: flysky xdm@163.com

Guanjun Liu∗, Leifeng He

Department of Computer Science
Tongji University
201804 Shanghai, China
e-mail: {liuguanjun, 1710052}@tongji.edu.cn

Abstract. In order to model complex workflow systems with databases, and detect
their data-flow errors such as data inconsistency, we defined Workflow Net with Ta-
ble model (WFT-net) in our previous work. We used a Petri net to describe control
flows and data flows of a workflow system, and labeled some abstract table opera-
tion statements on transitions so as to simulate database operations. Meanwhile,
we proposed a data refinement method to construct the state reachability graph

∗ Corresponding author

https://doi.org/10.31577/cai_2022_4_1025

1026 J. Song, D. Xiang, G. Liu, L. He

of WFT-nets, and used it to verify some properties. However, this data refine-
ment method has a defect, i.e., it does not consider the constraint relation between
guard functions, and its state reachability graph possibly has some pseudo states.
In order to overcome these problems, we propose a new data refinement method
that considers some constraint relations, which can guarantee the correctness of
our state reachability graph. What is more, we develop the related algorithms and
tool. We also illustrate the usefulness and effectiveness of our method through some
examples.

Keywords: WFT-net, state reachability graph, data refinement, pseudo states,
Petri net

Mathematics Subject Classification 2010: 68-Q60

1 INTRODUCTION

Due to the complex business logics and a large number of data operations, workflow
systems have become increasingly complicated. Thus, it increases the difficulty of
verifying the correctness of workflow models. In the design stage of a workflow
system, whether the bottom layer that implements specific activity operations, or
the upper layer that abstracts its process model into a summary framework, all of
their correctness and effectiveness are needed to be guaranteed.

As is well known, the correctness and effectiveness of a process model depends
on both control flows and data flows [1]. The control flows record the behavioral
profile relations between activities (e.g., strict order relation, exclusiveness rela-
tion, and interleaving order relation, etc.) [2]. The data flows reflect the corre-
lation between data items, data operations and guards [3]. If there are unrea-
sonable data operations in the execution of some activities, data-flow errors may
occur [4, 5]. In fact, data flows and control flows are unified to detect abnormal
data errors, which can strengthen the analysis ability of business process man-
agement [6, 7, 8]. A good modeling method contributes to analyzing a workflow
system. Petri net, as a good formalization language [9, 10], can greatly describe
concurrency and synchronization relations. Currently, it has been widely used
in modeling and analyzing of concurrent or distributed systems [11, 12, 13]. In
general, the reachability graph of a Petri net is used to detect anomalies1. Es-
pecially, the guard-driven reachability graph of a workflow net with data (WFD-
net). It can avoid pseudo states and alleviate the state space explosion prob-
lem [14, 15].

1 In order to distinguish, it is called the reachability graph in Petri net, and the state
reachability graph in other nets.

New Data Refinement Method to Generate RG of WFTC-Net 1027

Trčka et al. [16, 17, 18] proposed WFD-nets to model workflow systems, and
detected their data-flow errors by anti-patterns. Furthermore, data footprint was
introduced in [19]. As a directed graph representing data flows, it was abstracted
from the state reachability graph of a WFD-net. In order to use a model checker
to refine the specifications between states, Smith and Derrick [20] improved state
symbols so as to avoid blocking in a process model. Ge et al. [21] and Gardiner and
Morgen [22] adopted a task refinement method, which used refinement rules and mu-
tual transformations between predicates to analyse the reachability graph of a Petri
net, which can avoid state space explosion. Using action optimization has a good
effect on processing causal ambiguity systems [23]. When a complex workflow model
deals with massive concurrent data operations (e.g., read, write, delete), it is prone
to data-flow errors. In order to improve the accuracy of a workflow model, Sidorova
et al. [24] added read/write/delete labelling functions to transitions, and they pro-
posed a new data refinement method to analyze false negative/positive activities in
a WFD-net.

Although WFD-nets can describe abstract data operations in business pro-
cesses [25, 26], the actual workflow systems usually cannot work without background
databases. Naturally, some data-flow errors related to table operations or logical de-
fects cannot be reflected in a WFD-net. Given this problem, we proposed Workflow
Net with Table (WFT-net) [27]. WFT-net uses a WFD-net to model control flows
and data flows of workflow systems, and utilizes data statements related to tables
to describe database operations. That is, each transition of a WFT-net is marked
by the statement of table operations so as to establish the connection between busi-
ness logics and databases [27]. In our previous work, a data refinement method
was given to generate the state reachability graph of WFT-net, which can describe
all possible running information of a workflow system. However, this refinement
method has a drawback. That is, when guard functions operate on the same data
item, pseudo states may be produced in the state reachability graph (c.f. the mo-
tivation example in Section 2), since the refinement method does not consider the
constraint relation between guard functions. In order to overcome this problem,
a new refinement method is proposed based on guard function constraints in this
paper. That is, when different guard functions assign values to the same data item,
there is a constraint relationship between them, and their expression of guard func-
tion constraints is generated. According to this constraint expression, some states
satisfying expression are selected. Furthermore, a guard-driven state reachability
graph is constructed.

The rest of this paper is organized as follows. Section 2 presents some basic
notations. Section 3 gives an example of motivation. Section 4 formalizes WFTC-
net (Workflow Net with Table and Constraints) and its firing rules. Moreover, the
principle of data refinement and an algorithm for generating the state reachability
graph of a WFTC-net are proposed. Section 5 conducts a case study to illustrate
the effectiveness of our method. Section 6 develops our tool and does a group of
experiments. Section 7 concludes this paper.

1028 J. Song, D. Xiang, G. Liu, L. He

2 BASIC NOTATIONS

Definition 1 (Petri net [28, 29, 30, 31]). A net is a triple N = (P, T, F), where P
is a finite set of places, T is a finite set of transitions, F ⊆ (P × T) ∪ (T × P) is
a flow relation, and P ∩ T = ∅ ∧ P ∪ T ̸= ∅. A marking of a net is a mapping
function M : P → N, where N = {0, 1, 2, . . . } is the set of non-negative integers.
In other word, M(p) is the number of tokens in the place p. A net N with an
initial marking M0 is a Petri net and denoted as PN = (N,M0). Note that our
marking is represented by a multi-set. For instance, M = [p0 + 2p2] is a marking,
where M(p0) = 1 and M(p2) = 2. For each node x ∈ P ∪ T , its preset is denoted
by •x = {y |y ∈ S ∪ T ∧ (y, x) ∈ F }. Similarly, its postset is denoted by x• =
{y |y ∈ S ∪ T ∧ (x, y) ∈ F }.

Given a Petri net PN = (N,M0) and one marking M , a transition t is enabled
at M , denoted as M [t⟩, if ∀p ∈ •t : M (p) ≥ 1. A new marking M ′ is generated
from marking M by firing the transition t, which is denoted as M [t⟩M ′, where for
∀p ∈ P :

M ′ (p) =


M (p)− 1, if p ∈ •t− t•,

M (p) + 1, if p ∈ t• − •t,

M (p) , otherwise.

Definition 2 (Workflow net [25, 32]). A net N = (P, T, F) is a workflow net (WF-
net) if:

1. N has two special places, i.e., one source place start and one sink place end in
P such that •start = ∅ and end• = ∅; and

2. ∀x ∈ P∪T : (start, x) ∈ F ∗ and (x, end) ∈ F ∗, where F ∗ is the reflexive-transitive
closure of F .

Definition 3 (Table). A table R = {r1, r2, . . . , rn} is a set of finite records. Each
record ri = {d1, d2, . . . , dk} represents the values of k attributes, where dk represents
the value of the kth attribute value [33].

For example, a table Student is shown in Figure 1 b), which contains two records
r1 = {name1, id1, grad1} and r2 = {name2, id2, grad2}.

Definition 4 (Workflow Net with Table [27]). A Workflow Net with Table (WFT-
net) is a 14-tuples N = (P, T, F,G,D,R, rd, wt, dt, sel, ins, del, upd, guard) where

1. (P, T, F) is a WF-net;

2. G is a set of guard functions;

3. D is a finite set of data items;

4. R = {r1, r2, . . . , rk} is an initial table consisting of k records;

5. rd : T → 2D is the labeling function of reading data;

6. wt : T → 2D is the labeling function of writing data;

New Data Refinement Method to Generate RG of WFTC-Net 1029

7. dt : T → 2D is the labeling function of deleting data;

8. sel : T → 2R represents the labeling function of selecting operation in the
table R;

9. ins : T → 2R represents the labeling function of inserting operation in the
table R;

10. del : T → 2R represents the labeling function of deleting operation in the table R;

11. upd : T → 2R represents the labeling function of updating operation in the
table R; and

12. guard : T → GΠ is the assigning function of guard functions. GΠ is a set of
guard functions, each of which is a Boolean expression over a set of predicates
Π = {π1, π2, . . . , πn}, where πi is a predicate defined on D or R.

In a WFT-net, a guard function is a Boolean expression of some data items
especially in tables. It is a formal representation of data conditions related to table
operations. V ar(G) represents the variables in the guard function G.

Figure 1 is a simple business process of student performance evaluation. Fig-
ure 1 a) describes the basic business logics, data operations, database operations,
and guard functions assigned to transitions. Figure 1 b) gives an initial table.

1. D = {name, grad} is a set of data items, where name represents a student’s
name and gradmeans the student’s grade, which can be regarded as intermediate
variables for a user to operate a database;

2. Student = {r1, r2} is a table, where each record is composed of three attributes,
i.e., Sname, Sid and Sgrad, which represent a student’s name, id and grade, re-
spectively;

3. Π = {π1, π2, π3} is a set of predicates, where GΠ = {π1, π2, π3,¬π1 ∧¬π2 ∧¬π3}
and Var(π1) = Var(π2) = Var(π3) = Var(¬π1 ∧ ¬π2 ∧ ¬π3) = {grad}; and

4. wt(t0) = name, sel(t0) = name.

3 MOTIVATION

In order to describe all running behaviors of a WFT-net, it is necessary to construct
its states and their transition relations. Since the generating states and firing rules
of WFT-nets are both related to the data operations in a table, data needs to be
further refined. In our previous work, a data refinement algorithm was given in [27].
As shown in Algorithm 1, Bd is the value range of data item d, Rd is a set of all table
data items associated with d, and Πd is a set of all predicate expressions associated
with d. For a WFT-net, if a transition t has a write operation on d, then d needs to
be refined. If t can be fired at a state 2, then the refinement method can calculate
Vd, i.e., a refinement set of d. In Algorithm 1, if nRd

and n∏
d
are respectively the

cardinality of Rd and
∏

d, we can get its time complexity is O
(
nRd

+ n∏
d

)
.

2 A state of a WFT-net is usually called as a configuration.

1030 J. Song, D. Xiang, G. Liu, L. He

P0 start

wt:grad

t1

rd:grad

t2

rd:grad

t4

P2

P3

p1(grad)

p1(grad):0 ≤grad<60; p2(grad):60≤grad<90;p3(grad) :90≤grad≤100

{ p1p2p3

rd:grad

t3

p2(grad)

SELECT name

FROM Sname;

wt:name

t0

P1

p3(grad)

SELECT grad

FROM Sgrad;

dt:grad

t5

¬p1(grad) ¬p2(grad) ¬p3(grad)

UPDATE Student

SET grad= excellent

WHERE 90≤grad≤100

UPDATE Student

SET grad= medium

WHERE 60≤grad<90

UPDATE Student

SET grad= poor

WHERE 0 ≤grad<60

SELECT grad

FROM Student

WHERE Sgrad !=grad

(a)

t1

t4

t3

t3

t0

c1:P1

{name1,^,^}
{(name1,id1,grad1),(name2,id2,grad2)}

{^,^,^}c2:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1¬p2¬p3}

c3:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2p3}

c4:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2p3}

c6:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2p3}

c7:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1¬p2p3}

c8:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2¬p3}

c9:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2¬p3}

c5:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2¬p3}

c14:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2p3}

c15:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2p3}

c16:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2¬p3}

c10:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2p3}

c11:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1¬p2p3}

c12:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2¬p3}

c13:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2¬p3}

t2

t4

t2

t4

t3

t2

t2

t3

t4

t5

c0:start
{^,^,^}

{(name1,id1,grad1),(name2,id2,grad2)}
{^,^,^}

(d)

(c)

p1 p2 p3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

(b)

Student

Sname Sid Sgrad

name1 id1 grad1

name2 id2 grad2

a)

P0 start

wt:grad

t1

rd:grad

t2

rd:grad

t4

P2

P3

p1(grad)

p1(grad):0 ≤grad<60; p2(grad):60≤grad<90;p3(grad) :90≤grad≤100

{ p1p2p3

rd:grad

t3

p2(grad)

SELECT name

FROM Sname;

wt:name

t0

P1

p3(grad)

SELECT grad

FROM Sgrad;

dt:grad

t5

¬p1(grad) ¬p2(grad) ¬p3(grad)

UPDATE Student

SET grad= excellent

WHERE 90≤grad≤100

UPDATE Student

SET grad= medium

WHERE 60≤grad<90

UPDATE Student

SET grad= poor

WHERE 0 ≤grad<60

SELECT grad

FROM Student

WHERE Sgrad !=grad

(a)

t1

t4

t3

t3

t0

c1:P1

{name1,^,^}
{(name1,id1,grad1),(name2,id2,grad2)}

{^,^,^}c2:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1¬p2¬p3}

c3:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2p3}

c4:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2p3}

c6:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2p3}

c7:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1¬p2p3}

c8:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2¬p3}

c9:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2¬p3}

c5:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2¬p3}

c14:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2p3}

c15:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2p3}

c16:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2¬p3}

c10:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2p3}

c11:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1¬p2p3}

c12:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2¬p3}

c13:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2¬p3}

t2

t4

t2

t4

t3

t2

t2

t3

t4

t5

c0:start
{^,^,^}

{(name1,id1,grad1),(name2,id2,grad2)}
{^,^,^}

(d)

(c)

p1 p2 p3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

(b)

Student

Sname Sid Sgrad

name1 id1 grad1

name2 id2 grad2

b)

P0 start

wt:grad

t1

rd:grad

t2

rd:grad

t4

P2

P3

p1(grad)

p1(grad):0 ≤grad<60; p2(grad):60≤grad<90;p3(grad) :90≤grad≤100

{ p1p2p3

rd:grad

t3

p2(grad)

SELECT name

FROM Sname;

wt:name

t0

P1

p3(grad)

SELECT grad

FROM Sgrad;

dt:grad

t5

¬p1(grad) ¬p2(grad) ¬p3(grad)

UPDATE Student

SET grad= excellent

WHERE 90≤grad≤100

UPDATE Student

SET grad= medium

WHERE 60≤grad<90

UPDATE Student

SET grad= poor

WHERE 0 ≤grad<60

SELECT grad

FROM Student

WHERE Sgrad !=grad

(a)

t1

t4

t3

t3

t0

c1:P1

{name1,^,^}
{(name1,id1,grad1),(name2,id2,grad2)}

{^,^,^}c2:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1¬p2¬p3}

c3:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2p3}

c4:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2p3}

c6:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2p3}

c7:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1¬p2p3}

c8:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2¬p3}

c9:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2¬p3}

c5:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2¬p3}

c14:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2p3}

c15:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2p3}

c16:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2¬p3}

c10:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1p2p3}

c11:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1¬p2p3}

c12:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1¬p2¬p3}

c13:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1p2¬p3}

t2

t4

t2

t4

t3

t2

t2

t3

t4

t5

c0:start
{^,^,^}

{(name1,id1,grad1),(name2,id2,grad2)}
{^,^,^}

(d)

(c)

p1 p2 p3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

(b)

Student

Sname Sid Sgrad

name1 id1 grad1

name2 id2 grad2

c)

The data refinement method in Algorithm 1 still has a shortcoming, i.e., it may
produce pseudo states in some cases. If a read/write operation on a transition
is associated with a data item in k guard functions, then the transition needs to
consider all possible assignment values of guard functions, i.e., it will generate 2k

states. If there are multiple guard functions, it is easy to cause a rapid growth of
states, and result in the state space explosion problem. As shown in Figure 1 a),
grad is written at t1, and predicates π1, π2 and π3 are associated with grad. After
firing transition t1, it will produce 2

3 = 8 reachability states (i.e., C2−C9). All values
of the guard functions are described by the truth table in Figure 1 c). Due to the
mutual constraint relation between guard functions, the guard function π1 satisfies
the condition, while π2 and π3 do not so. Since Algorithm 1 does not consider this
constraint relation, pseudo states are generated after firing t1. Figure 1 d) is the
state reachability graph of the WFT-net in Figure 1 a), where a pseudo state is

New Data Refinement Method to Generate RG of WFTC-Net 1031

P
0

st
a
rt

w
t:

g
ra

d

t 1

rd
:g

ra
d

t 2

rd
:g

ra
d

t 4

P
2

P
3

p
1
(g

ra
d

)

p
1
(g

ra
d)

:0
 ≤

g
ra

d<
6
0

;
p

2
(g

ra
d)

:6
0
≤

g
ra

d
<

9
0

;p
3
(g

ra
d)

 :
9
0
≤

g
ra

d
≤

1
0

0



{

p
1

p

2

p

3



rd
:g

ra
d

t 3

p
2
(g

ra
d

)

S
E

L
E

C
T

n
a
m

e

F
R

O
M

 S

n
a
m

e;

w
t:

n
a
m

e

t 0 P
1

p
3
(g

ra
d

)

S
E

L
E

C
T

g

ra
d

F
R

O
M

S

g
ra

d
;

d
t:

g
ra

d

t 5

¬p
1
(g

ra
d

)

¬p

2
(g

ra
d

)

¬p

3
(g

ra
d

)

U
P

D
A

T
E

 S
tu

d
e
n
t

S
E

T
 g

ra
d

=
 e

x
ce

ll
e
n
t

W
H

E
R

E
 9

0
≤

g
ra

d
≤

1
0
0

U
P
D

A
T

E
 S

tu
d
e
n

t

S
E

T
 g

ra
d

=
 m

e
d
iu

m

W
H

E
R

E
 6

0
≤

g
ra

d
<

9
0

U
P
D

A
T

E
 S

tu
d
e
n

t

S
E

T
 g

ra
d

=
 p

o
o
r

W
H

E
R

E
 0

 ≤
g
ra

d
<

6
0

S
E

L
E

C
T

g
ra

d

F
R

O
M

 S
tu

d
e
n

t

W
H

E
R

E
 S

g
ra

d
 !

=
g
ra

d

(a
)

t 1

t 4t 3 t 3

t 0

c 1
:P

1

{
n

a
m

e1
,^

,^
}

{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i
d

2
,g

ra
d

2
)}

{
^

,^
,^

}
c 2

:P
2

{
n
a
m

e1
,^

,g
ra

d
1

}
{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i
d

2
,g

ra
d

2
)}

{
¬p

1

¬p

2

¬p

3
}

c 3
:P

2

{
n

a
m

e1
,^

,g
ra

d
1

}
{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i
d

2
,g

ra
d

2
)}

{
¬p

1

p
2

p
3
}

c 4
:P

2

{
n

a
m

e1
,^

,g
ra

d
1

}
{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i

d
2
,g

ra
d

2
)}

{
p
1

¬p

2

p
3
}

c 6
:P

2

{
n

a
m

e1
,^

,g
ra

d
1
}

{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i

d
2
,g

ra
d

2
)}

{
p
1

p
2

p
3
}

c 7
:P

2

{
n

a
m

e1
,^

,g
ra

d
1
}

{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i
d

2
,g

ra
d

2
)}

{
¬p

1

¬
p
2

p
3
}

c 8
:P

2

{
n

a
m

e1
,^

,g
ra

d
1
}

{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i

d
2
,g

ra
d

2
)}

{
p
1

¬p

2

¬p

3
}

c 9
:P

2

{
n

a
m

e1
,^

,g
ra

d
1
}

{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i

d
2
,g

ra
d

2
)}

{
¬p

1

p
2

¬p

3
}

c 5
:P

2

{
n
a
m

e1
,^

,g
ra

d
1

}
{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i

d
2

,g
ra

d
2
)}

{
p
1

p
2

¬p

3
}

c 1
4:

P
3

{
n

a
m

e1
,^

,g
ra

d
1

}
{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a

m
e2

,i
d

2
,g

ra
d

2
)}

{¬
p
1

p
2

p
3
}

c 1
5:

P
3

{
n

a
m

e1
,^

,g
ra

d
1

}
{
(n

a
m

e1
,i

d
1

,g
ra

d
1
),

(n
a

m
e2

,i
d

2
,g

ra
d

2
)}

{
p
1

¬p

2

p
3
}

c 1
6:

P
3

{
n

a
m

e1
,^

,g
ra

d
1

}
{
(n

a
m

e1
,i

d
1

,g
ra

d
1
),

(n
a

m
e2

,i
d

2
,g

ra
d

2
)}

{
p
1

p
2

¬p

3
}

c 1
0:

P
3

{
n

a
m

e1
,^

,g
ra

d
1
}

{
(n

a
m

e1
,i

d
1
,g

ra
d

1
),

(n
a
m

e2
,i
d

2
,g

ra
d

2
)}

{
p
1

p
2

p
3
}

c 1
1:

P
3

{
n

a
m

e1
,^

,g
ra

d
1
}

{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i
d

2
,g

ra
d

2
)}

{
¬p

1

¬p

2

p
3
}

c 1
2:

P
3

{
n

a
m

e1
,^

,g
ra

d
1
}

{
(n

a
m

e1
,i

d
1
,g

ra
d

1
),

(n
a
m

e2
,i
d

2
,g

ra
d

2
)}

{
p
1

¬p

2

¬p

3
}

c 1
3:

P
3

{
n

a
m

e1
,^

,g
ra

d
1
}

{
(n

a
m

e1
,i

d
1
,g

ra
d

1
),

(n
a
m

e2
,i
d

2
,g

ra
d

2
)}

{
¬
p
1

p
2

¬
p
3
}

t 2 t 4 t 2

t 4

t 3

t 2 t 2 t 3t 4

t 5

c 0
:s

ta
rt

{
^

,^
,^

}
{
(n

a
m

e1
,i
d

1
,g

ra
d

1
),

(n
a
m

e2
,i
d

2
,g

ra
d

2
)}

{
^

,^
,^

}

(d
)

(c
)

p
1

p
2

p
3

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1

1
0

1
1

1

(b
)

S
tu

d
en

t

S
n
a
m

e
S
id

S
g
ra

d

n
a
m

e1
id

1
g

ra
d

1

n
a
m

e2
id

2
g

ra
d

2

d)

Figure 1. a) A WFT-net; b) an initial table Student ; c) as distribution table of guard
function values without constraints; d) a state reachability graph

1032 J. Song, D. Xiang, G. Liu, L. He

Algorithm 1 Generating a refinement set Vd of data item d

Input: A WFT-net N, d,Bd, c;
Output: A refinement set Vd;

1: if Rd= ∅ ∧ Πd = ∅ then
2: Select an arbitrary d0 from Bd, and add d0 into Vd;
3: else
4: if Rd ̸= ∅ then
5: for each Ri ∈ Rd do
6: Add all stord values of d in Ri at c into Vd;
7: end for
8: Select an arbitrary d0 from Rd \ Vd, and add d0 into Vd;
9: end if

10: if Πd ̸= ∅ then
11: for each πi ∈ Πd do
12: if πi is defined then
13: if any data item in Vd cannot make πi true then
14: Select a di from Bd that make πi true and then add di into Vd;
15: end if
16: if any data item in Vd cannot make πi be false then
17: Select a di

′ from Bd that makes πi false and then add di
′ into Vd;

18: end if
19: end if
20: end for
21: end if
22: end if
23: return Vd.

represented by a dashed box. In order to solve this problem, this paper proposes
WFTC-net and a new data refinement method.

4 A NEW REFINEMENT METHOD AND REACHABILITY GRAPH
GENERATION ALGORITHM

In order to solve the pseudo state problem, WFTC-net is defined and its constraint
relations between guard functions are considered. Meanwhile, a new refinement
method is proposed to generate an accurate state reachability graph.

4.1 Workflow Net with Table and Constraints

By adding constraint relations between guard functions into WFT-net, Workflow
Net with Table and Constraints (WFTC-net) is formalized.

Definition 5 (Workflow Net with Table and Constraints). A Workflow Net with

New Data Refinement Method to Generate RG of WFTC-Net 1033

Table and Constraints (WFTC-net) is a 15-tuples N = (N ′, res) where

1. N ′ is a WFT-net; and

2. Given a set of predicates Π = {π1, π2, . . . , πn}, its elements are combined by ∧,
∨ and ¬ to form a proposition formula ω. Some formulas are combined by ∨ to
form a constraint, which is assigned to the values of true (T) or false (F). res
is a set of such constraints.

For the example of Figure 1 a), there is a set of predicates Π = {π1, π2, πn}.
Since π1, π2 and π3 are both write operations on the same data item grad, there exist
mutual constraint relations between them. Thus, we can define three proposition
formulas: ω1 = π1 ∧ ¬π2 ∧ ¬π3, ω2 = ¬π1 ∧ π2 ∧ ¬π3, ω3 = ¬π1 ∧ ¬π2 ∧ π3, and
ω4 = ¬π1 ∧ ¬π2 ∧ ¬π3. At the same time, we can calculate a constraint true |=
ω1 ∨ ω2 ∨ ω3 ∨ ω4 and a constraint set res = {ω1 ∨ ω2 ∨ ω3 ∨ ω4}.

Definition 6 (State). Give a WFTC-net N = (N ′, res), a four-tuples c = ⟨M, θD,
ϑR, σ⟩ is called a state of N , where

1. M is a marking of N ;

2. θD : D → {⊥,⊤} is the value of the data items in the current state. When
a data item is read or written, it indicates that the value of the data item is
defined and is represented by the symbol ⊤. Otherwise, its value is undefined
and is represented by the symbol ⊥;

3. ϑR : R → {⊥,⊤} is the value of the current table, which reflects the situation
of records in a table. When a data item is read or written in the table, it means
that the value of the data item is defined and is represented by ⊤. Otherwise,
its value is undefined and is represented by ⊥. Each data item of R associated
with N is stored in a two-dimensional table, and each tuple information in table
R corresponds to a data item d;

4. σ : Π→ {true, false,⊥} represents the assignment state of each predicate. Since
each predicate is associated with some data items, when its relevant data items
is written to a specific value, it is assigned to true (T) or false (F). Otherwise,
its value is still undefined(⊥).

For example, the initial state of the WFT-net in Figure 1 is c0 = ⟨start, {name =
⊥, id = ⊥, grad = ⊥}, {(name1, id1, grad1), (name2, id2, grad2)}, {π1 = ⊥, π2 =
⊥, π3 = ⊥}⟩. At this time, t0 is enabled at c0, and the token will move from start
to p1 after firing t0. At the transition t0, only the data item name is written, so it is
defined, while the data items id, grad are still undefined. Performing a selection oper-
ation on the data item name at t0 will not change the value of the data items in this
table. Therefore, the records {(name1, id1, grad1), (name2, id2, grad2)} in the table
remain unchanged. Since guard functions are not bound at t0, π1, π2 and π3 are still
undefined. Thus, firing t0 generates a new state, i.e., c1 = ⟨start, {name = ⊤, id =
⊥, grad = ⊥}, {(name1, id1, grad1), (name2, id2, grad2)}, {π1 = ⊥, π2 = ⊥, π3 =
⊥}⟩.

1034 J. Song, D. Xiang, G. Liu, L. He

In order to facilitate the understanding of WFTC-net, the conceptual framework
of a WFTC-net is presented in Figure 2. The bottom layer uses a WFD-net to
describe the control flows and data flows in a process model, and the upper layer
uses a table to represent the database, which realizes the operations of data items
in this table. After then a constraint set res is added into a WFT-net, and forms a
WFTC-net. By marking some operation statements of tables on transitions, it can
reflect some data-flow errors in a workflow system.

Place Transition

Data flow

operation

Data element

operation

Petri net

WFD-net
Guard configuration

WFT-net

Arc

start

（p0）

WFTC-net res

Table

Figure 2. WFTC-Net conceptual framework

4.2 A Data Refinement Method Based on Guard Function Constraints

Based on guard function constraints, a new data refinement method proposed, as
shown in Algorithm 2. We first use a truth table to enumerate all possible as-
signments of guard functions. After then, we utilize the constraints between guard
functions to construct a set of expressions, and find out reasonable states in the
truth table.

For a WFTC-net N , if a data item d is written at a transition t, then this data
item needs to be refined. According to Algorithm 2, Rvd is a set of data items refined
at the state c, R is a table associated with N , Sat(guard) is a set of guard functions
in N , Sat(R) is a set of data items in R, ND is a set of data items in N , NR is a set
of data items associated with R in N , guard(t) is a guard function on transition t,
and res is a set of contraints. Algorithm 2 gives a detailed data refinement method.

First, it chooses a data item di and initializes Rvd, as shown in step 1. Then Rvd
is computed by operating on di according to different cases, as shown in steps 6–19.

New Data Refinement Method to Generate RG of WFTC-Net 1035

Finally, Rvd and res are computed, as shown in steps 20–22. In Algorithm 2, nNd

is the cardinality of Nd. Then the time complexity of Algorithm 2 is O(nNd
).

Compared with Algorithms 1 and 2 provides a data refinement method under
guard function constraints so that our method can avoid generating pseudo states
and alleviate the state space explosion problem.

4.3 The State Reachability Graph of WFTC-Net

Based on our data refinement method, we give the firing rules of WFTC-net as
follows.

Definition 7 (The firing rule of WFTC-net). Let N = (N ′, res) be a WFTC-net.
t ∈ T is enabled at one state c = ⟨M, θD, ϑR, σ⟩ (denoted by c[t⟩) if and only if:

1. ∀t ∈ T : M [t⟩;
2. ∀d ∈ (rd(t) ∩ D) : θ(d) = ⊤; ∀d ∈ (wt(t) ∩ D) : θ(d) = ⊤; ∀d ∈ (dt(t) ∩ D) :

θ(d) = ⊥;
3. ∀d ∈ (R∩del(t)) : ϑ(d) = ⊥; ∀d ∈ (R∩ (sel(t)∪ ins(t)∪upd(t))) : ϑ(d) = ⊤; and
4. ∀d ∈ var(G(t)): θ(d) = ⊤ ∩ ϑ(d) = ⊤ and σ(G(t)) = true.

After firing the transition t, a transition t is enabled at state c. A new state
c′ = ⟨M ′, θ′D, ϑ

′
R, σ

′⟩ is generated, which is denoted as c[t⟩c′ such as:

1. M [t⟩M ′;

2. ∀d ∈ dt(t) : θ′(d) = ⊥; ∀d ∈ (wt(t)
⋃
rd(t)) : θ′(d) = ⊤; ∀d′ ∈ Rvd : θ′(d) = d′;

3. ∀d ∈ (wt(t) \ dt(t)) : θ′(d) = ⊤; ∀d ∈ D \ (dt(t) ∪ wt(t)) : θ′(d) = θ(d);

4. ∀R′ ∈ ins(t), ∀ins(R′)∩R ̸= ∅ : ϑ′(R′) = ϑ(R′); ∀R′ ∈ ins(t), ∀ins(R′)∩R = ∅ :
ϑ′(R′) = ϑ(R′) ∪ ins(R′);

5. ∀R′ ∈ del(t), ∀del(R′) ⊂ R : ϑ′(R′) = ϑ(R′) \ del(R′); ∀R′ ∈ del(t), ∀del(R′) ̸⊂
R : ϑ′(R′) = ϑ(R′);

6. ∀R′ ∈ upd(t), upd(R′) ⊂ R′ : ϑ′(R′) = ϑ(R′) \ upd(R′) ∪ upd(R′)′;

7. ∀R′ ∈ sel(t), ∀sel(R′) ⊂ R : ϑ′(R′) = ⊤; ∀R′ ∈ sel(t), ∀sel(R′) ̸⊂ R : ϑ′(R′) = ⊥;
8. ∃g ∈ G, d ∈ (wt(t) ∪ rd(t)) ∩ (upd(t) ∪ ins(t) ∪ sel(t)) : σ′(g) = true;

9. ∃g ∈ G, d ∈ (dt(t) ∩ del(t)) : σ′(g) = false;

10. ∀g /∈ G, d ∈ (θD ∪ ϑD) : σ
′(g) = ⊥; and

11. ∀g ∈ G, d ∈ var(res) : σ(g) = true.

According to Definition 11, a constraint true |= (π1 ∧ ¬π2 ∧ ¬π3) ∨ (¬π1 ∧ π2 ∧
¬π3)∨(¬π1∧¬π2∧π3)∨(¬π1∧¬π2∧¬π3) is obtained from Figure 1 a), and its truth
table is shown in Figure 3 a). The result shows that there are only four reasonable
assignments for the three guard functions.

1036 J. Song, D. Xiang, G. Liu, L. He

Algorithm 2 A data refinement method for WFTC-net

Input: A WFTC-net N , R = {D1, D2, . . . , Dn}, Sat(guard), Sat(R);
Output: Data refinement set Rvd, constraint set res;
1: Select data items di, and initialize Rvd← ⊥;
2: if di ∈ Sat(guard) ∧ di ∈ Sat(R) then
3: guard(t)← ⊤;
4: for Nd(di) ∈ NR do
5: Rvd← di;
6: end for
7: end if
8: if di ∈ Sat(guard)) ∧ di /∈ Sat(R) then
9: guard(t)← ⊥;

10: if di ∈ Nd then
11: Rvd← di;
12: else
13: Rvd← Rvd+ di;
14: end if
15: end if
16: if di /∈ Sat(guard) ∧ di ∈ Sat(R) then
17: guard(t)← guard(•t);
18: for di ∈ NR(j) do
19: Rvd← di;
20: end for
21: end if
22: if di /∈ Sat(guard) ∧ di /∈ Sat(R) then
23: guard(t)← guard(•t)
24: if di ∈ ND then
25: Rvd← di;
26: else
27: Rvd← Rvd+ di;
28: end if
29: end if
30: if di = null then
31: guard(t)← guard(•t), Rvd← Rvd;
32: end if
33: if di ∈ Sat(guardi) then

34: ωi =
|Sat(guardi)|∨

i=0
guardi ∧ (Sat(guardi)− guardi)), res← ωi;

35: end if
36: return res, Rvd.

New Data Refinement Method to Generate RG of WFTC-Net 1037

Algorithm 3 is developed to generate all reachable states from c0. In this al-
gorithm, res and Rvd are the results, where operation(θD) represents operations
(i.e., read, write, delete) on data in N , operation(ϑR) represents operations on data
items in R, and add(c) represents adding a new state. In this algorithm, steps 5–29
generate a new state c′. Steps 31–34 skip one transition and look for another new
enabled transition since the generated state is repeated. In Algorithm 3, the time
complexity is O(1).

t1

t0

c1:P1

{name1,^,^}
{(name1,id1,grad1),(name2,id2,grad2)}

{^,^,^}

c2:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1,¬p2,¬p3}

c3:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1,¬p2,p3}

c4:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1,¬p2,¬p3}

c5:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1,p2,¬p3}
t2t3

t4
t5

c0:start
{^,^,^}

{(name1,id1,grad1),(name2,id2,grad2)}
{^,^,^}

(b)

p1 p2 p3

0 0 0

0 0 1

0 1 0

1 0 0

(a)

c6:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1,¬p2,p3}

c7:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1,¬p2,¬p3}

c8:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1,p2,¬p3}

a)

t1

t0

c1:P1

{name1,^,^}
{(name1,id1,grad1),(name2,id2,grad2)}

{^,^,^}

c2:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1,¬p2,¬p3}

c3:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1,¬p2,p3}

c4:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1,¬p2,¬p3}

c5:P2

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1,p2,¬p3}
t2t3

t4
t5

c0:start
{^,^,^}

{(name1,id1,grad1),(name2,id2,grad2)}
{^,^,^}

(b)

p1 p2 p3

0 0 0

0 0 1

0 1 0

1 0 0

(a)

c6:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1,¬p2,p3}

c7:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{p1,¬p2,¬p3}

c8:P3

{name1,^,grad1}
{(name1,id1,grad1),(name2,id2,grad2)}

{¬p1,p2,¬p3}

b)

Figure 3. a) A distribution table of the guard function values with constraints; b) A state
reachability graph of WFTC-net

According to the firing rule of WFTC-net, we propose an algorithm for gen-
erating its state reachability graph. Based on the depth-first idea, as shown in
Algorithm 4.

According to Algorithm 4, the state reachability graph of Figure 1 a) is generated
as shown in Figure 3 b). When the data item grad is written at t1, since there is
a constraint true |= (π1 ∧¬π2 ∧¬π3)∨ (¬π1 ∧ π2 ∧¬π3)∨ (¬π1 ∧¬π2 ∧ π3)∨ (¬π1 ∧
¬π2 ∧ ¬π3), some assignments of π1, π2 and π3 such as {(0, 1, 1), (1, 0, 1), (1, 1, 1)}
in Figure 1 c) do not exist. Therefore, such pseudo states need to be removed. In
fact, the state reachability graph generated by Algorithm 4 is more in line with the
actual demand. In Algorithm 4, if nt and n

′
c are respectively the cardinality of t and

c
′
, its time complexity is O(nt + n

′
c).

5 CASE STUDY

This section shows the effetiveness of our method through a case study of private car
application for access control in a community. In order to simplify this process, some
irrelevant operations are omitted. We first use a WFT-net to model this process, as
shown in Figure 4. A user inputs an account id to log in the system (t0). If s/he
has never registered in this system, s/he needs to re-apply for registration (t2). S/he

1038 J. Song, D. Xiang, G. Liu, L. He

Algorithm 3 Generate state set of a WFTC-net

Input: R, WFTC-net N , res, Rvd;
Output: sat(c′);

1: Transition t← NULL, State c← NULL, Hashtable h← NULL;
2: The initial state c0 = ⟨start ,⊥,⊤,⊥⟩ = ⟨m, θD, ωR, σ⟩;

3: if ti ∈ T ∧m[ti⟩ ∧ guard(ti) = σ(πi) or ti ∈ T ∧m[ti⟩ ∧ guard(ti) = null then
4: t← ti;
5: else
6: i← i+ 1;
7: if ti ∈ t ∧m[ti⟩m′, add(m′)! = h then
8: c[ti⟩c′; // There is no repeat state
9: if ∀d ∈ operation(θD), ∀d ∈ Rvd then

10: θ′(d)← d;
11: else
12: ∀d ∈ operation(θD) : θ

′(d)← ⊥;
13: end if
14: if ∀R′ ∈ operation(ϑR), ∀ϑR[d] ∈ Rvd then
15: ϑ′(R′)← ϑ(R);
16: else
17: ∀R′ /∈ operation(ϑR), ϑ

′(R′)← ⊥;
18: end if
19: if ∀guard(t) ∈ operation(Π), guard(t) ∈ Rvd then
20: σ′ ← true;
21: else
22: σ′ ← false
23: end if
24: if guard1 ∈ res, . . . , guardi ∈ res then
25: guardj ∈ true, (res− guardj)← false;
26: end if
27: c′ ← ⟨m′, θ′(d), ϑ′(R′), σ′⟩, then add c′ into Sat(c′);
28: else
29: if ti ∈ t ∧ c[ti⟩cm, add(cm) = h then
30: ti ← ti + 1; // There are repeat state
31: end if
32: end if
33: end if

34: return Sat(c′).

New Data Refinement Method to Generate RG of WFTC-Net 1039

Algorithm 4 Generate the state reachability graph of a WFTC-net

Input: WFTC-net N , Sat(c′);
Output: RG(N);
1: Take c0 as the root node of RG(N) and mark it as new ;;
2: while there is a node marked new do
3: Make the node as c;
4: end while
5: if there is a directed path from c0 to c and the marking of a node is c then
6: Change the marking of c to old , and return to step 2;
7: end if
8: if ∀t ∈ T : ¬c[t⟩ then
9: Change the marking of c to endpoint , and return to step 2;

10: end if
11: for ∀t ∈ T : c[t⟩ do
12: Calculate Sat(c′) according to Algorithm 3;
13: end for
14: if ∀t ∈ T : c[t⟩ then
15: Calculate c′ in c[t⟩c′ according to Definition 11;
16: end if
17: for ∀c′ ∈ Sat(c′) do
18: if c′ already exists in the directed path from c0 then
19: Draw a directed arc from c to c′, and mark the side of the arc as t;
20: else
21: Generate a node c′ and mark it as new in RG(N); draw a directed arc from

c to c′ and mark the side of the arc as t; erase the new label of node c, and
return to Step 2.

22: end if
23: end for

first enters the registration interface to access this system (t5) and then submits the
materials information related to the driver license (t7). If the review is passed, s/he
can continue to modify or update other information (t10). Otherwise, it is necessary
to resubmit the information again (t8). If s/he registers successfully, s/he becomes
a registered user. This user can choose to exit this system (t3) or modify his/her
personal information (t4). If this user needs to modify the license plate number
information, s/he needs to enter his/her name first, and then update the license
plate number information. At the same time, s/he needs to submit the relevant
copy materials and upload them to the system (t11). After all the copy materials
(copy) are submitted and approved (t12), the permission can be obtained. Finally,
this user can exit and the process ends (t13).

The initial state of the WFT-net in Figure 4 is c0 = ⟨start, {id = ⊥, lpn =
⊥, copy = ⊥}, {(id1, lpn1, copy1), (id2, lpn2, copy2)}, {π1 = ⊥, π2 = ⊥, π3 = ⊥, π4 =
⊥, π5 = ⊥, π6 = ⊥}⟩. The transition t0 is enabled at c0, and the token will move

1040 J. Song, D. Xiang, G. Liu, L. He

p5:¬ input(lpn)

 p3:¬registered(lpn)

start

t0:input

wt:id

SELECT id

FROM User

t11:submit copy

wt:copy

t13:logout

t9:logout

t5:enroll

rd:id

P1

P2
P3

P0

p2:input(id)

P10

end

t1:registered

wt:lpn

SELECT lpn

FROM User

p1:¬ input(id)

P4

t6:change lpn

wt:id

UPDATE lpn

FROM User

t7:input lpn

wt:lpn

SELECT id

FROM User

P5

P6

p6:input(lpn)

p4:registered(lpn)

t8:reinput

dt:lpn

SELECT lpn

FROM User

WHERE Lpn!=lpn

SELECT copy

FROM User

(a)

t10:save lpn

wt:id

UPDATE lpn

FROM User

P7

P9

t12:obtain permit

P8

t2:register

rd:id

INSERT id

FROM User

t4:modify

rd:lpn

t3:logout

rd:lpn

User

Id Lpn Copy

id1 lpn1 copy1

id2 lpn2 copy2

(b)
a)

p5:¬ input(lpn)

 p3:¬registered(lpn)

start

t0:input

wt:id

SELECT id

FROM User

t11:submit copy

wt:copy

t13:logout

t9:logout

t5:enroll

rd:id

P1

P2
P3

P0

p2:input(id)

P10

end

t1:registered

wt:lpn

SELECT lpn

FROM User

p1:¬ input(id)

P4

t6:change lpn

wt:id

UPDATE lpn

FROM User

t7:input lpn

wt:lpn

SELECT id

FROM User

P5

P6

p6:input(lpn)

p4:registered(lpn)

t8:reinput

dt:lpn

SELECT lpn

FROM User

WHERE Lpn!=lpn

SELECT copy

FROM User

(a)

t10:save lpn

wt:id

UPDATE lpn

FROM User

P7

P9

t12:obtain permit

P8

t2:register

rd:id

INSERT id

FROM User

t4:modify

rd:lpn

t3:logout

rd:lpn

User

Id Lpn Copy

id1 lpn1 copy1

id2 lpn2 copy2

(b)b)

Figure 4. WFT-net for vehicle management system

from p0 to p1 after firing t0. The data item id is defined, but lpn and copy are
still undefined, so only id is written at t0. Guard functions π1, π2 are both about
this write operation. According to Algorithm 1, all assignments of π1 and π2 will be
included in a truth table after this write operation is performed at t0, as shown in
Figure 5 a). Firing t0 generates four new states, i.e., c1 = ⟨p1, {id3, lpn = ⊥, copy =
⊥}, {(id1, lpn1, copy1), (id2, lpn2, copy2), (id3,⊥,⊥)}, {π1, π2,⊥,⊥,⊥,⊥}⟩, c2 = ⟨p1,
{id, lpn = ⊥, copy = ⊥}, {(id1, lpn1, copy1), (id2, lpn2, copy2)}, {¬π1, π2,⊥,⊥,⊥,

New Data Refinement Method to Generate RG of WFTC-Net 1041

⊥}⟩, c3 = ⟨p1, {id3 ,lpn = ⊥, copy = ⊥}, {(id1, lpn1, copy1), (id2, lpn2, copy2), (id3,
⊥,⊥)}, {π1,¬π2,⊥,⊥,⊥,⊥}⟩, and c4 = ⟨p1, {id, lpn = ⊥, copy = ⊥}, {(id1, lpn1,
copy1), (id2, lpn2, copy2)}, {¬π1,¬π2,⊥,⊥,⊥,⊥}⟩. Similarly, all assignments of π3

and π4, and π5 and π6 are included in their corresponding truth tables, as shown in
Figures 5 b) and 5 c), respectively. Figure 5 d) shows data information in an updatad
table, and id3 is an updatad data item. Figure 5 e) shows a state reachability graph
of the WFT-net in Figure 4, and pseudo states are represented by a dotted line. The
state information in the state reachability graph is shown in Table 1, where θD is
the value of {id, lpn, copy}, ϑR is the records of table User, and σ is one assignment
of guard functions {π1, π2, π3, π4, π5, π6} (T = true, F = false).

C m θD ϑR σ
C0 p0 {⊥,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,

copy2)}
π1 = ⊥, π2 = ⊥, π3 = ⊥, π4 = ⊥, π5 = ⊥,
π6 = ⊥

C1 p1 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = ⊥,
π6 = ⊥

C2 p1 {id,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = ⊥, π4 = ⊥, π5 = ⊥,
π6 = ⊥

C3 p1 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = ⊥,
π6 = ⊥

C4 p1 {id,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = F , π3 = ⊥, π4 = ⊥, π5 = ⊥,
π6 = ⊥

C5 p3 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, p4 = ⊥, p5 = ⊥, p6 =
⊥

C6 p10 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥π4 = ⊥, π5 = ⊥,
π6 = ⊥

C7 p5 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = ⊥,
π6 = ⊥

C8 p7 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = F

C9 p7 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = T

C10 p7 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = F

C11 p7 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = T

C12 p6 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = T

C13 p8 {id3, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = T

C14 p9 {id3, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = T

C15 p10 {id3, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = T

C16 p6 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = T

C17 p8 {id3, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = T

C18 p9 {id3, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = T

C19 p10 {id3, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = T , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = T

C20 p2 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C21 p2 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C22 p2 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = T , π4 = F , π5 = ⊥,
π6 = ⊥

1042 J. Song, D. Xiang, G. Liu, L. He

C23 p2 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = F , π4 = F , π5 = ⊥,
π6 = ⊥

C24 p10 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = T , π4 = F , π5 = ⊥,
π6 = ⊥

C25 p10 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C26 p4 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C27 p6 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C28 p8 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C29 p9 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C30 p10 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C31 p4 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C32 p6 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C33 p8 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C34 p9 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C35 p10 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = T , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C36 p2 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C37 p2 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = T , π4 = F , π5 = ⊥,
π6 = ⊥

C38 p2 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C39 p2 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = F , π4 = F , π5 = ⊥,
π6 = ⊥

C40 p10 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C41 p4 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C42 p6 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C43 p8 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C44 p9 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C45 p10 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = T , π4 = T , π5 = ⊥,
π6 = ⊥

C46 p10 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = T , π4 = F , π5 = ⊥,
π6 = ⊥

C47 p4 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C48 p6 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C49 p8 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C50 p9 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C51 p10 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F , π2 = T , π3 = F , π4 = T , π5 = ⊥,
π6 = ⊥

C52 p3 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = ⊥, π6 =
⊥

C53 p10 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = ⊥,
π6 = ⊥

New Data Refinement Method to Generate RG of WFTC-Net 1043

C54 p5 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = ⊥,
π6 = ⊥

C55 p7 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = F

C56 p7 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = F

C57 p7 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = T

C58 p6 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = T

C59 p8 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = T

C60 p9 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = T

C61 p10 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = F ,
π6 = T

C62 p7 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = T

C63 p6 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = T

C64 p8 {id3, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = T

C65 p9 {id3, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = T

C66 p10 {id3, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T , π2 = F , π3 = ⊥, π4 = ⊥, π5 = T ,
π6 = T

Table 1. Concrete states information in the state reachability graph

The pseudo states cannot exist in actual process model, as shown in Figure 5 e).
According to Algorithm 3, when id is written at t0, there is a constraint relation
between guard functions π1 and π2. Given two proposition formulas ω1 = (¬π1∧π2)
and ω2 = (π1∧¬π2), the constraint true |= ω1∨ω2 is calculated by Definition 2, and
its truth table is shown in Figure 6 a). Then only transitions that satisfy true can be
enabled. When t0 is enabled at c0, Algorithm 1 generates four states c1, c2, c3 and
c4. In fact, guard functions in c1 and c4 do not satisfy the constraint true. Similarly,
two constraints true |= (¬π3 ∧ π4) ∨ (π3 ∧ ¬π4) and true |= (¬π5 ∧ π6) ∨ (π5 ∧ ¬π6)
are contructed and their truth tables are shown in Figure 6 b) and 6 c), respectively.
Then the constraint set res = {(¬π1∧π2)∨ (π1∧¬π2), (¬π3∧π4)∨ (π3∧¬π4), (¬π5∧
π6) ∨ (π5 ∧ ¬π6)} is constructed. Figure 6 d) shows the state reachability graph
without pseudo states of the WFTC-net in Figure 4 generated by Algorithm 4. The
state information is recorded in Table 2. The reachability graph without pseudo
states is more in line with actual requirements when characterizing the dynamic
behavior of this system.

6 TOOL AND EXPERIMENTS

Based on our algorithms, we develop a tool to generate the state reachability graph
of a WFC-net, which is written in C++ programming language. After inputting
a WFTC-net (.txt file) and a table (.txt file), our tool can read them, and generate
state reachability graphs. Figure 7 a) describes an abstract file information of the
WFT-net in Figure 7, where 7 b) shows a constraint set res, 7 c) represents an initial

1044 J. Song, D. Xiang, G. Liu, L. He

C0

C1

C2

C3

start

t0

C22

C20

C23

t1

C24

t3

end

C25

end

C31

t3

t4

C32

t6

C33

C35

C34

t11

t12

t13end

C21 C5

C26C27

C28

C29

C30

t4

t6

t8

t12

t13 end

C6

t9

end

C7

C8

t5

t7

C10

t8

C9

C12

C14

C13

C15

t10

t11

t12

t13

C11
t8

C16

C17

C18

C19

endend

t10

t11

t12

t13

C4

C39

t1

C36 C38

C37

C46

t3

end

C40

t3

end

C41

t4

C42

t6

C43

C44

C45

t11

t12

t13
end

C47

C48

C49

C50

C51

t4

t8

t11

t12

t13end

C52 C53

end

t2

t9

C54

t5

C55 C57

C56

C62

t7

t8

C58

C59 C64

C63

C60

C61

C65

C66

t10

t11

t12

t13end

t10

t11

t12

t13end

(e)

p1 p2
0 0
1 0
0 1
1 1

(a)

p3 p4
0 0
1 0
0 1
1 1

(b)

p5 p6
0 0
1 0
0 1
1 1

(c)

Id Lpn Copy
User

(d)

Id1 Lpn1 Copy1
Id2 Lpn2 Copy2
Id3 ^ ^

a)

C0

C1

C2

C3

start

t0

C22

C20

C23

t1

C24

t3

end

C25

end

C31

t3

t4

C32

t6

C33

C35

C34

t11

t12

t13end

C21 C5

C26C27

C28

C29

C30

t4

t6

t8

t12

t13 end

C6

t9

end

C7

C8

t5

t7

C10

t8

C9

C12

C14

C13

C15

t10

t11

t12

t13

C11
t8

C16

C17

C18

C19

endend

t10

t11

t12

t13

C4

C39

t1

C36 C38

C37

C46

t3

end

C40

t3

end

C41

t4

C42

t6

C43

C44

C45

t11

t12

t13
end

C47

C48

C49

C50

C51

t4

t8

t11

t12

t13end

C52 C53

end

t2

t9

C54

t5

C55 C57

C56

C62

t7

t8

C58

C59 C64

C63

C60

C61

C65

C66

t10

t11

t12

t13end

t10

t11

t12

t13end

(e)

p1 p2
0 0
1 0
0 1
1 1

(a)

p3 p4
0 0
1 0
0 1
1 1

(b)

p5 p6
0 0
1 0
0 1
1 1

(c)

Id Lpn Copy
User

(d)

Id1 Lpn1 Copy1
Id2 Lpn2 Copy2
Id3 ^ ^

b)

C0

C1

C2

C3

start

t0

C22

C20

C23

t1

C24

t3

end

C25

end

C31

t3

t4

C32

t6

C33

C35

C34

t11

t12

t13end

C21 C5

C26C27

C28

C29

C30

t4

t6

t8

t12

t13 end

C6

t9

end

C7

C8

t5

t7

C10

t8

C9

C12

C14

C13

C15

t10

t11

t12

t13

C11
t8

C16

C17

C18

C19

endend

t10

t11

t12

t13

C4

C39

t1

C36 C38

C37

C46

t3

end

C40

t3

end

C41

t4

C42

t6

C43

C44

C45

t11

t12

t13
end

C47

C48

C49

C50

C51

t4

t8

t11

t12

t13end

C52 C53

end

t2

t9

C54

t5

C55 C57

C56

C62

t7

t8

C58

C59 C64

C63

C60

C61

C65

C66

t10

t11

t12

t13end

t10

t11

t12

t13end

(e)

p1 p2
0 0
1 0
0 1
1 1

(a)

p3 p4
0 0
1 0
0 1
1 1

(b)

p5 p6
0 0
1 0
0 1
1 1

(c)

Id Lpn Copy
User

(d)

Id1 Lpn1 Copy1
Id2 Lpn2 Copy2
Id3 ^ ^

c)

C0

C1

C2

C3

start

t0

C22

C20

C23

t1

C24

t3

end

C25

end

C31

t3

t4

C32

t6

C33

C35

C34

t11

t12

t13end

C21 C5

C26C27

C28

C29

C30

t4

t6

t8

t12

t13 end

C6

t9

end

C7

C8

t5

t7

C10

t8

C9

C12

C14

C13

C15

t10

t11

t12

t13

C11
t8

C16

C17

C18

C19

endend

t10

t11

t12

t13

C4

C39

t1

C36 C38

C37

C46

t3

end

C40

t3

end

C41

t4

C42

t6

C43

C44

C45

t11

t12

t13
end

C47

C48

C49

C50

C51

t4

t8

t11

t12

t13end

C52 C53

end

t2

t9

C54

t5

C55 C57

C56

C62

t7

t8

C58

C59 C64

C63

C60

C61

C65

C66

t10

t11

t12

t13end

t10

t11

t12

t13end

(e)

p1 p2
0 0
1 0
0 1
1 1

(a)

p3 p4
0 0
1 0
0 1
1 1

(b)

p5 p6
0 0
1 0
0 1
1 1

(c)

Id Lpn Copy
User

(d)

Id1 Lpn1 Copy1
Id2 Lpn2 Copy2
Id3 ^ ^

d)

C0

C1

C2

C3

start

t0

C22

C20

C23

t1

C24

t3

end

C25

end

C31

t3

t4

C32

t6

C33

C35

C34

t11

t12

t13end

C21 C5

C26C27

C28

C29

C30

t4

t6

t8

t12

t13 end

C6

t9

end

C7

C8

t5

t7

C10

t8

C9

C12

C14

C13

C15

t10

t11

t12

t13

C11
t8

C16

C17

C18

C19

endend

t10

t11

t12

t13

C4

C39

t1

C36 C38

C37

C46

t3

end

C40

t3

end

C41

t4

C42

t6

C43

C44

C45

t11

t12

t13
end

C47

C48

C49

C50

C51

t4

t8

t11

t12

t13end

C52 C53

end

t2

t9

C54

t5

C55 C57

C56

C62

t7

t8

C58

C59 C64

C63

C60

C61

C65

C66

t10

t11

t12

t13end

t10

t11

t12

t13end

(e)

p1 p2
0 0
1 0
0 1
1 1

(a)

p3 p4
0 0
1 0
0 1
1 1

(b)

p5 p6
0 0
1 0
0 1
1 1

(c)

Id Lpn Copy
User

(d)

Id1 Lpn1 Copy1
Id2 Lpn2 Copy2
Id3 ^ ^

e)

Figure 5. a), b) and c) are the truth tables of the three sets of guard functions without
constraints; d) An updatad table User; e) A state reachability graph of the WFT-net

table user, 7 d) is a state reachability graph of WFT-net, and 7 e) shows a state
reachability graph of WFTC-net.

The results show that the WFT-net in Figure 4 produces a total of 91 states
and 146 state arcs, while WFTC-net produces a total of 63 states and 82 state
arcs. The main reason is that WFT-net does not consider the constraint relation
between guard functions and generates pseudo states while our method overcomes
this problem. In order to further show the effectiveness of our tool, we do the
experiments on 10 different examples, and their results are shown in Table 3. All

New Data Refinement Method to Generate RG of WFTC-Net 1045

C m θD ϑR σ
C0 p0 {⊥,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,

copy2)}
π1 = ⊥, π2 = ⊥, π3 = ⊥, π4 = ⊥, π5 = ⊥, π6 =
⊥

C1 p1 {id,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F, π2 = T, π3 = ⊥, π4 = ⊥, π5 = ⊥, π6 =
⊥

C2 p1 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = ⊥, π6 =
⊥

C3 p2 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F, π2 = T, π3 = T, π4 = F, π5 = ⊥, π6 =
⊥

C4 p2 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F, π2 = T, π3 = F, π4 = T, π5 = ⊥, π6 =
⊥

C5 p10 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F, π2 = T, π3 = T, π4 = F, π5 = ⊥, π6 =
⊥

C6 p4 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F, π2 = T, π3 = F, π4 = T, π5 = ⊥, π6 =
⊥

C7 p6 {id, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F, π2 = T, π3 = F, π4 = T, π5 = ⊥, π6 =
⊥

C8 p8 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F, π2 = T, π3 = F, π4 = T, π5 = ⊥, π6 =
⊥

C9 p9 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F, π2 = T, π3 = F, π4 = T, π5 = ⊥, π6 =
⊥

C10 p10 {id, lpn, copy} {(id1, lpn1, copy1), (id2, lpn2,
copy2)}

π1 = F, π2 = T, π3 = F, π4 = T, π5 = ⊥, π6 =
⊥

C11 p3 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = ⊥, π6 =
⊥

C12 p10 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = ⊥, π6 =
⊥

C13 p5 {id3,⊥,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = ⊥, π6 =
⊥

C14 p7 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = T, π6 =
F

C15 p7 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = F, π6 =
T

C16 p6 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = F, π6 =
T

C17 p8 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = F, π6 =
T

C18 p9 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = F, π6 =
T

C19 p10 {id3, lpn,⊥} {(id1, lpn1, copy1), (id2, lpn2,
copy2), (id3,⊥,⊥)}

π1 = T, π2 = F, π3 = ⊥, π4 = ⊥, π5 = F, π6 =
T

Table 2. Concrete states information in the state reachability graph

Model

WFT-NET WFTC-RG WFT-RG

No. of
Guards

No. of Data
Operations

No. of Table
Operations

No. of
States

No. of
Arcs

Time
No. of
States

No. of
Arcs

Time
No. of

Pseudo States
wt rd dt sel ins del upd

1 2 3 8 1 6 1 1 2 63 82 8.348 91 146 9.704 28
2 4 3 8 1 6 1 1 2 66 80 10.791 91 140 16.732 25
3 6 3 8 1 7 1 1 1 39 43 8.918 86 145 12.786 47
4 0 0 0 0 0 0 0 0 11 14 7.46 11 14 8.448 0
5 0 2 7 1 6 1 1 2 66 79 8.58 128 155 11.49 62
6 4 3 8 1 7 1 1 2 30 36 8.818 178 304 9.399 148
7 6 3 8 0 5 2 1 3 29 34 34.866 126 210 38.164 97
8 2 3 9 1 7 1 1 3 34 38 8.906 92 118 9.683 58
9 3 2 10 0 6 1 1 2 41 51 8.152 99 163 9.774 58

10 4 2 11 0 7 2 1 2 50 56 8.688 72 83 9.414 16

Table 3. The test results

1046 J. Song, D. Xiang, G. Liu, L. He

C0

C1 C2

start

t1

C4 C3

C5

t3

C6

C7 C8

C9

t4

t8

t11

t12

t13

C11 C12

endt2

t9

C13

t5

C15

t7

C16

C17C18C19

t10

t11

t12t13

end

t0

C14

t8

C10

end

(a)

p1 p2
1 0
0 1

(b)

p3 p4
1 0
0 1

(c)

p5 p6
1 0
0 1

a)

C0

C1 C2

start

t1

C4 C3

C5

t3

C6

C7 C8

C9

t4

t8

t11

t12

t13

C11 C12

endt2

t9

C13

t5

C15

t7

C16

C17C18C19

t10

t11

t12t13

end

t0

C14

t8

C10

end

(a)

p1 p2
1 0
0 1

(b)

p3 p4
1 0
0 1

(c)

p5 p6
1 0
0 1

b)

C0

C1 C2

start

t1

C4 C3

C5

t3

C6

C7 C8

C9

t4

t8

t11

t12

t13

C11 C12

endt2

t9

C13

t5

C15

t7

C16

C17C18C19

t10

t11

t12t13

end

t0

C14

t8

C10

end

(a)

p1 p2
1 0
0 1

(b)

p3 p4
1 0
0 1

(c)

p5 p6
1 0
0 1

c)

C0

C1 C2

start

t1

C4 C3

C5

t3

C6

C7 C8

C9

t4

t8

t11

t12

t13

C11 C12

endt2

t9

C13

t5

C15

t7

C16

C17C18C19

t10

t11

t12t13

end

t0

C14

t8

C10

end

(a)

p1 p2
1 0
0 1

(b)

p3 p4
1 0
0 1

(c)

p5 p6
1 0
0 1

d)

Figure 6. a), b) and c) are the truth tables of the three constraints; d) A state reachability
graph of the WFTC-net

the experiments are done on the Intel Core I5-8500 CPU (3.00GHz) and 8.0GB
memory.

The results in Table 3 show that our method can effetively reduce pseudo states
when producing the state reachability graph of a WFT-net. When multiple guard
functions are operating on the same data item, WFT-net lacks consideration of the
constraint relation between guard functions. Thus, it is easy to generate pseudo
states in its state reachability graph. WFTC-net considers this constraint relation,
and thus pseudo states can be avoided. Naturally, the operating behaviors of the
system can be described more accurately. Obviously, the state reachability graph
of WFTC-net (WFTC-RG) spends less time in comparison with the corresponding
WFT-RG.

Additionally, in order to study the influence of user numbers on the state reach-
ability graph of a WFT-net, we choose the models of group 1 and group 10 in
Table 3 to do the experiments. The results are shown in Table 4, where x/y means
the model of x users and group y.

As shown in the experimental results in Table 4, when the user information in
the table increases gradually, the number of states generated in the state reachability
graph of WFT-net and WFTC-net also increases. With the increase of data items
in the table, the operations on the data in the table will also increase. Thus, the
state will gradually increase in the process of generating the state reachability graph.
Obviously, WFTC-RG spends less time in comparison with the corresponding WFT-
RG, which further illustrates the superiority of our method.

New Data Refinement Method to Generate RG of WFTC-Net 1047

(a)

(b)(c)

(d) (e)

a)

(a)

(b)(c)

(d) (e)

b)
(a)

(b)(c)

(d) (e)

c)

(a)

(b)(c)

(d) (e)
d)

(a)

(b)(c)

(d) (e)
e)

Figure 7. a) A WFT-net; b) A constraint set res; c) An initial table user ; d) A state
reachability graph of WFT-net; e) A state reachability graph of WFTC-net

1048 J. Song, D. Xiang, G. Liu, L. He

User/
Model

WFT-NET WFTC-RG WFT-RG

No. of
Guards

No. of Data
Operations

No. of Table
Operations

No. of
States

No. of
Arcs

Time
No. of
States

No. of
Arcs

Time
No. of

Pseudo States
wt rd dt sel ins del upd

1/1

2 3 8 1 6 1 1 2

43 52 9.037 55 77 12.843 34
2/1 63 82 8.348 91 146 9.704 28
3/1 79 122 9.192 123 255 10.79 44
4/1 100 173 9.295 160 403 10.476 60
5/1 120 231 9.504 196 582 16.533 76
6/1 140 297 11.509 232 793 15.136 92
1/10

4 2 11 0 7 2 1 2

32 34 9.021 45 50 11.172 13
2/10 50 56 8.688 72 83 9.414 16
3/10 58 65 8.493 89 101 9.919 31
4/10 75 84 9.665 115 130 10.311 40
5/10 92 103 9.211 141 159 9.486 49
6/10 109 122 10.149 167 188 13.945 58

Table 4. The test results

To further illustrate that our constraints also apply to WFD-net, we do a set of
experiments in order to compare WFD-RG and WFDC-RG in terms of state space
and construction time. The following benchmarks are used:

• B1 is an example with two threads accessing two shared variables, then it pro-
duces concurrency bugs [34].

• B2 is a classic algorithm for solving the mutual exclusion problem in concurrent
systems [35].

• B3 is a concurrent program, where multiple concurrent threads manipulate
a shared hash table [36].

• B4 is a system-level modeling language that offers a wide range of features to
describe concurrent systems at different levels of abstraction [37].

• B5 is a tutorial program to detect and fix data races [38].

• B6 is a sequence of instructions where any branch is at the end and there are
shared variables access [39].

• B7 is a simple producer-consumer example. It is a set of interconnected mod-
ules communicating through channels using transactions, events and shared vari-
ables [40].

• B8 is a test driver for a simplified version of a Bluetooth driver [41].

For each benchmark, we first use WFD-net to model it, and use our tool to
obtain their WFD-RG and WFDC-RG, respectively. Each benchmark tested 10
times, and the result of running time is their averages. Table 5 is the results of our
experiments. It shows the number of states, the number of arcs, and the construction
time of WFD-RG and WFDC-RG for all benchmarks. From this table, we can see
that the scale of WFDC-RG is much smaller than WFD-RG. Obviously, it spends
less time to produce a WFDC-RG in comparison with the corresponding WFD-RG.

New Data Refinement Method to Generate RG of WFTC-Net 1049

Benchmarks

WFD-nets WFD-RG WFDC-RG

|T | |P | |F | |D| |G| Nos. of
States

Nos. of
Arcs

Time
(s)

Nos. of
States

Nos. of
Arcs

Time
(s)

BM1 17 17 35 8 4 410 665 0.802 201 325 0.462

BM2 25 27 50 3 8 183 405 0.924 76 148 0.377

BM3 11 9 28 6 6 83 82 0.472 17 18 0.302

BM4 18 17 40 9 4 1057 3201 1.681 417 1281 0.613

BM5 22 21 47 10 6 95 128 0.589 25 30 0.435

BM6 22 24 48 10 6 96 97 0.482 27 29 0.415

BM7 41 37 84 18 6 11385 36593 39.664 1905 6357 6.037

BM8 57 53 122 15 16 11174 24313 24.09 928 2167 2.045

Table 5. The test results

7 CONCLUSION

WFT-net is used to simulate a workflow system that operates on data tables, and
the state reachability graph is defined to describe all its possible running behaviors.
In fact, the data refinement method of WFT-net proposed in [27] has shortcomings
due to its lacks of constraint relations between guard functions. Thus, it is easy to
generate pseudo states (or illegal states) in the state reachability graph of WFT-
net. In this paper, we propose an improved data refinement method. In our guard-
driven state reachability graph, the constraint relation between guard functions are
considered so that the running behaviors of workflow systems can be expressed more
accurately. This paper also proposes some algorithms for generating reachability
graphs for WFTC-net. Futhermore, we develop a modeling and analysis tool. The
case study and experiments show the usefulness and effectiveness of our methods.
In the future, we will consider the application of first-order computation tree logic
(CTL) in the state reachability graph of WFTC-net, we want to verify whether
there are logic errors in WFTC-net, and develop a new model checking tool based
on WFTC-net.

Acknowledgement

This paper is supported in part by the National Nature Science Foundation of China
(No. 62172299).

REFERENCES

[1] Reichert, M.: Process and Data: Two Sides of the Same Coin? In: Meersman, R.
et al. (Eds.): On the Move to Meaningful Internet Systems (OTM 2012). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 7565, 2012, pp. 2–19,
doi: 10.1007/978-3-642-33606-5 2.

https://doi.org/10.1007/978-3-642-33606-5_2

1050 J. Song, D. Xiang, G. Liu, L. He

[2] Weidlich, M.—Polyvyanyy, A.—Desai, N.—Mendling, J.: Process Compli-
ance Measurement Based on Behavioural Profiles. In: Pernici, B. (Ed.): Advanced
Information Systems Engineering (CAiSE 2010). Springer, Berlin, Heidelberg, Lec-
ture Notes in Computer Science, Vol. 6051, 2010, pp. 499–514, doi: 10.1007/978-3-
642-13094-6 38.

[3] Dolean, C.C.—Petrusel, R.: Data-Flow Modeling: A Survey of Issues and Ap-
proaches. Informatica Economica, Vol. 16, 2012, No. 4, pp. 117–130.

[4] Castro, L.M.—Arts, T.: Testing Data Consistency of Data-Intensive Applica-
tions Using QuickCheck. Electronic Notes in Theoretical Computer Science, Vol. 271,
2011, pp. 41–62, doi: 10.1016/j.entcs.2011.02.010.

[5] Fu, X.—Wang, F.—Liu, X.—Ji, K.—Zou, P.: Dataflow Weaknesses Analy-
sis of Scientific Workflow Based on Fault Tree. 2012 Sixth International Sympo-
sium on Theoretical Aspects of Software Engineering, IEEE, 2012, pp. 227–230, doi:
10.1109/TASE.2012.18.

[6] Sadiq, S.—Orlowska, M.—Sadiq, W.—Foulger, C.: Data Flow and Valida-
tion in Workflow Modelling. Proceedings of the 15th Australasian Database Confer-
ence – Volume 27 (ADC 2004), 2004, pp. 207–214.

[7] Sun, S.X.—Zhao, J. L.—Nunamaker, J. F.—Sheng, O.R. L.: Formulating
the Data-Flow Perspective for Business Process Management. Information Systems
Research, Vol. 17, 2006, No. 4, pp. 374–391, doi: 10.1287/isre.1060.0105.

[8] Wang, J.—Rosca, D.—Tepfenhart, W.—Milewski, A.—Stoute, M.: Dy-
namic Workflow Modeling and Analysis in Incident Command Systems. IEEE Trans-
actions on Systems, Man, and Cybernetics – Part A: Systems and Humans, Vol. 38,
2008, No. 5, pp. 1041–1055, doi: 10.1109/TSMCA.2008.2001080.

[9] He, C.—Ding, Z.: More Efficient On-the-Fly Verification Methods of Colored
Petri Nets. Computing and Informatics, Vol. 40, 2021, No. 1, pp. 195–215, doi:
10.31577/cai 2021 1 195.

[10] Ding, Z.—Liu, J.—Wang, J.—Wang, F.: An Executable Service Composition
Code Automatic Creation Tool Based on Petri Net Model. Computing and Informat-
ics, Vol. 32, 2013, No. 5, pp. 968–986.

[11] Jiang, F.C.—Hsu, C.H.—Wang, S.: Logistic Support Architecture with Petri
Net Design in Cloud Environment for Services and Profit Optimization. IEEE
Transactions on Services Computing, Vol. 10, 2017, No. 6, pp. 879–888, doi:
10.1109/tsc.2016.2514506.

[12] Moutinho, F.—Gomes, L.: Asynchronous-Channels Within Petri Net-Based
GALS Distributed Embedded Systems Modeling. IEEE Transactions on Industrial
Informatics, Vol. 10, 2014, No. 4, pp. 2024–2033, doi: 10.1109/tii.2014.2341933.

[13] Wang, J.: Emergency Healthcare WorkflowModeling and Timeliness Analysis. IEEE
Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans,
Vol. 42, 2012, No. 6, pp. 1323–1331, doi: 10.1109/TSMCA.2012.2210206.

[14] Xiang, D.—Liu, G.—Yan, C.—Jiang, C.: Detecting Data Inconsistency Based on
the Unfolding Technique of Petri Nets. IEEE Transactions on Industrial Informatics,
Vol. 13, 2017, No. 6, pp. 2995–3005, doi: 10.1109/tii.2017.2698640.

[15] Clarke, E.: Counterexample-Guided Abstraction Refinement. 10th International

https://doi.org/10.1007/978-3-642-13094-6_38
https://doi.org/10.1007/978-3-642-13094-6_38
https://doi.org/10.1016/j.entcs.2011.02.010
https://doi.org/10.1109/TASE.2012.18
https://doi.org/10.1287/isre.1060.0105
https://doi.org/10.1109/TSMCA.2008.2001080
https://doi.org/10.31577/cai_2021_1_195
https://doi.org/10.1109/tsc.2016.2514506
https://doi.org/10.1109/tii.2014.2341933
https://doi.org/10.1109/TSMCA.2012.2210206
https://doi.org/10.1109/tii.2017.2698640

New Data Refinement Method to Generate RG of WFTC-Net 1051

Symposium on Temporal Representation and Reasoning, 2003 and Fourth Interna-
tional Conference on Temporal Logic, 2003, pp. 7–8, doi: 10.1109/time.2003.1214874.

[16] Trčka, N.—Van der Aalst, W.M.P.—Sidorova, N.: Data-Flow Anti-
Patterns: Discovering Data-Flow Errors in Workflows. In: van Eck, P., Gordijn, J.,
Wieringa, R. (Eds.): Advanced Information Systems Engineering (CAiSE 2009).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5565, 2009,
pp. 425–439, doi: 10.1007/978-3-642-02144-2 34.

[17] Meda, H. S.—Sen, A.K.—Bagchi, A.: On Detecting Data Flow Errors in Work-
flows. Journal of Data and Information Quality (JDIQ), Vol. 2, 2010, No. 1, Art. No. 4,
doi: 10.1145/1805286.1805290.

[18] von Stackelberg, S.—Putze, S.—Mülle, J.—Böhm, K.: Detecting Data-Flow
Errors in BPMN 2.0. Open Journal of Information Systems (OJIS), Vol. 1, 2014,
No. 2, pp. 1–19.

[19] Trčka, N.: Workflow Data Footprints. In: Abramowicz, W., Tolksdorf, R. (Eds.):
Business Information Systems (BIS 2010). Springer, Berlin, Heidelberg, Lecture Notes
in Business Information Processing, Vol. 47, 2010, pp. 218–229, doi: 10.1007/978-3-
642-12814-1 19.

[20] Smith, G.—Derrick, J.: Verifying Data Refinements Using a Model Checker. For-
mal Aspects of Computing, Vol. 18, 2006, No. 3, pp. 264–287, doi: 10.1007/s00165-
006-0002-7.

[21] Ge, J.—Hu, H.—Lu, J.: Invariant Analysis for the Task Refinement of Work-
flow Nets. 2006 International Conference on Computational Inteligence for Modelling
Control and Automation and International Conference on Intelligent Agents Web
Technologies and International Commerce (CIMCA ’06), IEEE, 2006, pp. 209–209,
doi: 10.1109/CIMCA.2006.135.

[22] Gardiner, P.H.B.—Morgan, C.: A Single Complete Rule for Data Refine-
ment. Formal Aspects of Computing, Vol. 5, 1993, No. 4, pp. 367–382, doi:
10.1007/BF01212407.

[23] Majster-Cederbaum, M.—Wu, J.—Yue, H.: Refinement of Actions for Real-
Time Concurrent Systems with Causal Ambiguity. Acta Informatica, Vol. 42, 2006,
No. 6-7, pp. 389–418, doi: 10.1007/s00236-005-0172-4.

[24] Sidorova, N.—Stahl, C.—Trčka, N.: Workflow Soundness Revisited: Check-
ing Correctness in the Presence of Data While Staying Conceptual. In: Pernici, B.
(Ed.): Advanced Information Systems Engineering (CAiSE 2010). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 6051, 2010, pp. 530–544, doi:
10.1007/978-3-642-13094-6 40.

[25] van der Aalst, W.M.P.—van Hee, K.M.—ter Hofstede, A.H.M.—
Sidorova, N.—Verbeek, H.M.W.—Voorhoeve, M.—Wynn, M.T.: Sound-
ness of Workflow Nets: Classification, Decidability, and Analysis. Formal Aspects of
Computing, Vol. 23, 2011, No. 3, pp. 333–363, doi: 10.1007/s00165-010-0161-4.

[26] Xiang, D.—Liu, G.: Checking Data-Flow Errors Based on the Guard-Driven Reach-
ability Graph of WFD-Net. Computing and Informatics, Vol. 39, 2020, No. 1-2,
pp. 193–212, doi: 10.31577/cai 2020 1-2 193.

[27] Tao, X.—Liu, G.—Yang, B.—Yan, C.—Jiang, C.: Workflow Nets with Tables

https://doi.org/10.1109/time.2003.1214874
https://doi.org/10.1007/978-3-642-02144-2_34
https://doi.org/10.1145/1805286.1805290
https://doi.org/10.1007/978-3-642-12814-1_19
https://doi.org/10.1007/978-3-642-12814-1_19
https://doi.org/10.1007/s00165-006-0002-7
https://doi.org/10.1007/s00165-006-0002-7
https://doi.org/10.1109/CIMCA.2006.135
https://doi.org/10.1007/BF01212407
https://doi.org/10.1007/s00236-005-0172-4
https://doi.org/10.1007/978-3-642-13094-6_40
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.31577/cai_2020_1-2_193

1052 J. Song, D. Xiang, G. Liu, L. He

and Their Soundness. IEEE Transactions on Industrial Informatics, Vol. 16, 2020,
No. 3, pp. 1503–1515, doi: 10.1109/TII.2019.2949591.

[28] van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers, Vol. 8, 1998, No. 1, pp. 21–66, doi:
10.1142/S0218126698000043.

[29] Zhou, G. F.—Du, Z.M.: Petri Nets Model of Implicit Data and Control in Program
Code. Ruanjian Xuebao/Journal of Software, Vol. 22, 2011, No. 12, pp. 2905–2918,
doi: 10.3724/sp.j.1001.2011.03956 (in Chinese).

[30] Li, J.—Yang, R.—Ding, Z.—Pan, M.: A Method for Learning a Petri Net
Model Based on Region Theory. Computing and Informatics, Vol. 39, 2020, No. 1-2,
pp. 174–192, doi: 10.31577/cai 2020 1-2 174.

[31] Wang, J.—Li, D.: Resource Oriented Workflow Nets and Workflow Resource Re-
quirement Analysis. International Journal of Software Engineering and Knowledge
Engineering, Vol. 23, 2013, No. 5, pp. 677–693, doi: 10.1142/S0218194013400135.

[32] Bai, E.—Su, N.—Liang, Y.—Qi, L.—Du, Y.: Method for Repairing Process
Models with Selection Structures Based on Token Replay. Computing and Informat-
ics, Vol. 40, 2021, No. 2, pp. 446–468, doi: 10.31577/cai 2021 2 446.

[33] Silberschatz, A.—Korth, H. F.—Sudarshan, S.: Database System Concepts.
3rd Edition. McGraw-Hill New York, 1997.

[34] Huang, J.—Zhang, C.—Dolby, J.: CLAP: Recording Local Executions to Re-
produce Concurrency Failures. ACM SIGPLAN Notices, Vol. 48, 2013, No. 6,
pp. 141–152, doi: 10.1145/2499370.2462167.

[35] Burnim, J.—Sen, K.—Stergiou, C.: Testing Concurrent Programs on Relaxed
Memory Models. Proceedings of the 2011 International Symposium on Software Test-
ing and Analysis (ISSTA ’11), 2011, pp. 122–132, doi: 10.1145/2001420.2001436.

[36] Flanagan, C.—Godefroid, P.: Dynamic Partial-Order Reduction for Model
Checking Software. ACM SIGPLAN Notices, Vol. 40, 2005, No. 1, pp. 110–121, doi:
10.1145/1047659.1040315.

[37] Blanc, N.—Kroening, D.: Race Analysis for SystemC Using Model Checking.
ACM Transactions on Design Automation of Electronic Systems (TODAES), Vol. 15,
2010, No. 3, Art. No. 21, doi: 10.1145/1754405.1754406.

[38] Oracle: Sun Studio 12: Thread Analyzer User’s Guide.

[39] Lee, J.—Padua, D.A.—Midkiff, S. P.: Basic Compiler Algorithms for Par-
allel Programs. ACM SIGPLAN Notices, Vol. 34, 1999, No. 8, pp. 1–12, doi:
10.1145/329366.301105.

[40] Kundu, S.—Ganai, M.—Gupta, R.: Partial Order Reduction for Scalable Testing
of SystemC TLM Designs. 2008 45th ACM/IEEE Design Automation Conference,
IEEE, 2008, pp. 936–941, doi: 10.1145/1391469.1391706.

[41] Razavi, N.—Ivančić, F.—Kahlon, V.—Gupta, A.: Concurrent Test Generation
Using Concolic Multi-Trace Analysis. In: Jhala, R., Igarashi, A. (Eds.): Programming
Languages and Systems (APLAS 2012). Springer, Berlin, Heidelberg, Lecture Notes
in Computer Science, Vol. 7705, 2012, pp. 239–255, doi: 10.1007/978-3-642-35182-
2 17.

https://doi.org/10.1109/TII.2019.2949591
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.3724/sp.j.1001.2011.03956
https://doi.org/10.31577/cai_2020_1-2_174
https://doi.org/10.1142/S0218194013400135
https://doi.org/10.31577/cai_2021_2_446
https://doi.org/10.1145/2499370.2462167
https://doi.org/10.1145/2001420.2001436
https://doi.org/10.1145/1047659.1040315
https://doi.org/10.1145/1754405.1754406
https://doi.org/10.1145/329366.301105
https://doi.org/10.1145/1391469.1391706
https://doi.org/10.1007/978-3-642-35182-2_17
https://doi.org/10.1007/978-3-642-35182-2_17

New Data Refinement Method to Generate RG of WFTC-Net 1053

Song Jian received his M.Sc. degree from the School of Me-
chanics and Optoelectronics Physics, Anhui University of Science
and Technology, Huainan, China, in 2019. He is currently work-
ing toward the Ph.D. degree in the Department of Computer
Science and Technology, School of Electronics and Information
Engineering, Tongji University, Shanghai, China. His current
research interests include model checking, Petri net, workflow,
control-flow, data-flow.

Dongming Xiang received his Ph.D. degree in computer scien-
ce and technology from the Tongji University, Shanghai, China,
in 2018. He is currently Lecturer with the Department of Com-
puter Science and Technology, Zhejiang Sci-Tech University,
Hangzhou, China. His research interests include model checking,
Petri net, software verification, business process management,
and service computing.

Guanjun Liu received his Ph.D. degree in computer software
and theory from the Tongji University, Shanghai, China, in 2011.
He was Post-Doctoral Research Fellow with the Singapore Uni-
versity of Technology and Design, Singapore, from 2011 to 2013.
He was Post-Doctoral Research Fellow with the Humboldt Uni-
versity of Berlin, Germany, from 2013 to 2014, funded by the
Alexander von Humboldt Foundation. In 2013, he joined the
Department of Computer Science of Tongji University as As-
sociate Professor, and now is Professor. His research interests
include Petri net theory, model checking, Web service, workflow,

discrete event systems, machine learning and credit card fraud detection.

Leifeng He received his B.Sc. degree in science and technology
from the University of Shanghai, Shanghai, China, in 2015. He is
currently working toward his Ph.D. degree in the Department of
Computer Science and Technology, School of Electronics and In-
formation Engineering, Tongji University, Shanghai, China. His
research interests include model checking, Petri net, workflow,
multi-agent systems, and epistemic logic.

