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Abstract. Along with the development of sonar technology, the detection accuracy
and stability of sonar have been improved. A large amount of seabed sediment in-
formation can be obtained through sonar detection. However, this information is
often accompanied by noise interference, resulting in poor quality of the generated
images. Moreover, sonar images are different from conventional images. There are
single-channel images. The model needs to classify the images according to the
texture features in the images. Coupled with the scarcity of sonar data, this makes
it difficult to accurately classify the seabed sediment. According to the characteris-
tics of sonar images, we propose the ShuffleNet-DSE which is a classification model
based on deep learning. The ShuffleNet-DSE network is based on ShuffleNet-V2,
while ensuring the lightweight of the network, it incorporates feature dense connec-
tion and Squeeze-and-Excitation (SE) structure channel self-attention. And com-
bined with the sonar image’s characteristics, the partial activation function of the
model is changed to the Swish. The experimental results show that compared with
the traditional machine learning classification method, ShuffleNet-DSE has greatly
improved the classification accuracy and the computational cost. Compared with
excellent neural network models such as AlexNet, MobileNet-V3, GoogLeNet and
ResNet, it is more suitable for sonar image processing.
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1 INTRODUCTION

The sea area is vast, and the sea area contains extremely rich resources. Mankind’s
cognition of the sea is still in the exploratory stage. The seabed sediment mainly
refers to the constituent materials on the surface of the seabed, and the common
ones are silt, sand and rock [1]. With the development and application of sonar tech-
nology, humans can detect seabed sediment through sonar, thereby obtaining seabed
sediment images and inverting the seabed topography based on the images [2]. For
people’s life, seabed topography not only directly affects the navigation and anchor-
ing of ships [3], but also affects the success of submarine pipeline laying. For the
utilization of seabed resources, the distribution of seabed minerals can be obtained
through the analysis of seabed sediment, so as to better develop and use seabed
resources [4]. For the military, the visualization of seabed environment is partic-
ularly important [5], they need to adopt different strategies to solve the problem
according to different seabed environments. Therefore, the study of more efficient
seabed sediment classification methods can provide an information basis for further
exploration of the ocean.

Sonar is currently the most appropriate means to explore the seabed on a large
scale. Compared with optical means, sonar has better penetration and wider detec-
tion range [6]. However, the detection effect of sonar is often affected by external
factors, most of which are related to the complex marine environment [7]. As a re-
sult, the generated sonar images often have more noise interference. Moreover, the
sonar data produced by sonars of different performances are quite different [8]. The
sonar image is a picture generated by mapping the intensity of the echo to the gray
value. It is a single-channel picture, and the image features are mainly texture
features [9]. Due to the confidentiality and diversity of storage methods of sonar
data, there is a lack of clear and standard sonar image data on the seabed sedi-
ment [10]. All of these have brought great difficulty to the subsequent classification
of sediment.

With the development of deep learning technology, new technical support is pro-
vided for the classification of seabed sediment. At present, for normal RGB image
classification, large-scale CNNs models have been able to perform very well. How-
ever, these models cannot effectively adapt to the characteristics of the sonar image.
The processing of sonar images is accompanied by severe over-fitting, and the texture
features of the images cannot be extracted effectively, resulting in low prediction ac-
curacy. Their complex network structure limits the classification performance. This
paper starts from three aspects: feature extraction, inter-channel information pro-
cessing and activation function selection, and optimizes the deep learning network.
Among them, the ShuffleNet-V2’s Depthwise-Separable-Convolution (DWConv) and
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Channel-Shuffle are more suitable for processing the inter-channel information of
sonar images through experimental comparison. Using ShuffleNet-V2 as the core,
and integrates the Squeeze-and-Excitation (SE) module into it. The SE module fil-
ters according to the channel weight and selects more effective channel information
as the model input, reducing the complexity of the model as much as possible. The
SE module can reduce noise interference and make the overall model more stable.
Use Swish instead of ReLU activation function to make the model improved by
more comprehensive learning features. And because the depth of the model should
not be too large, the feature dense connection is adopted in the feature extraction
part which can transfer the features more effectively without increasing the depth
of the model. After comprehensive consideration, the improved model has greatly
improved operation efficiency and classification accuracy.

The rest of the paper is organized as follows. Section 2 presents the literature
review. Section 3 depicts the design of the method in detail. Section 4 presents
the experimental part, which evaluates the effectiveness of the proposed method
by comparing the performance of different classification models. Finally, Section 5
concludes this work and discusses the future direction.

2 RELATED WORK

Research on the classification of sonar images can be divided into two categories:
traditional machine learning and deep learning. Therefore, articles related to these
two methods are described separately.

2.1 Traditional Machine Learning

The traditional research idea is to divide the establishment of the relationship model
between sonar images and substrate types into two stages, namely sonar image
feature extraction and classifier training. Traditional machine learning research is
divided into unsupervised learning and supervised learning.

At the initial stage, due to the lack of sonar data, some scholars tend to use
unsupervised learning methods for data classification in order to solve the situation
of small data samples. Clustering is a typical algorithm for unsupervised learning.
The k-means clustering algorithm is a commonly used clustering algorithm. Lu
et al. [11] proposed the use of k-means clustering algorithm in submarine geological
classification. However, the clustering method is affected by the initial value. If the
initial value is not appropriate, the classification accuracy will be poor. So, some
scholars turned their attention to the Self-Organizing Maps (SOM). The SOM was
proposed by Kohonen [12] in 1981. The SOM network is more suitable for sparse
data than other methods. Tang et al. [13] use the combination of Gray Level Co-
Occurrence Matrix (GLCM) and SOM to realize the classification of various types of
seabed sediment. This framework of using algorithms to extract features and then
classify them has been widely used since then.
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However, since unsupervised learning cannot obtain specific types of substrates,
in order to obtain clear types of substrates, supervised learning is usually used to
achieve classification.

Xiong et al. [14] performed principal component analysis by extracting feature
vectors, selecting standard deviation, contrast and other parameters as training
feature vectors, and using support vector machine (SVM) for classification, which
verifies the feasibility of using supervised learning methods to achieve classification.
On this basis, Xu et al. [15] proposed a support vector machine based on a radial ba-
sis kernel function, which effectively improves the classification accuracy compared
to traditional SVM. The SVM method often means a lot of calculations, so it is
gradually replaced by the BP network. Yang et al. [16] combined genetic algorithm
and BP network to achieve better accuracy for multi-substrate type recognition sce-
narios, this study provides a knowledge base for multi-type classification of seabed
sediments, and also proves that BP network has research potential in the field of
sonar data processing. Xiong et al. [17] combined the characteristics of genetic algo-
rithm, wavelet analysis and neural network, they use genetic algorithm to optimize
the initial weights and wavelet parameters of wavelet neural network, and combine
the multi-resolution and local refinement of wavelet analysis. When compared with
the previous, the BP neural network model has achieved better accuracy in the
recognition of the three types of substrates.

Although traditional machine learning is being continuously optimized, the prob-
lem of large amount of model computation has not been changed. At the same time,
due to the low resolution and serious interference of sonar images, the design of the
feature extraction algorithm and the optimal choice of the classification algorithm
have always been the focus of debate on the intelligent classification of seabed sedi-
ments.

2.2 Deep Learning

With the rise of deep learning, related research scholars have also begun to consider
applying deep learning to the classification of seabed sediment. Compared with
the research ideas of traditional machine learning, deep learning can automatically
extract the intrinsic features of the target through the internal network structure,
and establish a stable feature combination through the abstraction process from
low-level to high-level [18], which weakens the subjectivity of artificial selection of
features and saves workload.

Xue [19] combined Scale-Invariant Feature Transform (SIFT) with Convolutional
Neural Network (CNN) and proved through experiments that CNN has a higher
recognition accuracy rate than traditional machine learning algorithms. Fu [20]
combines the GLCM with CNN, and the accuracy rate is significantly better than
traditional machine learning algorithms in multi-class image classification scenarios.
Zhao et al. [21] used the combination of Weyl transform and statistical features to
extract the features and input the two-layer neural network to classify the seabed
sediment, and obtained better accuracy.
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But these studies are still affected by traditional machine learning. They still di-
vided the classification model into two parts: image feature extraction and classifier
training, and did not take full advantage of the characteristics of the deep learning
network.

Han et al. [22] applied CNN to marine target recognition, and this research
classifies sonar images only by building a CNN network. Although the study was to
classify seafloor targets, it was not seafloor sediments. But the excellent classification
accuracy of its scheme is enough to prove that deep learning technology can correctly
process sonar data. The study also describes how simple deep learning models tend
to perform better than more complex models for the characteristics of sonar data.

At present, the application of deep learning methods in the classification of
seabed sediment is still in the exploratory stage. Therefore, this paper proposes
the ShuffleNet-DSE network model to provide a new deep learning solution for the
research of seabed sediment classification.

3 PROPOSED METHOD

The ShuffleNet-DSE is a method that can effectively extract sonar image features
and analyze inter-channel information more comprehensively. The ShuffleNet-DSE
consists of two stages:

1. Feature pre-extraction, and

2. Channel information enhancement.

The pre-extraction part will improve the problem of poor classification accuracy
caused by image noise and low image resolution to a certain extent, and perform
effective feature extraction on the input sonar image.

The sonar image is a single-channel image, which leads to less information in-
teraction between the channels, and the channel information enhancement part can
solve this problem. Figure 1 shows the overall structure of the ShuffleNet-DSE. The
details of the model will be explained in this section below.

Figure 1. The network structure of ShuffleNet-DSE
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3.1 Feature Pre-Extraction

The sonar data contains the noise, and the image resolution is poor, which is often
accompanied by great difficulties in the feature extraction process. And the data
structure of sonar image is simple, sonar data is not suitable for complex network
structure, so it is necessary to extract as much information as possible from the
network structure of the image while ensuring the depth. Therefore, it becomes
particularly important to make full use of the feature maps output by each layer.
These problems can be improved by using the dense connection and the Swish
activation functions.

3.1.1 Dense Connection

The output Wi formula of dense connection is as follows:

Wi = Hi([x0, x1, . . . , xi−1]). (1)

Wi depends on the output of all previous layers. The output of each previous
layer is superimposed through the channel as the input of the current layer. It is not
difficult to see from the formula that the input of the dense connection is the super-
position of the output feature maps of each previous layer. The dense connection
allows the model to make full use of all feature maps for learning. Without increas-
ing the depth of the network, this method can increase the learning ability of the
model. In the face of uneven quality of sonar images, the conventional connection
method is likely to blur the feature information in the convolution calculation of
a certain layer. This results in all subsequent layers’ computations being based on
data whose feature information is obscured. The characteristic information of sonar
images is difficult to transmit effectively. These issues can cause large fluctuations
in the classification accuracy of the model. However, the dense connection method
will superimpose the output feature matrix of each layer with each previous layer,
and each layer will consider the calculation results of each previous layer, thereby
reducing the possibility of loss of feature information due to a certain layer. the
dense connections can improve model stability. And since this approach reduces the
depth of the network model, it mitigates the vanishing gradient phenomenon during
backpropagation.

3.1.2 Activation Function

The ShuffleNet-DSE uses Swish [23] as the activation function.
ReLU [24] is a commonly used activation function, but it has some flaws in

processing sonar data. The calculation formula of ReLU is:

f(x) =

{
0, x < 0,

x, x ≥ 0.
(2)
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ReLU will make the network sparse, reduce the dependence between parameters, and
inhibit the occurrence of overfitting to a certain extent. In addition, when ReLU is
backpropagated, the calculation is simple, and it is not easy to cause the gradient to
disappear. But the biggest disadvantage of ReLU is that the output has no negative
value. ReLU will force the value to be set to 0 when dealing with negative values
to achieve the purpose of network sparsity. However, this operation will also cause
a large number of features to be shielded, which reduces the model learning feature
information. The sonar image is generated as an arrangement of pixel gray values.
The sonar image will have negative data as the feature depth increases. If ReLU is
used, this part of data will be set to 0, thus losing feature data. The Swish makes
up for the shortcoming that the ReLU has no negative value, and it is a non-linear
function with a lower bound and no upper bound. Swish is an improved form of
ReLU. The calculation formula of Swish is:

f(x) =
x

(1 + exp (−β ∗ x))
. (3)

Swish will perform calculations on negative numbers, which also means that Swish’s
calculation amount is greater than that of ReLU. However, since the sonar image
data is not complicated and the network structure of the overall model is relatively
simple, the model that selects Swish as the activation function will not increase the
amount of computation too much. The nature of the Swish function will change
due to different β values, the images of the two activation functions are shown in
Figure 2. When {

f(x) = x
2
, β < 0,

f(x) ≈ ReLU, β → ∞.
(4)

So, Swish can be regarded as a smooth function between the linear function and
the ReLU function. Swish has greater flexibility in the face of diverse data. This
is exactly what is expected in sonar image classification. Swish is more suitable for
sonar image calculation than ReLU.

3.1.3 Network Structure

The network structure of the pre-extraction part is shown in Figure 3.
The parameter L in Figure 3 is the layer number of the current Block. k is the

growth rate, which represents the number of output feature map channels passing
through each block.

First, the number of channels is controlled by 1× 1 convolution. After calcula-
tion, the number of channels of the output feature matrix is 2 × k (k = 32). Then
a convolution kernel of size 3 × 3 is used for feature computation. The stride and
padding of the convolution kernel are both 1. Effective feature information can be
extracted after calculation. The padding is used here to ensure that the input fea-
ture matrix and the output feature matrix have the same size. Finally, the feature
matrix with the number of channels k is obtained. The output feature matrix is
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Figure 2. The function diagram of ReLU and Swish

superimposed with the input feature matrix as the input for the next calculation.
Repeat the above process to further refine the image feature information. The fea-
ture matrix after two superpositions is normalized. And the 1× 1 convolution layer
is used to reduce the dimensionality of the data. This is to solve the problem that
the data dimension is too large due to overlapping feature matrices. Finally, the
data is compressed by a max-pooling layer with the size of 2 × 2 and the stride

Figure 3. The network structure of pre-extraction part
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of 2. The max-pooling layer will reduce the feature map size to 1/2 of the previous
size. Max-pooling can reduce the deviation of the estimated mean caused by the
parameter error of the convolutional layer, and retain more texture information.

3.2 Channel Information Enhancement

The channel information enhancement part mainly starts from improving the chan-
nel information calculation of the sonar image, and uses the three technologies of
DWConv, Channel-Shuffle and SE module to process the channel information, which
enhances the correlation between different channel information and can filter the
noisy channel information. The accuracy and stability of the classification model
are greatly increased by the channel information enhancement part.

3.2.1 Depthwise-Separable-Convolution

One convolution kernel of the Depthwise-Separable-Convolution (DWConv) is re-
sponsible for one channel, and one channel is convolved by only one convolution
kernel. It is equivalent to processing the input feature map as a single-channel im-
age. Due to the single-channel nature of sonar images, DWConv are more suitable
than standard convolutions (Conv).

a)

b)

Figure 4. Compare with the Conv and the DWConv

The DWConv can be seen from part a of Figure 4 a), the standard convolution
will slide on the input image through a convolution kernel, and the value obtained



Seabed Sediment Classification for Sonar Images Based on Deep Learning 723

by multiplying the weight of the original data and the corresponding position of the
convolution kernel will be mapped to the corresponding position of the feature maps.
That is to say, each convolution kernel will process the data of all input channels.

In standard convolution, each convolution kernel will process the data of all input
channels and map it into a feature map. The calculation formula of the parameter
quantity PF of the standard convolution is:

PF = FW ∗ FH ∗ CN ∗ CN . (5)

Among them, FW ,FH ,CN are the number of convolution kernels, the scale of
the convolution kernels, and the number of input data channels, respectively. As
can be seen from Figure 4 b), the principle of DWConv is that each convolution
kernel processes an input channel separately to generate a map. In this way, the
convolution kernel only processes 2-dimensional spatial information, which reduces
the processing of information between different channels. Thus, the calculation
formula of the parameter quantity PD of the DWConv can be obtained as:

PD = FW ∗ FH ∗ CN . (6)

Compared with the standard convolution method, DWConv reduces the num-
ber of parameters required for calculation and improves the operating efficiency of
the model to a certain extent. However, because DWC ignores the information be-
tween channels, which will lead to the loss of effective information, it needs to be
compensated by the method of the Channel-Shuffle.

3.2.2 Channel-Shuffle

The Channel-Shuffle can make up for the shortcomings of the DWConv. As shown
in Figure 5, each convolution processes the data of the same channel group. This
will result in the loss of communication between channels, and thus loss of part of
the effective information. The concept of Channel-Shuffle is to shuffle and reorder
the channels in different channel groups, so that the information of each group is
fully integrated without increasing the amount of calculation, thereby solving the
previous problems. This technique avoids the phenomenon that each output feature
map is independent of each other, and strengthens the learning ability of the model.
The implementation method of Channel-Shuffle is as follows:

1. Assuming that the input layer is divided into C groups, the number of channels
in each group is N , the total number of channels is C × N , and the reshape
operation is performed to output a feature matrix of (C,N) dimensions.

2. Transpose the feature matrix and change the matrix dimension to (C, N).

3. Regroup the matrix by row.
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Figure 5. The demonstration of Channel-Shuffle

3.2.3 Squeeze-and-Excitation Module

In 2017, Hu et al. [25] proposed the SE module. The self-attention mechanism of SE
module is to obtain the weight factor of each channel by calculating the importance
of feature channels. Neural network models focus on learning feature channel data
with large weight factors. Sonar images contain complex information, and noise
information is more common. Not all channel information helps the classifier to
make a correct decision. Therefore, it is necessary to analyze the importance of all
channels through the SE module before the Channel-Shuffling to remove redundant
channel information. This can increase the anti-interference of the model while
improving the classification accuracy.

The SE module structure is shown in Figure 6. The SE module is divided into
two parts: Squeeze and Excitation.

The Squeeze part converts the input data of W × H × C into 1 × 1 × C data
through the Global pooling layer. Where W , H and C are the characteristic length,
width and channel number, respectively.

The main body of the Excitation part is composed of two Fully Connected layers
(FC). The first FC layer will reduce the number of channels through SR ∈ (0, 1) to
achieve the purpose of reducing the amount of calculation. Through the second FC
layer to restore the number of channels, and through the Sigmoid function to control
the weight factor value between (0 1). The lower the weight factor, the closer it is
to 0, the higher the weight factor, the closer it is to 1.

Finally, the module will perform a Scale operation. Multiply the inputW×H×C
data and the 1 × 1 × C weighting factor output by Excitation correspondingly to
obtain the feature data with re-calibrated weights.
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Figure 6. The network structure of SE module

3.2.4 Network Structure

The channel information enhancement part is based on improvements made by
ShuffleNet-V2 [26]. The network structure is divided into two parts, A and B,
as shown in Figure 7.

Figure 7. The network structure of channel information enhancement part

Where the channel splitting divides the channel into two equal parts. The left
and right parts are spliced by concatenated (Concat). This is different from ResNet’s
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add. The add is the feature value addition, the Concat is the feature dimension
addition. Concat can ensure that the number of input channels is the same as the
number of output channels through splicing. The spliced feature matrix will be
fused through the Channel Shuffle operation.

3.3 Method Configuration

The network level design of ShuffleNet-DSE is shown in Table 1.

Module Layer K-Size Output Channels

Input 1

Conv1 3× 3 32

Dense Connection

BN + Swish
Conv2 1× 1 64
BN + Swish
Conv3 3× 3 32
BN + Swish
Conv4 1× 1 64
BN + Swish
Conv5 1× 1 64
BN + Swish
Conv6 3× 3 32
BN + Swish
Conv7 1× 1 48
MaxPool 2× 2 48

ShuffleNet-SE

A block
48B block

A block
96B block

A block
192B block

Summarize

Conv5 1× 1 1 024
Global Pool 7× 7
FC

Table 1. Design of ShuffleNet-DSE

4 EXPERIMENT

The traditional machine learning algorithms in the comparative experiment are built
by MATLAB, and the deep learning framework is built by paddlepaddle2.0 frame-
work. The CPU running the hardware is Intel Core i7-11800h. The GPU is Tesla
V100.
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4.1 Contrast Model

The traditional machine selects models GLCM+SOM and GLCM+SVM, and the
comprehensive model selects GLCM+ CNN and Weyl + ANN.

Deep learning models are divided into two groups, which are:

1. Neural network models with complex network structures: DenseNet [27] and
ResNet50 [28].

2. A set of lightweight models with low model complexity, including ResNet18,
AlexNet [29], MobileNet-V3 [30] and GoogLeNet [31].

4.2 Datasets

The dataset uses the public sonar image dataset (SAS) of the US Geological Survey
and the Weihai real sonar dataset (WHDS) for testing. SAS is divided into 6 cat-
egories, each with 60 pictures. All images are 200 × 200 in size. Since there are
fewer data images, data augmentation operations are used to expand the dataset.
After random flipping, random stretching and random cropping, 2160 images were
obtained [32]. The dataset images are clear, and the image classification features
are obvious, making it easier to classify.

The WHDS dataset is real Weihai data. Compared with the SAS dataset, the
image features are fuzzier, but it is more in line with the actual application scenarios.
WHDS has greater difficulty in classification, so it is the dataset that the experiment
focuses on verification. Crop the picture to 200× 200 size, generating 516 pictures
in total. After labeling, the pictures are divided into three categories. Subsequently,
3 096 images were obtained after random flipping, random stretching and random
clipping.

The datasets details are shown in Figure 8 and Table 2.

Dataset Category Quantity Enhancement

SAS

Posidonia 60 360
Ripple45° 60 360
Rock 60 360
Sand 60 360
Silt 60 360
Ripple vertical 60 360

WHDS

1 203 1 218
2 153 918
3 160 960

Table 2. Datasets quantity information

All datasets divide 80% of the data into the training set, and 20% of the data
into the test set.
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a) SAS b) WHDS

Figure 8. Dataset category details

During the test, it was found that the accuracy of the algorithm differed slightly
with each training recognition. In order to reduce the fluctuation of the test results,
the test was repeated 5 times. The average data of 5 times is used as the evaluation
data.

4.3 Evaluation Measures

Use confusion matrix to obtain Precision, Accuracy, Recall rate, F1 index to evaluate
the performance of classification model. The specific evaluation formula is as follows:

Accuracy =
TP + TN

m
, (7)

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1 = 2 ∗ Precision ∗ Recall
Precision+ Recall

. (10)

At the same time, the inference time T of the model is also one of the evaluation
indicators, which is used to measure the complexity of the model.
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4.4 Experimental Result

In the case of using dataset SAS, the performance data of all models are shown in
Table 3. As the SAS data is a professional image with obvious texture features, the
accuracy of all models can be maintained at around 95%. But through F1, it can
be seen that the stability of the comprehensive model and the deep learning model
is better. In the deep learning method, it can be seen that the ResNet series and
DenseNet series with deep structure are difficult to achieve excellent performance,
and as the model complexity increases, the model classification accuracy gradually
decreases. This is because they have obvious overfitting during the training process.
Although the training set achieves 100% accuracy, the performance on the test set
is not satisfactory. In this dataset, the gap between various models is small, it
can still be seen through the accuracy and other indicators that the deep learning
network with small complexity has better performance. The ShuffleNet-DSE has an
accuracy of 98.81% and a precision of 98.33%. The accuracy of Shufflenet-DSE is
the highest among comparison models. The accuracy of ShuffleNet-DSE is 0.65%
higher than that of ShuffleNet-V2. The precision of ShuffleNet-DSE is 98.33%,
which is much higher than other deep learning models. At the same time, the
F1 value of ShuffleNet-DSE is 0.98, which is also the best among many compared
models. Under comprehensive consideration, the performance of ShuffleNet-DSE is
the most excellent model.

The particularity of SAS data does not completely represent the superiority of
the classification model with performance, so it is necessary to continue the experi-
ment using WHDS.

MODEL
Evaluation Index

Accuracy (%) Precision (%) Recall F1

GLCM+ SVM 94.05 92.5 0.94 0.93
GLCM+ SOM 93.22 88.05 0.91 0.90

Weyl + ANN 95.69 93.36 0.91 0.94
GLCM+CNN 95.16 97.23 0.95 0.96

ResNet50 93.05 91.67 0.95 0.92
ResNet101 90.67 90.24 0.92 0.91
ResNet152 90.84 90.11 0.9 0.90

DenseNet121 90.46 93.05 0.81 0.91
DenseNet161 89.06 92.53 0.72 0.90

ResNet18 96.00 95.23 0.89 0.94
MobileNet-V3 95.79 96.59 0.93 0.96
AlexNet 96.91 95.24 0.94 0.96
GoogLeNet 97.52 95.85 0.87 0.97
ShuffleNet-V2 98.16 94.71 0.95 0.96
ShuffleNet-DSE 98.81 98.33 0.96 0.98

Table 3. Performance comparison of classification models in SAS dataset
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WHDS data is conventional sonar image data, which has the influence of noise.
The texture features of the data are also fuzzy. After manual labeling, the data is
divided into three categories. WHDS can really test whether the model can show
satisfactory performance in practical applications. On the WHDS dataset, there is
a huge gap between different models.

The performance data of each model are shown in Table 4. It can be seen
that traditional machine learning is difficult to adapt to sonar image data, and the
accuracy of the two models is difficult to reach 80%. And the accuracy is also
around 72%, which is a poor level among all comparison models.

In most public datasets, ResNet series and DenseNet series perform better than
MobileNet series and ShuffleNet series of lightweight networks. However, with its
characteristic sonar imagery, this has been reversed. Also, unlike other image types,
the classification accuracy of deep learning networks decreases as the number of
layers in the network increases. Comparing ResNet with three depths of 50, 101,
and 152, the accuracy dropped from 73.77% to 69.74%. DenseNet also reduces
the accuracy from 74.06% to 72.87% when the depth is changed from 121 to 161.
The deep network structures of the ResNet series and DenseNet series are prone to
overfitting when using sonar images as datasets, resulting in a disproportion between
the overall model performance and the model complexity.

Without considering the model’s inference time T, the performance of the com-
prehensive model is superior and can be on par with most lightweight deep learning
models, with an accuracy of over 80%. However, the computational complexity of
the synthetic model is far greater than that of the lightweight deep learning model.

Lightweight deep learning models are suitable for processing sonar image data.
When ResNet uses 18 as the depth configuration, the accuracy improves from
73.77% to 80.49%. Among the lightweight deep learning models, the ShuffleNet-
DSE and the ShuffleNet-V2 have the best accuracy, 94.19% and 92.1%. Both
the ShuffleNet-DSE and the ShuffleNet-V2 adopt the techniques of DWConv and
Channel-Shuffle, which also shows the superiority of these two techniques in pro-
cessing sonar image data. The MobileNet-V3 has SE modules in its network struc-
ture. The MobileNet-V3 has excellent precision, which is 3.24% higher than that of
ShuffleNet-V2. The ShuffleNet-DSE model, which also has the SE module, success-
fully makes up for the poor precision of ShuffleNet-V2. The precision of ShuffleNet-
DSE improves from 84.71% of ShuffleNet-V2 to 86.17%. The SE module can im-
prove the precision of the model.

The ShuffleNet-DSE is improved in terms of accuracy and precision. Compared
with the original model, the accuracy of ShuffleNet-DSE is improved from 92.10%
of ShuffleNet-V2 to 94.19%. Compared with the comprehensive learning model
Weyl+ANN and GLCM+CNN, the accuracy is improved by 11.28% and 10.83%,
respectively.

Combined with the experimental results of two different datasets, the ShuffleNet-
DSE has good accuracy and stability in processing sonar image data.

Compare the accuracy of several groups of models and the model inference
time T . The result is shown in Figure 10.
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MODEL
Evaluation Index

Accuracy (%) Precision (%) Recall F1
GLCM+ SVM 75.16 72.09 0.81 0.73
GLCM+ SOM 78.23 70.28 0.83 0.74

Weyl + ANN 82.91 82.28 0.87 0.82
GLCM+CNN 83.36 81.23 0.85 0.83

ResNet50 73.77 73.85 0.85 0.73
ResNet101 72.81 67.67 0.9 0.70
ResNet152 69.74 67.05 0.86 0.68

DenseNet121 74.06 71.02 0.81 0.72
DenseNet161 72.87 69.53 0.72 0.71

ResNet18 80.49 85.46 0.89 0.94
MobileNet-V3 83.96 87.95 0.83 0.85
AlexNet 85.27 80.21 0.84 0.82
GoogLeNet 87.82 84.27 0.85 0.86
ShuffleNet-V2 92.1 84.71 0.909 0.88
ShuffleNet-DSE 94.19 86.17 0.904 0.90

Table 4. Performance comparison of classification models in WHDS dataset

As can be seen from Figure 9, the deep learning models perform better than
the comprehensive model when making inferences. The deep learning models elimi-
nate the need for an additional feature extraction process, since they use their own
network structure to extract features, what dramatically reduces the computational
costs. When the batchsize = 4, the inference time of the Weyl + ANN and the
GLCM + CNN is around 12ms, but the lightweight deep learning models can con-
trol the inference time within 6ms. Despite some sacrifices in model lightweighting,
the ShuffleNet-DSE is still able to complete inference within 4.12ms. The model
complexity of ShuffleNet-DSE is still at a relatively low level. The ShuffleNet-DSE
has excellent classification accuracy under the premise of ensuring low model com-
plexity.

4.5 Comparative Analysis

Experiments will explore the impact of different techniques on the performance of
the final model. The experimental dataset is WHDS.

The results of the four groups of experiments are shown in Figure 10. There are
five models in the figure:

Original model: The original model of ShuffleNet-DSE, the activation function of
the model is Swish.

ReLU: Replace all Swish in the ShuffleNet-DSE with ReLU.

Convolution: Change the combination of the DWConv and the Channel-Shuffle
in ShuffleNet-DSE to standard convolution kernel.
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Figure 9. Accuracy and inference time of different models

Without SE: Delete the SE module in ShuffleNet-DSE.

Normal Connection: Change the dense connection in ShuffleNet-DSE to the nor-
mal connection.

When the original model uses Swish as the activation function, the accuracy is
between 93.83% and 94.67%, the average accuracy of ten experiments is 94.22%,
and the accuracy fluctuation range is 0.84%. When Swish is replaced by ReLU,
the model’s accuracy is between 92.37% and 92.89%, the average accuracy of ten
experiments is 92.69%, and the fluctuation range of the accuracy is 0.52%. Since
ReLU uniformly sets negative features to 0, ReLU has better stability, the degree
of fluctuation is small. But compared to ReLU, the average accuracy of Swish is
improved by 1.53%. The Swish has better accuracy, so Swish is more suitable for
processing sonar image data.

After replacing the DWConv and the Channel-Shuffle with standard convolu-
tions, the accuracy of the model ranged from 87.85% to 88.46%, the average ac-
curacy of ten experiments is 88.16%, and the accuracy fluctuation range is 0.61%.
Compared to using the DWConv and the Channel-Shuffle, the accuracy drops signif-
icantly, with an average accuracy drop of 6.06%. It can be seen that the DWConv
and the Channel-Shuffle technology are the key technology to ensure the classifica-
tion accuracy, which also shows that the problem that sonar images are difficult to
be accurately classified can be solved from the information between channels.

After removing the SE module in ShuffleNet-DSE, the model accuracy is be-
tween 92.83% and 94.25%, the average accuracy of ten experiments is 93.36%, and
the accuracy fluctuation range is 1.42%. After removing the SE module, the ac-
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curacy decreased slightly, the average accuracy decreased by 0.86%, the accuracy
fluctuation increased greatly, and the fluctuation increased by 0.6%. It can be seen
that the main function of the SE module is to increase the stability of the model,
reduce the performance fluctuation, and improve the accuracy slightly.

After using the normal connection method, the model accuracy is between
92.86% and 93.99%, the average accuracy of ten experiments is 93.57%, and the
accuracy fluctuation range is 1.13%. Compared with the dense connection method,
the accuracy decreases slightly, and the average accuracy decreases by 0.65%. At
the same time, the accuracy fluctuation range increased slightly, and the fluctuation
range increased by 0.29%. Using the dense connection can enhance the noise resis-
tance of the model and reduce the impact of feature calculation errors on the final
result.

Using the Swish, the DWConv and the Channel-Shuffle will mainly improve
the accuracy of the model. Swish increases the calculation of negative features and
reduces the loss of feature values. The combination of the DWConv and the Channel-
Shuffle can use different channel information more effectively. The SE module and
the dense connection method can reduce the adverse effects of image noise and low
image resolution, thereby increasing the stability of the model. By combining the
advantages of each technique, the ShuffleNet-DSE is able to better classify sonar
images of seafloor sediments.

Figure 10. Accuracy of different models in ten experiments
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4.6 Model Training Parameters

The training parameters of the main comparison models in this experiment are
shown in Table 5. Mainly use the Momentum-Optimizer (momentum = 0.9). The
regular term mainly uses L2 (coeff = 0.00001). The learning rate of ResNet18 and
AlexNet adopts Piecewise Decay, and the learning rate is changed when the training
rounds are 30, 60 and 90, respectively.

MODEL
Optimizer

Technology Learning rate Regularizer

ResNet18 Momentum

Piecewise Decay

L2decay epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001]

MobileNet-V3 Momentum 1.3 L2

AlexNet Momentum

Piecewise Decay

L2decay epochs: [30, 60, 90]
values: [0.01, 0.001, 0.0001, 0.00001]

GoogLeNet Momentum 0.001 L2

ShuffleNet-V2 Momentum 0.0125 L2

ShuffleNet-DSE Momentum 0.0125 L2

Table 5. Main training parameters

5 CONCLUSION AND FUTURE WORK

To solve the issue of difficulty to accurately classify the seabed sediment of the
sonar image, this paper designed a seabed sediment classification model based on
deep learning for sonar images. Based on the improvement of the ShuffleNet-V2 unit
structure, combined with the SE module, Swish activation function and dense con-
nection module, constructs a ShuffleNet-DSE network model. The ShuffleNet-DSE
architecture is designed at the expense of minimal model efficiency, and greatly im-
proves the accuracy and stability of the model in processing seabed sediment image
classification. Experimental results on the public dataset SAS and Weihai dataset
collected at sea demonstrated that this proposed model can attain the favorable
performance achievable.

Due to the limitation of the amount of sample image data, it has a certain
impact on the experimental results. Although the dataset is expanded by means of
data enhancement, the actual seabed sediment image is not increased. Therefore,
the experimental conclusion lacks universal applicability to a certain extent.

Future work will use more real seabed sediment image data for experiments to
further improve the model structure.
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