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Abstract. Early warning signals methods have been introduced in the field of
ecological sciences and widely used in other domains. However, while these methods
have proven effective for deterministic dynamics governed by differential equations
or smooth maps – both on synthetic and real data – their application in the social
sciences is more complex. A series of protests started in Iraq on 1 October 2019
and farmers’ protests in India in September 2020. We investigate in this work how
these waves could have been anticipated using early warning signals for the time
series of daily occurrences of protests. We use to this end metric-based indicators
(autocorrelation at-lag-1, standard deviation and skewness), analyse trends using
Kendall rank correlation and use bootstrapping methods to implement a statistical
test exhibiting a regime shift (tipping points) in the dynamics of protests. We
moreover highlight the importance of the standard deviation as an indicator.
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1 INTRODUCTION

Early warning signals (EWS) are methods used to study bifurcations associated
with tipping points in time series. The basic idea is that when a bifurcation occurs
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464 É. Voutaz, A. Blarer

in a dynamic system, the analysis of indicators prior to the regime shift can help
predicting it. Such methods were first introduced in [16, 14] and applied in different
fields like ecological science, finance or social science [10, 19, 18, 15].

The abrupt shift of an ecological system to an alternate stable state was first
obtained from work on theoretical model and heavily criticized [16]. These methods
have since been validated on real data. A ‘fold’-bifurcation is for example depicted
in Figure 1. The ecosystem cannot pass smoothly from the upper branch of the
folded curve to the lower one. Instead, a catastrophic transition to the lower branch
occurs.

Figure 1. Shifts between alternative stable states [16]. a) If the system is close to the
bifurcation point F2, a small perturbation drives the system to the lower branch (forward
shift). A backward shift occurs if the conditions are reversed to reach the other bifurcation
point F1. b) A sufficiently large perturbation close to the bifurcation point can also shift
the dynamics to the other stable state.

In that case, the dynamics exhibits a low resilience (see Figure 2).
There are two main approaches to anticipate tipping points: a metric-based
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Figure 2. The system shifts from a stable state in the foreground to another stable one
in the background in a non-smooth way [16]. The intermediate states show small basins
of attraction and, therefore, low resilience.

and a model-based approach. Metric approaches compute indicators using standard
metrics from descriptive statistics like autocorrelation, standard deviation, skewness
while model-based methods first try to fit the data to a model. Autocorrelation
captures the memory of time series while standard deviation and skewness indicate
changes in its variability and flickering nature. Both methods aim to find bifurcation
patterns in the dynamics in the vicinity of the change of regime.

Intuitively, in the vicinity of a tipping point, the system takes longer to return
to equilibrium. It is like dropping a ball on a convex surface. The less convex
the surface, the longer it will take for the ball to find its equilibrium, and then
the equilibrium will be broken if there is no convexity any more. This slow return
to equilibrium will impact indicators like autocorrelation, standard deviation or
skewness: they will tend to increase.
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Let us stress that the regime shifts EWS try to identify and anticipate not
only represent dynamical discontinuities but ‘catastrophic’ changes in the underlying
dynamics, e.g., a transition from one stable state to another one.

2 CONTEXT

In this work we aim to study time series coming from open source intelligence (OS-
INT). The data used represent the daily number of protests in Iraq and India (see
Figure 3) and was downloaded from ‘The Armed Conflict Location and Event Data
Project’ (ACLED) [6]. ACLED collects the dates, actors, locations, fatalities, and
types of all reported political violence and protest events across a large part of the
world.
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Figure 3. Daily protests in Iraq (top) and India (bottom) from 2016-01-01 to 2021-01-
29. Note the difference in the intensity of protests in both datasets: the daily number
of protests in Iraq does not exceed 30, with a non-negligible number of days without
events; the intensity of the Indian protests is much higher (source: ACLED, retrieved on
29 January 2021).



EWS in OSINT 467

Protests are good indicators of the social climate in a particular region of the
world and trying to anticipate changes in such a time series is a natural intelligence
goal.

The Iraqi dataset indicates a change around the beginning of October 2019. In
fact, the 2019–2021 Iraqi protests are a series of protests that consist of demon-
strations, marches, sit-ins and civil disobedience. They started on 1 October 2019,
a date which was set by civil activists on social media, spreading over the central
and southern provinces of Iraq, to protest corruption, unemployment and inefficient
public services [2]. The protests were the largest incident of civil unrest Iraq has
experienced since the 2003 invasion. The peak observed in the time series after
1 October 2019 begins on 26 October 2019.

The Indian dataset does not exhibit a clear change as in the Iraqi case, except
the drop at the beginning of 2020 which is probably due to the Covid pandemic.
However, an increasing flickering tendency is noticeable in the second part of 2020.
A wave of ongoing farmers’ protests began at the end of September 2020 against
three farm acts which were passed by the Parliament of India [5].

The study of EWS in this context is a priori difficult since the underlying dy-
namics of time series coming from social science is not driven by physical laws. As
example, the explosion in Beirut in August 2020 was followed by massive protests
that could not have been anticipated due to the random nature of the event. How-
ever, the causes of the protests are not uniquely due to this exogenous, unpredictable
event; root causes can be found in economical and political collapses in the Lebanon
society.

3 CONTRIBUTION

Measuring the intensity of protests in a region of the world is a good measure of
social happiness and social climate. However, protests are often preceded by a rise
of anger, sadness or tension. It is shown in [17] using a localized set of blogs that
a period of slowing down preceding tipping points can be identified.

An increase of variance and autocorrelation has been detected in social network
for known events [13]. Theoretical considerations make it possible to highlight that,
in the vicinity of a tipping point, the variance follows a power law. This law could
be identified, but note that only a priory known events like Christmas or Halloween
are considered in this work. Further important questions are moreover formulated
therein:

1. How do we define when a critical transition occurs for an a priori unknown event
in the data?

2. Can we link warning signs in social networks to a priori unknown critical tran-
sitions outside a social network?

3. Which models of social networks can re-produce critical transitions observed in
data?
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In this work we prove that EWS do exist using real data from the OSINT context
described above for unknown events. We also show that the standard deviation plays
an important role as an indicator.

4 DATASET

The datasets were retrieved on 29 January 2021 from the ACLED database accord-
ing to the policy available at that time. Countries ‘India’ respectively ‘Iraq’ and
event type ‘Protests’ were selected. Protests are defined as ‘A public demonstration
against a political entity, government institution, policy or group in which the par-
ticipants are not violent’. Each event contains informations like date, description,
type (e.g. protests), country, region, longitude, latitude, actors, etc. Here, we simply
count how many events daily occur. Note that the localization of the events over
the considered period is depicted in Figure 4.

5 BASELINE

We use as baseline a naive method aiming to anticipate the Indian farmers’ protests
at the end of September 2020. The idea is to use a change point detection algorithm.
In statistical analysis, change point detection (CPD) tries to identify times when
the probability distribution of a time series changes. Most of the time, changes
in mean/variance are targeted. A large number of algorithms are used in different
fields of applications. An evaluation of some of the most popular ones is given in [9].

The CPD algorithm we will use is Bayesian Online Change Detection (BOCD)[8].
Firstly because it gives good results [9] and secondly because it is online, i.e.,
a change point is sought since the last change point appeared.

Note that the method is naive since there is no theoretical evidence that a rela-
tion between tipping points and change points does exist.

The algorithm identifies 20 change points in the Indian time series. One of them
appeared on 25 September 2020 and the preceding one on 22 May 2020. In this way
the beginning of the protests is identified by the change point algorithm but not
anticipated.

It is worth noting that ACLED delivers a service (Early Warning Research Hub)
offering a suite of resources aimed at facilitating data-driven initiatives to anticipate
and respond to emerging crises [7].

6 METHODS

The first usual step consists in stationarising the time series. So it is first log-
transformed and differenced once, i.e., we transform the original time series (xn)
as yn = log(xn) − log(xn−1). We use then rolling windows of fixed size over the
time series and divide each window in two halves. The first half is used to compute
indicators (autocorrelation at-lag-1, standard deviation and skewness) until the end
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Figure 4. Localization of the protests in Iraq (top) and India (bottom) as density plots.
Yellow areas represent a high density.
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of the window and a trend for each indicator is derived (on the second half of each
rolling window). The trend is given by Kendall τ rank correlation with values in the
interval [−1, 1]. The Kendall τ is used in statistics to measure the ordinal association
between two measured quantities: if (x1, y1), . . . , (xn, yn) is a set of observations, any
pair of observation (xi, yi) and (xj, yj), where i < j, are said to be concordant if the
sort order of (xi, xj) and (yi, yj) agrees, i.e., if either both xi > xj and yi > yj holds
or both xi < xj and yi < yj; otherwise they are said to be discordant. The Kendall
τ is then defined as

τ =
(number of concordant pairs)− (number of discordant pairs)(

n
2

)
=

2

n(n− 1)

∑
i<j

sgn(xi − xj) sgn(yi − yj).

The procedure is sketched in Figure 5.
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Figure 5. Method for generating a time series of Kendall values

Autocorrelation at-lag-1, standard deviation and skewness are respectively de-
fined for a time series (xk)

n
k=1 as

AC(1) =
1

n

n−1∑
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(xk − x̄)(xk+1 − x̄),
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√√√√ 1

n

n∑
k=1

(xk − x̄)2,

S =
n
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(
xk − x̄

σ

)3
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where x̄ denotes the mean of (xk). It is known from the theory of EWS that tipping
points are preceded by an increasing trend of the Kendall τ -values [10]. This is the
case for autocorrelation and, depending on the context, for standard deviation (in
a critical slowing down scenario) or skewness (flickering) (see Figure 6).

the entire power spectrum and observing a shift in the power of

spectral densities to lower frequencies [20]; by estimating the spectral

exponent of the spectral density based on the slope of a linear fitted

model on a double-log scale of spectral density versus frequency

[24]; or by estimating the spectral ratio of the spectral density at low

frequency (e.g. 0.05) to the spectral density at high frequency (e.g.

0.5) [25].

Detrended fluctuation analysis. Detrended fluctuation

analysis (DFA) can be used to measure increases in short- and

mid-term ‘memory’ in a time series of a system close to transition.

Instead of estimating correlations at a given lag (like autocorre-

lation at-lag-1), DFA estimates a range of correlations by

extracting the fluctuation function of a time series of size s. If

the time series is long-term power-law correlated, the fluctuation

function F(s) increases as a power law; F (s)!sa, where a is the

DFA fluctuation exponent [26]. The DFA fluctuation exponent is

then rescaled to give a DFA indicator, which is usually estimated

in time ranges between 10 and 100 time units, and which reaches

value 1 (rescaled from 1.5) at a critical transition [7]. Although, the

DFA captures similar information as autocorrelation at-lag-1, it is

more data demanding (it requires .100 points for robust

estimation) [27].

Variance. Slow return rates back to a stable state close to a

transition also can make the system state drift widely around the

stable state. Moreover, strong disturbances potentially can push

the system across boundaries of alternative states – a phenomenon

termed flickering. Both slowing down and flickering will cause

variance to increase prior to a complete transition [6]. Variance is

the second moment around the mean m of a distribution and serves

as early warning measured either as standard deviation:

SD~ 1
n{1

Pn
t~1

(zt{m)2 or alternatively as the coefficient of variation

CV~ SD
m [28].

Skewness and Kurtosis. In some cases disturbances push

the state of the system towards values that are close to the

boundary between the two alternative states. Because the

Figure 2. Metric-based rolling window indicators estimated on the critical slowing down and flickering datasets. (A, B) Time series of
the state variable. (C) Residual time series after applying Gaussian filtering. (D) Standardized time series after log-transforming the flickering dataset.
(E–I) Autocorrelation at-lag-1 (AR1), standard deviation, and skewness estimated within rolling windows of half the size of either the original, filtered
or transformed time series. The Kendall t indicate the strength of the trend in the indicators along the time series. [red line is the Gaussian filtering;
black lines correspond to the metrics estimated on the original data, blue lines correspond to the metrics estimated on the residual or transformed
data].
doi:10.1371/journal.pone.0041010.g002

Early Warning Detection Methods

PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e41010

Figure 6. Kendall values for a set of indicators taken from [10]. The data represented in
the top graphs A and B were synthetically generated based on an ecological model and
it is known that a tipping point exists at the end of both time series. The blue time
series C and D are obtained from the original ones using detrending methods (logarithmic
transformation, Gaussian filtering). The graphs E to J represent indicators and their
corresponding Kendall values. Here, a rolling window of length half of the total length of
the time series is used.

Note that the list of used indicators is not restricted to the mentioned three ones.
One can also use spectral indicators like the low frequency power spectrum (LFPS),
the spectral or density ratio, perform a detrended fluctuation analysis (DFA), use
the coefficient of variation, the kurtosis, the W2 index of Drake and Griffen, the
conditional heteroskedasticity or BDS tests [10, 17, 11].

Although being interested in the mentioned events in Iraq and India we compute
the trend of each indicator over the whole time series. We then build a significance
test over the τ -values and finally conclude with a sensitivity analysis, investigating
the effect of varying the length of the rolling windows.



472 É. Voutaz, A. Blarer

The significance of the trends is tested following an idea used in [10]. A null
hypothesis is simply formulated by stating that the trend estimates of the indicators
are due to chance alone. We fit the transformed original time series by choosing the
best ARMA(p, q) model based on the Akaike information criterion (AIC) for values
of p and q not exceeding 3. We then use the model to generate a large number of
surrogate datasets (say n = 1000) of the same length as the original dataset and next
estimate, for each generated dataset, the trend of each indicator. It is so possible
to compare the original trend with the distribution of the generated trends: we can
determine a p-value as the proportion of τ -values in the generated distribution of
trends that are larger than the trend of the original dataset.

7 RESULTS

7.1 Iraqi Protests

The trends, given as the time evolution of the Kendall values, are shown in Fig-
ure 7 b). We see a simultaneous increasing trend ending with relative high values
before October 2019. This is especially the case for autocorrelation and standard
deviation. However, each indicator can exhibit increasing trends independently of
the other ones.

The time evolution of the trends expressed as p-values is shown in Figure 7 c)
over the whole dataset. The analysis was performed using a rolling window size of
370 days, i.e., 20% of the data.

In order to investigate the sensitivity of the results to the rolling window size
we repeated the analysis before 1 October 2019 using different window sizes (see
Figure 8). Window sizes between 350 and 400 days seem to be adequate choices but
the results are relatively highly sensitive to this parameter.

The results shown also need to be put in the context of the political situation
in Iraq. The one-year anniversary of the beginning of the protests was the occasion
for protesters to take to the streets [2]. This is also visible in Figure 7.

7.2 Indian Protests

The same methods were applied to the Indian dataset. The results are shown in
Figure 9. Here we used a rolling window of length 278 days corresponding to 15%
of the data.

It is noticeable that autocorrelation and standard deviation are significant in
the Iraqi case, and standard deviation and skewness in the Indian case. Autocorre-
lation and skewness are furthermore significant at the beginning of December 2019
in the Iraqi case. The autocorrelation is also low in the Indian case but not sig-
nificant. A similar phenomenon is also discernible for the skewness in the Iraqi
case.
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Figure 7. Daily protests in Iraq with indicator analysis. B) shows the time evolution of
the Kendall τ -values of the indicators and C) the corresponding p-values. A) shows the
time series with red vertical lines indicating time points where both autocorrelation and
standard deviation are significant with p-values < 0.05. The first such detected time point
is 27 September 2019. We also note that autocorrelation and skewness are significant with
p-values < 0.01 at the beginning of December 2019. We used here n = 1000 surrogate
datasets for the p-values.

We also give a sensitivity analysis based on the rolling window size in Fig-
ure 10.

8 DISCUSSION

We showed that EWS are useful methods to study the dynamics of OSINT time
series with the use cases of the 2019 Iraqi and 2020 Indian farmers’ protests. In the
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Figure 8. Sensitivity analysis. Windows of sizes between 250 and 500 are tested before 1
October 2019. We used here n = 1000 surrogate datasets for the p-values.

first case autocorrelation and standard deviation are significant while the second
case is significant for standard deviation and skewness. Further analyses need to
be performed on other datasets in order to validate the results presented here (e.g.
Bulgaria [4], Chile [1], Belarus [3]). It would also be interesting to investigate other
indicators, in particular the model-based EWS.

It would also be valuable to investigate which events can be anticipated with
which indicators. The results in this work show that a combination of two of the
three used indicators are good measures for these use cases but tipping points could
lead to other types of dynamic changes as, e.g., a drop in the intensity.

In any case, the methods presented have a huge potential for building alarm
systems on OSINT time series. The ACLED database does not only contain in-
formation about protests worldwide but also about riots, violence against civilians,
explosions, battles, and strategic developments. This opens further aspects of pre-
dictive and causal analysis, regarding the escalating forms of social unrest. All
ACLED events are moreover geolocalised. This also opens another field of research:
the study of spatial EWS [12].

Protests are also increasingly preceded by activities on social networks. For
example, the hashtag #FarmersProtest is highly widespread in Twitter and it could



EWS in OSINT 475

0

100

200

2017 2018 2019 2020 2021

O
cc

ur
re

nc
es

Protests in India (ACLED)A

−0.5

0.0

0.5

2017 2018 2019 2020 2021

K
en

da
ll 

va
lu

es

Indicators: Autocorrelation at−lag−1 Standard deviation Skewness

Protests in India (ACLED)B

0.00

0.25

0.50

0.75

1.00

2017 2018 2019 2020 2021

p−
va

lu
es

Indicators: Autocorrelation at−lag−1 Standard deviation Skewness

Protests in India (ACLED)C

Figure 9. Daily protests in India with indicator analysis. B) shows the time evolution of
the Kendall τ -values of the indicators and C) the corresponding p-values. A) shows the
time series with red vertical lines indicating time points where both standard deviation
and skewness are significant with p-values < 0.05. The first such detected time point is 24
July 2020. Note that both p-values are < 0.01 at the beginning of August 2020. We used
here n = 1000 surrogate datasets for the p-values.

be interesting to track EWS on social media and link them to events in the real
world.

9 CONCLUSION

In this work we could show that EWS do occur in OSINT time series using standard
indicators and statistical testing. The dominant role of the standard deviation in
this OSINT context was also exhibited.
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Figure 10. Sensitivity analysis. Windows of sizes between 250 and 500 are tested before
30 September 2020. We used here n = 1000 surrogate datasets for the p-values.

Methods for identifying EWS were first developed in ecological datasets using
synthetic data, i.e., data generated from ecological dynamical models for which
tipping points are known to exist. These methods are proven to be effective on
real data in numerous fields of research where the dynamics is governed by physical
laws.

In social sciences, the detection of unknown events is more difficult and cannot
be always expected due to the influence of exogenous forces. One can nevertheless
hope that protests and similar social systems satisfy common dynamical critical
patterns as is shown in this work.

10 FUTURE WORK

Future work should focus on validating these results on more datasets. It is a priori
unknown in which proportion such critical phenomena appear in the dynamics of
protests and, in case of high predominance, what are the characteristics of such
events? It would also be valuable to examine more indicators and select the most
appropriate ones. These studies should also consider the sensitivity to the length of
the rolling windows and robust methods are desirable.
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Another interesting question arises from the origin of such protests. It is known
that social media play nowadays a crucial role in the outbreak of protests and other
real world events. It is therefore natural to seek similar phenomena in social networks
and study the causality between social network events and the real ones.
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