
Computing and Informatics, Vol. 41, 2022, 357–375, doi: 10.31577/cai 2022 1 357

PORTABILITY OF INTERFACES IN HEALTHCARE
EAI ENVIRONMENTS

Severin Linecker

Johannes Kepler University Linz
Austria
&
Vinzenz Gruppe, Linz
Austria
e-mail: severin.linecker@vinzenzgruppe.at

Wolfram Wöß

Johannes Kepler University Linz
Austria
e-mail: wolfram.woess@jku.at

Abstract. Enterprise Application Integration (EAI) and HL7 (Health Level Seven)
messaging are well established technologies in healthcare environments. Due to the
age and longevity of HL7 standards (especially HL7 V2.x) and their widespread
use, many interfaces outlive the middleware on which they run and must be ported
to new systems. This often requires the entire code of the interface to be rewrit-
ten, which is associated with great effort and costs. This paper shows a generic
EAI framework based on configuration and dependency injection for implementing
reusable interfaces upfront and the results when applied to a real production EAI
environment of an Austrian healthcare provider.

Keywords: Enterprise application integration, EAI, middleware, message-oriented
middleware, MOM, HL7, portability, system integration, healthcare, system migra-
tion

https://doi.org/10.31577/cai_2022_1_357


358 S. Linecker, W. Wöß

1 INTRODUCTION

Exchanging clinical data between multiple heterogeneous medical information sys-
tems is very common in healthcare environments. The Hospital Information System
(HIS) and other special (sub)systems, such as the Radiological Information Sys-
tem (RIS) need to be integrated for digital clinical workflows. Hence, Enterprise
Application Integration (EAI) and HL7 (Health Level Seven) messaging have been
developed and have become well established technologies in the healthcare sector
for a long time.

Due to the message-oriented nature of HL7, Message-oriented Middleware
(MOM) is a common paradigm for implementing EAI in healthcare environments [1].
It allows systems to communicate with each other by sending and receiving messages
using interfaces directly connected to the middleware, which is then responsible for
routing these messages to their correct destinations. This helps to reduce the to-
tal number of interfaces needed to connect n systems from (n ∗ (n − 1))/2, when
using point-to-point interfaces, to n. Especially for complex and big healthcare en-
vironments, which often consist of 50 or more connected systems (like in the case
of the Vinzenz Gruppe, an association of seven religious-order hospitals and other
healthcare facilities in Austria), this is a necessity.

HL7 is a messaging standard specifically developed for exchanging data between
information systems in healthcare environments. According to [2], Version 2 of
the messaging standard is one of the most widely used standard for healthcare in-
formation exchange. The HL7 V2.x standard [3] defines message types and their
(real world) trigger events for clinical, financial and administrative data exchange.
Messages have a message type and a trigger event, which together define a spe-
cific sequence of segments and segment groups. For example, the ADT (Admission,
Discharge and Transfer) message type and the trigger event A02 is used for trans-
mitting patient administration information about a patient transfer. Segments are
a logical grouping of data fields. They may be mandatory, optional or repetitive
within a message type. Two or more segments may be grouped together as a logical
unit. Each segment has a unique name called Segment ID with three upper case
characters (e.g., MSH, PID, PV1). Fields are character strings within a segment.
They have an ordinal position within the segment for reference (e.g., PID.3), have
a data type, can be required or optional and may be repetitive. Depending on its
data type, a field may consist of components, which in turn may contain subcom-
ponents. HL7 V2.x messages are typically plain text messages with certain special
characters used as delimiter. Figure 1 shows the hierarchical structure of HL7 V2.x
messages.

In hospital environments the HIS is a central point for data exchange. The
connected systems send their data to the HIS, but also require its data. This data is
mostly distributed as HL7 messages to the subsystems using middleware technology.
The first version of HL7 V2.x was released in 1987, which also means that interfaces
in the healthcare sector were newly created with HL7 V2.x at that time. It is
therefore quite common that special medical systems have been used in a hospital



Portability of Interfaces in Healthcare EAI Environments 359

Figure 1. Hierarchical structure of HL7 V2.x messages.

for 10 or 20 years and more, and that the necessary interfaces have often existed for
the same period of time. Even if the systems have been further developed and newer
versions are now in use, the HL7 interfaces are usually virtually unaffected by such
updates, since the basic functionality of a special medical system does not change.
A RIS is still a RIS even if the functionality is expanded. The middleware solutions
used are often not as long-lasting as the interfaces running on them. There are
solutions that already exist for a very long time, but it is also not unusual that some
interfaces have to be ported to new systems several times during their lifetime. This
is often associated with considerable effort, especially in larger EAI environments
with hundreds of interfaces. In many cases, porting or migration means a complete
redevelopment of the interfaces, which is aggravated by the fact that the original
developers are often no longer present.

But not only (legacy) HL7 V2.x interfaces are potentially affected by a migration
to a new middleware solution. Interfaces that are now implemented with modern
standards, such as HL7 FHIR [4], may also have to be ported in their lifetime,
which is very likely, given the longevity of medical subsystems and the longevity
and maturity of all HL7 standards.

In order to save time and resources when switching to a new middleware solution,
it is important to have portable interfaces available that are capable of running on
top of the new solution without changing the source code of the interface, where the
business logic is located. To meet the objective above, this work introduces a generic
EAI framework based on configuration and dependency injection used for creating
portable interfaces, by introducing an abstraction layer between the middleware and
the interface implementation.

The remainder of the paper is organized as follows: Section 2 contains related
work. In Section 3 the EAI framework for portable interfaces is described in detail.
In Section 4 the evaluation results of applying the proposed solution to a real pro-
duction healthcare EAI environment are shown. The paper finishes with Section 5
with conclusion and future work.



360 S. Linecker, W. Wöß

2 RELATED WORK

The authors of [5] show a middleware architecture consisting of a cloud service
and local clients. They seperated the business logic of their hCloud Middleware
and their hCloud Client from the persistence layer and used interfaces to mediate
the communication between these two layers. This approach, even not directly
mentioned in their study, may facilitate portability of their business rules, depending
on how the rest of the code is structured.

In [6] the authors ported the proprietary middleware Egate to the Open Source
middleware Apache Camel. They show best practices for migrating to Open Source
middleware solutions. However, their use-case contains only 13 interfaces and there-
fore portability was not an issue, because in case of a future migration to another
system the effort for the new implementation remains manageable.

In the work of [7] an Apache Camel based implementation of an industrial
middleware solution is shown. If Apache Camel should be replaced with another
system, the interfaces would also have to be reimplemented.

In our previous work [8] we showed a generic architecture for implementing
reusable interfaces in the healthcare domain. We described components acting as
building blocks for interfaces. The work is focussed on reusability, but the architec-
ture emphasizes portability as well.

Even though there are some more studies about HL7, healthcare information
exchange, EAI and middleware architecture in the healthcare domain like [9, 10,
11, 12, 13], their main objective is not portability. Their concern is the integration
problem itself and not porting their interfaces or their business logic to another
middleware solution without changing the source code.

The contribution of this work is a generic EAI framework based on configuration
and dependency injection, used for implementing portable interfaces in (existing)
healthcare EAI environments.

3 EAI FRAMEWORK

In this chapter, a generic EAI framework used for implementing portable interfaces
is introduced. The main goal is to provide a custom API for interface development,
which is perfectly adapted to the conditions of the corresponding domain. The cur-
rently used middleware does not play a role here and should only serve as a possible
execution layer that can be replaced at will. To accomplish this flexibility, an ab-
straction layer is inserted between the middleware and the interface implementation,
abstracting the details of the middleware and thus making it interchangeable. In
subsequent migrations to new middleware solutions, the interface code remains the
same and does not need to be rewritten. Only the actual implementation of the
EAI framework itself must be adapted to the middleware, the API for the interface
development remains unchanged. Figure 2 shows the layer architecture of the EAI
framework.



Portability of Interfaces in Healthcare EAI Environments 361

Figure 2. Layer architecture of the EAI framework

The EAI framework is essentially based on two pillars:

1. configuration and

2. dependency injection.

These two basic principles sustain the entire system and all components make use
of them.

3.1 API Components

The API components are the basis for portable interfaces and thus form the abstrac-
tion layer shown in Figure 2. This layer defines the entire functionality necessary
for interface development. In order to define this layer specifically, the necessary
functions must first be analyzed and specified. The basic function groups are as
follows:

• Connectivity,

• Message Structures/Parsing,

• Data Access,

• Monitoring,

• Utilities.

In the next step, the required functionalities must be implemented as Java inter-
faces. The focus should be solely on the API and not on the possible implementation.
The goal is to obtain an API for interface development that is perfectly suited to
the environment. During our implementation it also became apparent that the com-
ponents should be as lightweight as possible and only those methods should really
be included in the Java interface for which there is actually a concrete use case. It
is better to define an additional component instead of defining a single one that can
handle all possible scenarios, because porting small components is easier and less
error-prone. The following listing shows an example component for sending string
messages via a JMS (Java Message Service) queue:



362 S. Linecker, W. Wöß

public interface JmsWriter {

void sendTextMessage(String msg);

}

Finally, it is necessary to define how to implement interfaces with this API. This
is basically about defining a method that should be executed when the interface gets
triggered (e.g., a message in a JMS queue). There are two variants:

1. using a Java interface which defines a method (e.g.: execute()) and this Java
interface must then be implemented by all interfaces, or

2. an annotation-based approach in which the method to be executed is marked.

During the development of the EAI framework we implemented both variants.
Using a Java interface as in the variant 1 is the most obvious solution. It is easy to
implement and we used this approach in early versions of our framework. However,
to reduce the footprint of our framework in the interface code and to gain flexibility,
we implemented the variant 2, which is used since then in all recent versions of
our framework. The following listing shows an example interface developed with
our EAI framework, which reads a string message from a JMS queue, performs
a string replacement, where search string and replacement string are provided by
a configuration class, and sends the new string message to a JMS queue.

public class SearchAndReplaceCollab {

private final Logger logCat;

private final JmsReader input;

private final JmsWriter output;

private final SearchAndReplaceConfig config;

@Inject

SearchAndReplaceCollab(

Logger logCat,

JmsReader input,

JmsWriter output,

SearchAndReplaceConfig config) {

this.logCat = logCat;

this.input = input;

this.output = output;

this.config = config;

}

@OnTrigger

public void onMessage() {

String msg = input.getTextMessage();

// perform string replacement



Portability of Interfaces in Healthcare EAI Environments 363

String newMsg = msg.replace(

config.getSearchString(),

config.getReplaceString());

logCat.info("new msg: {}", newMsg);

output.sendTextMessage(newMsg);

}

}

3.2 Configuration

The configuration of an interface is done by using an initialization file (INI) and each
interface must have one. An INI consist of sections and the associated properties.
The configuration options defined in this way are bound to fields of a Java class using
dependency injection. A section is delimited by square brackets and can contain
any number of properties, but empty sections are allowed too. The following listing
shows a sample INI:

[Properties]

myIntProperty=23

myStringProperty=abc123

myBooleanProperty=true

list.myList=value1, value2, value3

list.myListFromFile=${Resources/listFile}

map.myMapFromFile=${Resources/propertiesFile}

filter.inbound=!myFilter && myFilter2

[MySection]

enum.charset=vg.sissi.core.util.Charset.CP1252

map.myMap=[key1=>value1, ?=>defaultValue]

[EmptySection]

An INI can have an arbitrary number of sections and it is also allowed to have
the same section multiple times. In such case the section needs an id property for
later reference. There are four special sections:

System (mandatory): Required for executing the framework itself.

Bindings (optional): User defined bindings of Java interfaces to an implementing
Java class.

Resources (optional): Defines file resources. The paths can be relative to the file
location of the INI and get resolved automatically.

Properties (optional): User defined properties of the interface implementation.
It is the default namespace of all properties which do not have their own names-
pace (= section).



364 S. Linecker, W. Wöß

A property is always assigned to the section above it and the name of the section
is its namespace. Primitive data types are supported as values out-of-the-box. For
object data types, the property name must start with a prefix. It is also possible to
use variables with the ${SECTION NAME/PROPERTY NAME} syntax. On the Java side,
the values of the properties are mapped from the INI to class variables. Table 1
shows the available prefixes and their corresponding Java type.

Prefix Java Type Value-Syntax

list. java.util.List<String> val1, val2, val3, ...

or reference to a list file

map. java.util.Map<String, String> [key1=>val1, key2=>val2]

or reference to a mapping file

enum. any enum class f.q.n.EnumClass.ENUM CONSTANT

time. java.time.LocalTime HHmm[ss][SSS]

date. java.time.LocalDate YYYYMMDD

datetime. java.time.LocalDateTime YYYYMMDDHHmm[ss][SSS]

Table 1. Property prefixes and their mapped Java type

In order to be able to map the properties from the INI and the class variables of
a configuration class, these fields must be provided with an @Property annotation.
It has two properties: ns and value. The ns property defines the namespace of
the configuration option, which is equal to the name of the section from the INI,
where the property was declared. The value property defines the name of the
property from the INI. Properties can be optional or mandatory and may have
a default value. The following listing shows the Java equivalent to the previous INI
snippet:

public class MyConfig {

@Inject(optional=true)

@Property(value="myIntProperty")

private int myIntProperty = 10;

@Inject

@Property(value="myStringProperty")

private String myStringProperty;

@Inject

@Property(value="myBooleanProperty")

private boolean myBooleanProperty;

@Inject(optional=true)

@Property(value="list.myList")

private List<String> myList;



Portability of Interfaces in Healthcare EAI Environments 365

@Inject

@Property(value="list.myListFromFile")

private List<String> myListFromFile;

@Inject

@Property(value="map.myMapFromFile")

private Map<String, String> myMapFromFile;

@Inject(optional=true)

@Property(value="filter.inbound")

private Filter filter;

@Inject

@Property(ns="MySection", value="map.myMap")

private Map<String, String> myMap;

@Inject(optional=true)

@Property(ns="MySection", value="enum.charset")

private Charset encoding = Charset.UTF_8;

// getter and setter ...

}

During the implementation of the framework, we mainly worked with standalone
configuration classes. Those are classes where the sole purpose is to represent all
configuration options of the component to be implemented (e.g., a connector). The
advantage of this approach is that for unit tests the different variants can easily be
provided by simply setting the fields of a configuration class in the testing code.
There was also a lot of consideration given to the visibility of these classes. Most
configuration classes are package private, since they are to be seen as implementation
detail and should not be necessarily publicly accessible.

3.3 Dependency Injection

Dependency injection is an essential part of the EAI framework. The dependency
injection framework Guice from Google [14] is used as the basis. Guice is based on
modules that provide the bindings. A module can load other modules and can be
public or private. The difference is that private modules provide only those bind-
ings that are explicitly exposed, whereas public modules expose all bindings. These
components were used as a basis to implement a very flexible and dynamic depen-
dency injection solution. The basic principle here is that only those bindings should
be provided and loaded which are actually needed by the interface. Furthermore,
it should be possible to easily extend the functionality of the EAI framework by
simply adding an additional Java archive (jar) containing the new enhancements to
the classpath.



366 S. Linecker, W. Wöß

As already mentioned in Section 3.1, each functionality is defined with a Java
interface. The binding to a concrete implementation is then done via a module. That
means that for each functionality or for each Java interface of the EAI framework
there is a corresponding module class, which provides the bindings. Each of these
modules needs a name, so that they can be loaded later. This is done by using
a custom @Module annotation, with a value property holding its name. The whole
binding process is tightly coupled to the INI. The modules are loaded by applying
the sections from the INI. The presence of a section in the INI triggers the loading
of a module if the section name is equal to the name from the @Module annotation.
The following listings show an example of this approach:

[MySection]

myProperty=myValue]

The corresponding module that would be loaded if a section MySection exists
in the INI is specified as follows:

@Module("MySection")

public class MySectionModule ... {

There is a main module provided by the EAI framework that serves as the entry
point. The INI is passed to this module, which is the only module that is responsible
for more than one section. It handles the sections listed in Section 3.2 that are needed
by the framework itself and initiates the loading of those modules that are needed
to satisfy the dependencies of the interface represented by the currently loaded INI.
The following algorithm shows the schematic procedure of the main module:

1. Find all module classes in the classpath, which have a @Module annotation and
store their name and their class in a map moduleMap.

2. Iterate over all sections of the INI and check the moduleMap if there is a module,
with the same name as the current section.

3. If yes, instantiate the module class, pass the INI, install the module and mark
the module as loaded, so that it will not be loaded again even if there is another
section with the same name.

4. If no, provide named bindings of all properties within this section using the
@Property(ns=SECTION NAME, value=PROPERTY NAME) annotation.

To provide the bindings, a distinction must be made whether there can/should be
multiple instances of the same type or not. If this is the case, the module must ensure
that the specific instances are also identifiable using a unique name. This is done
by a named binding using the @javax.inject.Named annotation. The bindings for
the configuration options of the respective functionality are also provided in these
modules. The instances of the configuration options (the concrete value e.g., as
string) are provided over a named binding too. Instead of the @javax.inject.Named
annotation the @Property annotation already mentioned in Section 3.2 is used.



Portability of Interfaces in Healthcare EAI Environments 367

3.4 Implementation and Middleware Integration

The EAI framework can be used in two ways. Either as a library, i.e., on top of
an existing middleware platform, or as a standalone solution. The interface code
remains the same, only the underlying platform changes. These two variants will be
described in more detail in the next sections.

3.4.1 On-Top of a Middleware

In this variant, the EAI framework is embedded in an existing middleware platform.
The basic prerequisite for this approach is, of course, that the middleware solution
allows the execution of arbitrary Java code and that the EAI framework can be
integrated by using one or more Java archives. The native API of the existing mid-
dleware is only needed to create a frame in which the code of the EAI framework
can be executed. This can be, for example, a Java class directly, or a component
in which Java code can be executed. The existing middleware solution is also re-
sponsible for triggering the executing of the interface code, and therefore it is not
necessary to be considered by the EAI framework.

Depending on how much functionality is provided by the EAI framework, the
connector classes of the existing solution must also be accessible. These connector
classes can be used in the implementation of the Java interfaces of the EAI frame-
work to provide the actual functionality, meaning that the components of the EAI
framework are just a facade or adapter and in the background exactly the same
code or classes are used that would be used in a native implementation based on the
existing platform. Sometimes there is a need for special functionality which is not
available in the native API, and therefore these components of the EAI framework
need to be implemented without classes of the underlying platform. It is often pos-
sible to use open source libraries, but their API should not be used directly in the
interface code and should be provided via a suitable facade by the EAI framework.
For example, the well-known open source library HAPI [15] is a very powerful library
for HL7 V2.x parsing and messaging. Even if HAPI itself would be portable, i.e., the
portability of the interface code would not be affected, it is better to define custom
components in the EAI framework in order to be able to replace the implementation
later if required. For example in case of porting an interface to a new middleware
platform, which natively supports a previously missing feature implemented using
open source libraries, the native implementation can be used instead using the same
facade and therefore the interface code itself remains unchanged. This is a key as-
pect of the solution, as an existing middleware can be extended in such a way, that
the new functionality can later be used on another platform, which supports this
functionality natively.

Figure 3 shows the class diagram of the Java interfaces, which we have defined for
integrating the EAI framework into an existing middleware solution. We defined two
Java interfaces Collaboration and CollaborationFactory. The
CollaborationFactory is responsible for creating Collaboration instances.



368 S. Linecker, W. Wöß

Figure 3. Class diagram for middleware integration

Therefore it takes the instance of the outer Java class, respectively the interface class
from the middleware, as an argument. This instance is used as a reference for finding
the correct interface implementation from the EAI framework. It searches for the
corresponding INI for the requested interface. Therefore the INI must be accessible
from the middleware system. The factory returns an instance of the Collaboration
Java interface which represents an interface from the EAI framework. It defines two
methods: execute and configure. The configure method takes a java.util.Map
as parameter, which should contain all instances of the required classes from the na-
tive API of the middleware solution. The key of the map has to be a unique string
identifier to later access the required classes. The configure method passes the
dependencies from the middleware to the EAI framework. Using dependency injec-
tion, these objects are then made available to the classes that require them. The
last step is calling the execute method which should then trigger the execution of
the interface code developed with the EAI framework.

3.4.2 Standalone Middleware Solution

In the standalone variant, all components of the EAI framework are implemented
without being able to fall back on an existing middleware solution. This means
that a native implementation of the EAI framework is made (the purple layer of
Figure 2). The scope varies depending on the requirements from a single interface
to a complete EAI solution. The complexity of the implementation increases, as
functionality that is otherwise provided by an existing middleware solution must be
taken into account:

• Running an interface and handling its states (start, stop, . . . ).

• Triggering the interface, i.e., listening for incoming messages or events to trigger
the execution of the interface code.

• Transaction handling.

• Thread safety and parallel execution.

• Error handling.



Portability of Interfaces in Healthcare EAI Environments 369

Figure 4. Class diagram of the standalone solution

To run an interface, we implemented the CollabRunner class with a main

method, which takes an initialization file as an argument and uses
a SissiCollaborationFactory to create an instance of SissiService. Figure 4
shows an UML class diagram of the classes and interfaces used for running interfaces
in this variant. The SissiService represents an interface service that can be started
(startService), paused (stopService) and completely stopped (shutdown). Fur-
thermore, it offers methods to read the current state and the timestamp of the last
activity. The service is responsible for listening for incoming messages or scheduled
events in order to trigger the interface processing. There are two alternatives to
implement this:

1. Implementing a generic service, which allows to react on incoming messages or
events by using different inbound connectors (JMS, File, Socket, . . . ). These
inbound connectors must then provide suitable methods to inform the parent
service that a certain number of messages or events are pending. This can be
done, for example, using a custom @CheckTrigger annotation that can be used
to mark a method of an inbound connector for this purpose.

2. Implementing a service for each type of inbound connector. The service is solely
responsible for handing messages or events from a single type of connectivity.
For example, implementing a JmsService, which only handles incoming JMS
messages.



370 S. Linecker, W. Wöß

As the code of the interface implementation is the same as for the embed-
ded variant, the service implementation has to invoke the method annotated with
@OnTrigger in order to initiate message processing. There are interfaces, which
need proper transaction handling support. To provide a simple transaction han-
dling solution, there are two annotations, @OnCommit and @OnRollback, which can
be used to annotate methods that should be called for the corresponding event.

4 EVALUATION

The introduced EAI framework was implemented and deployed in the EAI produc-
tion environment of the Vinzenz Gruppe. The considerations for the implementation
of a custom EAI framework started in 2014. At that time, it was clear that the cur-
rent middleware solution Java CAPS 5.1.3 [16] had reached its end of life and a new
system had to be found. This, in turn, meant that when porting to a new sys-
tem, all interfaces would have to be reimplemented, including those developed in
the meantime, i.e., until the new system goes live. Furthermore, this would be-
come a recurring process, since any new system would also have to be replaced at
some point. This problem gave rise to the idea of developing an EAI framework
adapted to the environment of the Vinzenz Gruppe, which could run on any Java-
based middleware. At the end of 2014 the production EAI environment consisted
of 342 interfaces deployed to three production servers.

The first production version of the EAI framework V1 was completed in February
2015. From this point on, all new interfaces were implemented on the basis of the
new EAI framework and ran on the Java CAPS 5.1.3 middleware. At the end of
2015, it was decided to implement the EAI framework as a standalone variant V2 in
order to completely replace Java CAPS. The first interface in this form went live on
December 6, 2016. From the beginning of 2017, all new interfaces were implemented
using V2 only.

From 2015 to 2017, 16 V1 interface classes were developed, with a total of 64
running instances in the Java CAPS environment. Table 2 shows the interface classes
and their number of instances.

All 64 interfaces and/or their 16 interface classes from V1 could be ported di-
rectly to V2, meaning that no code change was necessary to run these interfaces with
V2. However, minor changes were made to improve code quality and/or readabil-
ity. The current EAI production environment consists of 565 interfaces, deployed
to eight production servers. 87 interfaces are legacy interfaces, which are neither
V1 nor native V2 interfaces. From the original 16 V1 interface classes and their
64 instances, 10 classes with 29 instances still exist. One class became obsolete.
The other five classes have been further developed, however the new classes evolved
from the original ones. Three of these classes are among the most frequently used
interface classes in the entire EAI production environment. Table 3 shows the in-
terface classes and their running instances in the current EAI production environ-
ment.



Portability of Interfaces in Healthcare EAI Environments 371

Interface Class Instances Running

A 14

B 11

C 9

D 7

E 7

F 3

G 2

H 2

I 2

J 1

K 1

L 1

M 1

N 1

O 1

P 1

In total 64

Table 2. V1 interface classes and their number of instances.

Interface Class Instances Running

A’ 75

B’ 49

C 7

C’ 33

D 7

E 7

F obsolete

G’ 7

H 2

I 2

J 1

K 1

L 1

M 1

N 1

O’ 1

P’ 1

V2 only 283

legacy 87

In total 565

Table 3. Interface classes and their usage in the current production environment



372 S. Linecker, W. Wöß

The pie chart in Figure 5 shows that the running instances of the original V1
interfaces together with the running instances of the interface classes, which evolved
from the original V1 class, make up 34% of all instances running in the current
production environment. In other words, 34% of the current interfaces did not
need to be reimplemented during migration, which saved time and money during
the migration, especially concerning that these classes were all developed at a time
when the decision to replace the existing EAI system had already been made, but
a specific replacement date was not foreseeable or defined.

Figure 5. Pie chart of interface class usage

5 CONCLUSION AND FUTURE WORK

In this paper a solution for portable interfaces using a flexible and configurable
EAI framework with a custom API for interface development is introduced. Inter-
face code that has been written once using this API could easily be ported from
a proprietary middleware solution to a full featured native implementation of the
EAI framework. Use of this approach helped to save time and resources during the
migration process and should also reduce the effort for future migrations. This is
a major advantage, especially with regard to the longevity of HL7 interfaces. The
downside of our approach is, that it is not sustainable for small EAI environments
with only a few interfaces, because the development of an EAI framework is prob-
ably more complex and time consuming than porting a few interfaces in case of
a migration to a new middleware solution. Furthermore, the chosen programming
language or runtime environment affects the future-proofness of the solution. There



Portability of Interfaces in Healthcare EAI Environments 373

is no guarantee, that the chosen technology stack is also available in ten or more
years.

For future work, it is planned to analyse the capabilities of our EAI framework
using another proprietary middleware solution. Furthermore, we will present an ap-
proach for migrating legacy interfaces to the proposed EAI framework using code
generation and emulation. We are also planning to release our EAI framework V2
as open source software.

REFERENCES

[1] Bezerra, C.—Araujo, A.—Sacramento, B.—Pereira, W.—Ferraz, F.:
Middleware for Heterogeneous Healthcare Data Exchange: A Survey. Tenth In-
ternational Conference on Software Engineering Advances (ICSEA 2015), 2015,
pp. 409–414.

[2] HL7 International: HL7 Version 2 Product Suite. 2021, https://www.hl7.org/

implement/standards/product_brief.cfm?product_id=185 [accessed April 20,
2021].

[3] ISO: ISO/HL7 27931:2009. Data Exchange Standards – Health Level Seven Version
2.5 – An Application Protocol for Electronic Data Exchange in Healthcare Environ-
ments. 2009, http://www.iso.org/iso/catalogue_detail.htm?csnumber=44428.

[4] Braunstein, M. L.: Health Informatics on FHIR: How HL7’s New Api Is Trans-
forming Healthcare. Springer, 2018, doi: 10.1007/978-3-319-93414-3.

[5] Bezerra, C.A.C.—de Araújo, A.M.C.—Times, V.C.: An HL7-Based Mid-
dleware for Exchanging Data and Enabling Interoperability in Healthcare Applica-
tions. In: Latifi, S. (Ed.): 17th International Conference on Information Technology –
New Generations (ITNG 2020). Springer, Cham, Advances in Intelligent Systems and
Computing, Vol. 1134, 2020, pp. 461–467, doi: 10.1007/978-3-030-43020-7 61.

[6] Iyer, R.—Balasundaram, C.: Best Practices and Case Study for Open Source
Middleware Migration: Egate to Apache Camel Migration. International Conference
on Software Engineering and Mobile Application Modelling and Development (IC-
SEMA 2012), 2012, pp. 1–7, doi: 10.1049/ic.2012.0140.

[7] Gosewehr, F.—Wermann, J.—Borsych, W.—Colombo, A.W.: Apache
Camel Based Implementation of an Industrial Middleware Solution. 2018 IEEE
Industrial Cyber-Physical Systems (ICPS), 2018, pp. 523–528, doi: 10.1109/IC-
PHYS.2018.8390760.

[8] Linecker, S.—Wöß, W.: Reusability of Interfaces in Healthcare EAI Envi-
ronments. Proceedings of the 14th International Joint Conference on Biomedical
Engineering Systems and Technologies – HEALTHINF, INSTICC, Vol. 5, 2021,
pp. 417–423, doi: 10.5220/0010242004170423.

[9] Alenazi, T.M.—Alhamed, A.A.: A Middleware to Support HL7 Standards for
the Integration Between Healthcare Applications. 2015 International Conference on
Healthcare Informatics, 2015, pp. 509–512, doi: 10.1109/ICHI.2015.93.

https://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
https://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://www.iso.org/iso/catalogue_detail.htm?csnumber=44428
https://doi.org/10.1007/978-3-319-93414-3
https://doi.org/10.1007/978-3-030-43020-7_61
https://doi.org/10.1049/ic.2012.0140
https://doi.org/10.1109/ICPHYS.2018.8390760
https://doi.org/10.1109/ICPHYS.2018.8390760
https://doi.org/10.5220/0010242004170423
https://doi.org/10.1109/ICHI.2015.93


374 S. Linecker, W. Wöß

[10] Bortis, G.: Experiences with Mirth: An Open Source Health Care Integration
Engine. Proceedings of the 30th International Conference on Software Engineering
(ICSE ’08), Acm, 2008, pp. 649–652, doi: 10.1145/1368088.1368179.

[11] Liu, L.—Huang, Q.: An Extensible HL7 Middleware for Heterogeneous Healthcare
Information Exchange. 2012 5th International Conference on Biomedical Engineering
and Informatics, 2012, pp. 1045–1048, doi: 10.1109/BMEI.2012.6513196.

[12] Lu, X.—Gu, Y.—Yang, L.—Jia, W.—Wang, L.: Research and Implementation
of Transmitting and Interchanging Medical Information Based on HL7. The 2nd In-
ternational Conference on Information Science and Engineering, 2010, pp. 457–460,
doi: 10.1109/ICISE.2010.5689687.

[13] Wadhwa, R.—Mehra, A.—Singh, P.—Singh, M.: A Pub/Sub Based Architec-
ture to Support Public Healthcare Data Exchange. 2015 7th International Confer-
ence on Communication Systems and Networks (COMSNETS), 2015, pp. 1–6, doi:
10.1109/COMSNETS.2015.7098706.

[14] Google Inc.: Guice. 2021, https://github.com/google/guice [accessed February
20, 2021].

[15] HAPI: HAPI HL7 V2.x. 2021, https://hapifhir.github.io/hapi-hl7v2/1 [ac-
cessed February 23, 2021].

[16] Czapski, M.—Krueger, S.—Marry, B.—Sahai, S.—Vaneris, P.—
Walker, A.: Java CAPS Basics: Implementing Common EAI Patterns. Prentice
Hall PTR, 2008.

https://doi.org/10.1145/1368088.1368179
https://doi.org/10.1109/BMEI.2012.6513196
https://doi.org/10.1109/ICISE.2010.5689687
https://doi.org/10.1109/COMSNETS.2015.7098706
https://github.com/google/guice
https://hapifhir.github.io/hapi-hl7v2/1


Portability of Interfaces in Healthcare EAI Environments 375

Severin Linecker works for the Vinzenz Gruppe, an associa-
tion of religious-order hospitals and other healthcare facilities in
Austria. Furthermore, he is a Ph.D. student at the Johannes
Kepler University Linz (JKU). His main research interest is En-
terprise Application Integration (EAI), especially the migration
of legacy interface code.

Wolfram W�o� worked for a manufacturing company between
1990 and 1993. Since 1993, he has been employed at the Jo-
hannes Kepler University Linz (JKU), where he received his doc-
torate (Ph.D.) in 1996. In 2002 he completed his habilitation in
applied computer science. He is Deputy Head of the Institute for
Application-Oriented Knowledge Processing (FAW) since 2004.
His research and teaching activities include topics in the field of
intelligent information systems, integrated information systems,
semantic information integration, ontologies, knowledge graphs,
information engineering, data modeling, data quality, big data,

business intelligence, and data mining. He has published on these topics in scientific jour-
nals and conference proceedings. He is also a member of numerous program committees
and was program chair of the International Conference on Warehousing and Knowledge
Discovery (DaWaK 2003 and 2004) and chair of the International Workshop on Web Se-
mantics (WebS) in 2003–2013. He received the Best Paper of the Year 2016 award from
Elsevier Data and Knowledge Engineering journal. During his tenure at JKU, he managed
both industrial and publicly funded projects.


