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Abstract. This paper deals with the home health care service (HHCS) which is de-
fined as a set of medical, paramedical and social services delivered to patients in their
domicile rather than in hospital. To support decision making in HHC, optimization
models have been used. However, several of those models are deterministic and do
not address the dynamical and uncertainty aspects of the system and variability of
some patient data. The HHC scheduling problems are facing more and more com-
plex and specific constraints. These constraints have to be respected, meanwhile the
problem objective is optimized under parameters uncertainties. This paper aims to
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formulate a model that integrated home care scheduling problem while taking into
account human aspect – the behavior of patients, and also another aspect like travel
time uncertainty and dynamic behavior of involved medical team and social actors
in HHC. Robust approaches are adopted to model and handle this uncertainty.

Keywords: Home health care, robust optimization, scheduling, uncertainties

1 INTRODUCTION

Home Health Care (HHC) is an emerging offer in developing countries. It allows
to patients suffering from serious diseases, acute or chronic illness to benefit from
medical and paramedical treatment at their homes [1].

The concept of “HHC” was launched in the United States of America in 1947
and in France in 1951. This growth is due to economics factors related to hospitals’
over-crowding and willingness to keep health costs under control. On the other side,
it is due to human factors linked to the increase of life expectancy, the aging of
population and the occurrence of chronic diseases.

HHC was acknowledged in 2009 as full-fledged health care institution which
means that the home health care is subject to the same obligation as traditional
hospitalization. It is forced to ensure quality, safety, permanence and continuity of
care for patients by involving many actors such as medical team, paramedical and
social team, support cell, social actors, etc.

The major issue of HHC structure is the improvement of patient care, while
ensuring efficiency for the health insurance. Therefore, HHC needs to upgrade the
skills and competencies within its operational area: management, organization, care
while taking into consideration specific constraints of the home operation.

We are particularly interested to improve schedule planning for the home health
care problem. The question is to respond to patient’s demand while organizing the
activities and interventions of all involved teams. Reducing costs, waiting time,
wasted time and ensuring quality of service are also among the issues of such sys-
tem [2]. Reaching these objectives and ensuring relevant HHC systems require the
use of powerful tools and models for decisions making.

Furthermore, this problem is often subject to different types of uncertainties
which are related to patients, caregivers and other involved actors in HHC or its
environment. In reality, the optimizing process is hampered by the uncertainty
of the data. It is therefore necessary to establish methodologies which take into
account perturbations in the optimization process. For these reasons, we turn to
robust optimizing that can provide solutions for problems subject to uncertainties.
To do so, a special mathematical model called robust routing problem with time
windows is proposed in order to schedule and optimize giving home care services
to patients. Through the developed model we aim to maximize activities of care-
givers and minimize routing travel time as well as ensuring the best resource for
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each care activity. We aim also to minimize the dependency level of each routes.
The basis of this model is elicited from [3] who have designed HHC for routing
problem.

To the best of our knowledge, our model is the first model to incorporate

1. integration of some realistic feature to the model such as uncertainty in the
travel time of routing problem and

2. applied robust approaches to face this uncertainty.

The contribution of the paper is summarized as follows:

• In the proposed model a break is taken into account, which is more realistic by
allowing caregivers to have some pause during their work.

• In this study, the uncertainty in the travel time of caregivers is a realistic as-
sumption (breakdown, accident, change in scheduling of care activities facing
a more urgent case).

The rest of the paper is organized as follows. In Section 2, the related literature is
reviewed. Section 3 gives the mathematical formulation of the HHC problem. This
section presents two optimization approaches we propose to resolve the problem
while taking into account the uncertainty aspect. Future work about the devel-
opment of a collaborative solution for coordinating HHC activities is addressed in
Section 4. Finally, the work is concluded by the Section 5.

2 LITERATURE REVIEW

Home Health Care (HHC) problem can be defined as a set of human and material
resources used to give required services (e.g. medical, paramedical, cleaning, drug
delivery) to patients in their homes. This emerging service sector gained a big
attention by researchers and practitioners during the last decades due to several
challenging problems raised by this new alternative to traditional hospitalization.

A large number of research works has emerged recently to optimize one or more
criteria by considering different class of specific constraints for this service problem
in health sector. In the first part of this section, we will focus on a set of 37 research
papers published between 2008 and 2020 and dealing with the deterministic HHC
problem. This papers set allowed us to identify:

1. The considered optimization criteria, which are:

• Time (e.g. travel, waiting, uptime, overtime)

• Costs (e.g. travel, waiting, assignment, resources)

• Traveled distances (e.g. CO2 emissions).

• Workload balance (e.g. number of patients, time duration).

• Patient preference (e.g. nurse assignment, unavailability)

• Caregiver preference (e.g. lunch break, unavailability)
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• Unsatisfied services (e.g. dissatisfaction rate)

• Number of used caregivers (e.g. use rate)

2. The specific and/or common constraints to which the problem is subjected to
are as follows:

TW: The abbreviation of time windows. This class of constraints has been con-
sidered either for drug delivery or for patient (resp. caregivers) availability
(resp. unavailability).

Simultaneously: It means simultaneous synchronization constraint. Some-
times several resources are required simultaneously to ensure the service, such
as the bath if the patient is dependent and a single person is not sufficient.

Preferences: Include patient and caregivers preferences. These preferences are
generally regarding assignment and time visits.

Qualification: Define if some specific qualifications are required for the care-
givers assigned to patient. In some cases of severe burns, the assigned nurse
should have the skills to change the patient’s bandage.

Synchronization: It concerns notably precedence synchronization. In fact,
sometimes, a patient requires several service activities which should be well
organized. For example, a dependent patient should receive his toilet before
the doctor visit.

Periodicity: This class of constraints defines how many times some activities
are repeated such as drug delivery or a recurrent service for patients suffering
from long-term disease like dialysis.

3. Some different approaches to model and solve the considered problem, and
mainly:

• Exact approach’s, called also exact algorithms which consists on solving the
problem to optimality. This approach is very well used in literature to solve
real case problems or small sized instances (i.e. branch and bound).

• Metaheuristic approach’s, is a heuristic algorithm that can provide a good
optimizing solution in acceptable computational time but the optimality of
the solution is not guaranteed. Thanks to this identification, a classification
is provided in Table 1.

In the previous studies dealing with the addressed problem, most of them have
been focused on the deterministic case. However, in the real world, it is a matter
of uncertainties and it is usually hard to know precise decisions and thus, they are
made in the face of hazards and indecisions.

Given the aspect of planning problems, a consideration of uncertainties and ro-
bust optimizing approaches may be useful to find good quality solution for scheduling
problem.

Uncertainty can be defined as a situation in which available data and information
is incomplete, insufficient or absent. It can be caused also from a doubt about the



292 A. El-Amraoui, S. Harbi, A. Nait Sidi Moh

R
e
f.

O
p
ti
m

iz
a
ti
o
n

c
r
it
e
r
ia

C
o
n
st
r
a
in
ts

S
o
lu

ti
o
n

A
p
p
r
o
a
c
h

T
im

e
C
o
st

D
is
ta
n
ce

W
o
rk
-

lo
a
d

P
a
ti
en

t’
s

P
re
f.

C
a
re
g
iv
er
’s

P
re
f.

U
n
sa
ti
s-

fi
ed

#
C
a
re
-

g
iv
er
s

T
W

S
im

u
lt
a
-

n
eo

u
sl
y

P
re
fe
-

re
n
ce
s

Q
u
a
li
fi
-

ca
ti
o
n

S
y
n
ch

ro
-

n
iz
a
ti
o
n

P
er
io
-

d
ic
it
y

E
x
a
ct

M
et
a
h
eu

-
ri
st
ic

[4
]

x
x

x
x

x
[5
]

x
x

x
x

x
[6
]

x
x

x
[7
]

x
x

x
x

x
x

x
x

[8
]

x
x

x
x

[9
]

x
x

x
x

x
[1
0
]

x
x

x
x

x
x

x
x

[1
1
]

x
x

x
[1
2
]

x
x

x
x

x
x

x
x

[1
3
]

x
x

x
x

x
[1
4
]

x
x

x
x

x
[1
5
]

x
x

x
x

x
x

[1
6
]

x
x

x
[1
7
]

x
x

x
x

[1
8
]

x
x

x
x

x
x

[1
9
]

x
x

x
x

x
[2
0
]

x
x

x
x

[2
1
]

x
x

x
x

x
x

[2
2
]

x
x

x
x

x
x

x
[2
3
]

x
x

x
x

x
x

[2
4
]

x
x

x
x

x
x

x
x

[2
5
]

x
x

x
x

x
x

x
[2
6
]

x
x

x
x

x
x

x
[2
7
]

x
x

x
x

x
[2
8
]

x
x

x
x

x
[2
9
]

x
x

x
x

[3
0
]

x
x

x
x

x
[3
1
]

x
x

x
x

x
[3
2
]

x
x

x
x

x
x

x
x

[3
3
]

x
x

x
x

x
[3
4
]

x
x

x
x

x
x

x
[3
5
]

x
x

x
x

x
x

[3
6
]

x
x

x
x

x
x

x
[3
7
]

x
x

x
x

x
x

x
x

[3
8
]

x
x

x
[3
9
]

x
x

x
x

x
[4
0
]

x
x

x
x

x
x

Table 1. Classification of the literature review on HHC
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availability of a resource (human or material) after an unexpected change in the
system.

In case of unavailability of an information or a resource, risk analysis methods are
often used. Nevertheless, in the majority of cases studied, uncertainty is character-
ized by a random law.

To formulate and resolve these kinds of problems, stochastic optimization meth-
ods are used. In other cases, the uncertainty cannot be represented by a probability
law. To face this lack and limit, in this situation, robust optimization methods are
more suitable and useful.

One of the most popular frameworks for planning and scheduling under un-
certainties is stochastic programming [41, 42, 43]. Uncertainty can be represented
using a number of discrete scenario to represent future states. A challenged ap-
proach can be considered as developed in [44] about a multi-stage stochastic lin-
ear programs (M-SLP) to model planning and uncertainties. Also, chance con-
straint programming is another possibility to model this problem. However, these
two approaches have a lot of drawbacks: i) the number of scenario increase with
the number of uncertain parameters, ii) this leading to an increase in the problem
size.

Determining the probability law related with each variables or random parame-
ter can be a particularly difficult and sometimes the impossible task. Hence, a recent
methodology of operational research (RO)-robust optimization-remains a necessity
to deal with these issues. This field has seen a gaining increasing and development
during the last two decades.

Among the non-probability uncertainty models identified in the literature, we
first identified the discrete scenario modeling where uncertain parameters are repre-
sented by a finite set of discrete values [45]. In this study, problems are modeled by
continuous intervals or more generally by convex sets. This method is widely used
in robust optimization [45, 46, 47]. Our contribution through this paper is focused
on this second category with the representation of uncertainty by intervals.

The first robust optimization model was developed in [48] where the authors
proposed a linear optimization model to construct a solution that is feasible for
all data that belongs to a convex set. The model treats column-wise uncertainty
in linear programming problems, where each uncertain parameter has to be taken
equal to its worst case value in the set. The drawback of this approach is that
the solutions produced are too conservative. Therefore, the obtained solutions are
robust but too far from the optimal solution.

The topic of over-conservatism was discussed in [49]. The authors have proposed
less conservative models by considering linear programs with an ellipsoidal structure
of uncertainty. The robust problem gathered is in the form of conic quadratic
problems. This means that the robust counterpart does not maintain the complexity
of the initial nominal problem.

Bertsimas and Sim have presented in [47] a particular technique adapted to
polyhedral uncertainty that leads to a robust counterpart by controlling the degree
of conservativeness of the solution.
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In recent years, robust approaches were interested in solving real applications.
In [50], the authors have presented an overview of research work on Vehicle Routing
Problems (VRP) with more realistic constraints. Based on this approach, we are
mainly interested in this paper in robust approaches applied to the VRP with or
without time windows (R-VRP, R-TSP and R-TSPTW).

Several studies have discussed the uncertainty of demand in the VRP [51, 52], the
RSCP [53, 54]. Others have proposed a robust optimization model form the VRPTW
with uncertainties on time services [55, 56], uncertainties on the travel times [57].
In [58], the authors have examined the robust TSP with paths belonging to a set
of values, and in [59] the case of the TSP with uncertainty on the distance between
nodes has been studied. Furthermore, Minoux has considered the robustness of the
inventory management scheduling problem [60, 61, 62]; and transportation problems
was studied in [63].

Several studies have focused on home health care organization and scheduling
in terms of coordination and cooperation of all involved caregivers [64, 21, 65, 66].
As developed in these research works, different models and platforms have been
developed to reach an effective organization of home care activities. The common
point and addressed issue of all these works is to ensure the efficiency in which
distributed care interventions are managed while involving different participant and
ensuring patient satisfaction as well.

In [64] a solution, called Plas’O’Soins, and aimed to address the home health
care problem by providing an interactive ICT platform to improve coordination
and continuity of care within homecare organizations. It supports care specifica-
tion as well as scheduling of the care plans using taking into account many con-
straints like human resources, medical constraints and geographical distribution of
patients. The authors of [21], have addressed the problem of routing and schedul-
ing HHC service under precedence and coordination constraints. Taking into ac-
count that the patients may receive multiple caregivers, the objective is to find
the minimal round for vehicles, while satisfying all the caregivers and without vi-
olating customers’ time windows. The same for [65] and [66] where the authors
have proposed mathematical algorithms for HHC daily planning while ensuring
the satisfaction of all the stakeholders (caregivers, patients, other social actors,
etc.).

To bring our contribution in this field of HHC, our work in this paper focuses
mainly on the short term caregivers round problem where travel time uncertainty is
considered. This contribution is based on the development of two robust approaches
to solve uncertain problems in HHC framework.

3 PROPOSED MODEL

The problem we are dealing with in this paper is the organization of HHC activities.
The model proposed is an extension of the multiple traveling salesman problem
with time windows (m-TSPTW). This section will present the problem statement.
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Then, the mathematical formulation, and finally, two new robust approaches will be
presented.

3.1 Problem Statements

A care activity i ∈ A is performed at patient’s home by a resources k ∈ R in given
time windows [ai, bi]. Each patient is characterized by a level of dependence Ni and
a degree of competence which is defined between patients and resources. The degree
of competencies is a real value arranged between “0” and “1”. Regarding resource’s
type, if the grade is closed to one this means that the compatibility is high and so
activity can be performed. Otherwise, it cannot be realized. To perform an activity,
one or more resources may be required.

In this model, two fictive activities will be considered: the first one “0” represents
the beginning of activities and the second one is nA+1 which represents the final
activity.

These two fictive activities are characterized by a degree of competence and
service’s duration null. The time windows in the fictive activities represent the
planning horizon. Besides, the breaks should be taken during the day between 12 h
and 13 h.

3.2 Deterministic Model

Our model is inspired by the work presented in [3] for which we have added the breaks
for caregivers. This new parameter requires a new reformulation of the problem, and
of course new models and solutions which are different from those presented in [3].
The following notations are required for the model formulation:

• R = {1, . . . , nR} – Set of caregivers.

• A = {0, . . . , nA+1} – Set of activities. The activities “0” and “nA+1” are the
fictitious activities.

• nbi – Number of resources needed to realize the activity i ∈ A.

• [ai, bi] – Time window to perform activity i ∈ A.

• Ni – Level of dependence for a person receiving activity i ∈ A.

• Cjk – Degree of competence between activity j ∈ {1 . . . nA} and resource k ∈
{1 . . . nR}.

• ti – Duration of the activity i ∈ A.

• Dij – Travelling time between activity i and j.

• M – High value.

3.2.1 Decisions Variables

The decisions variables of this model are xijk = 1 if the resource k ∈ R performs the
activity i ∈ A; 0 otherwise. Zi is the starting date for activity i ∈ A.
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3.2.2 Problem Formulation

Mathematical model is developed in this subsection to organize tours of care ac-
tivities. The objective function is a linear mixture of three parameters as given by
Equations (1), (2) and (3).

• Minimize the total traveling times:

minimize T=

nA∑
i=0

nA+1∑
j=1

Dij

nR∑
k=1

xijk. (1)

• Minimize the gap between the best resource for an activity and the resource to
achieve the activity

Minimize C =

nA∑
i=0

nR∑
j=1

(1− Cjk)

nA+1∑
k=1

xijk. (2)

• Minimize the level of dependence of each route (B is defined by a constraint (4))

Minimize B. (3)

The problem constraints are modelled as follows:

nA∑
i=1

nA+1∑
j=1

Nixijk ≤ Bi ∀k ∈ {1, . . . , nR} , (4)

nA+1∑
j=1

nR∑
k=1

xijk = nbi ∀i ∈ {1, . . . , nA} , (5)

nA∑
i=0

nR∑
k=1

xijk = nbj ∀j ∈ {1, . . . , nA} , (6)

nA∑
j=1

x0jk = 1 ∀k ∈ {1, . . . , nR} , (7)

nA∑
i=1

xi(A+1)k = 1 ∀k ∈ {1, . . . , nR} , (8)

nA∑
i=0

xilk =

nA+1∑
j=1

xljk ∀k ∈ {1, . . . , nR} ∀i ∈ {1, . . . , nA} , (9)

zj ≥ zi + ti +Dij + (xijk − 1)M, (10)

∀k ∈ {1, . . . , nR} ∀i ∈ {0, . . . , nA} ∀j ∈ {1, . . . , nA+1} ,
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zi ≥ ai ∀i ∈ {1, . . . , nA+1} , (11)

zi ≤ bi − ti ∀i ∈ {1, . . . , nA+1} , (12)

nA∑
i=0

xijk ≤ CjkM ∀i ∈ {1, . . . , nA+1} ∀k ∈ R, (13)

nA+nR∑
i=P+1

nA+nR+1∑
j=1

xijk = 1 ∀k ∈ {1, . . . , nR} , (14)

nA∑
i=0

nA+nR∑
j=nA+1

xijk = 1 ∀k ∈ {1, . . . , nR} . (15)

The constraint (4) determines the components of B that represents the value
of objective function defined by (2). B is defined as an upper bond of the global
dependency level. The global dependency level of a tour represents the sum of
dependency levels of each patient visited on the tour. Constraint (5) ensures that
the number of resources performing an activity is correct. Constraint (6) guarantees
that all resource performing activities will exist from patient’s home. Constraint (7)
pushes that the activities begin by fictive activity “0” and constraint (8) forces that
the activities finish by the fictive activity nA + 1. Constraint (9) guarantees the
flow’s conservation. Constraint (10) checks that travel time between two activities
is taken into consideration. Constraints (11) and (12) assure that all activities are
released and completed during the time windows. Compatibility resources/activities
is respected according to constraint (13). Constraints (14) and (15) ensure that each
resources have one break during the day.

In order to catch travel time uncertainty and study the resulting impact on care-
giver’s scheduling, two robust approaches developed by [47] and [48] were adopted.
In the following, the main concepts required for deriving robust models proposed
are exposed.

3.3 First Robust Formulation

The first robust optimization model was developed by Soyster [48]. His idea was
to evaluate solution by choosing the worst case scenario. Nevertheless, by seeking
for a valid solution independently of uncertain data values, we are limited to con-
servative solution the value of which is very far from the optimal solution of initial
deterministic program.

To be more realistic, it is common to assure some uncertainty in travel times.
We define the uncertainty set as being the interval number for each one of them.

Formally, travel time belongs to
[
D̄ij − D̂ij, D̄ij + D̂ij

]
, where D̄ij represents the

nominal value of Dij and D̂ij represent its maximum deviation. We consider ζij ∈
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[−1, 1] a variable which construct the uncertain part such as:

Dij = D̄ij + D̂ijζijζij ∈ [−1, 1] ,∀i, j ∈ [0 . . . nA+1] . (16)

So, Equations (2) and (10) become respectively:

min

(
nA∑
i=0

nA+1∑
j=1

nR∑
k=1

D̄ijxijk + max
ζij∈[−1,1]

{
D̂ijxijkζij

})
, (17)

zj ≥ zi + ti + D̄ij + (xijk − 1) ∗M + max
ζij∈[−1,1]

{
D̂ijζij

}
. (18)

According to Soyster’s approach, we replace objective function by (19) and we add
constraint (20) to our model.

min

(
nA∑
i=0

nA+1∑
j=1

nR∑
k=1

xijk(D̂ij+D̄ij

)
, (19)

zj ≥ zi + ti + D̄ij + (xijk − 1) ∗M + D̂ijζij. (20)

3.4 Second Robust Formulation

Bertsimas and Sim (2004) present a new technique particularly suitable for polyhe-
dral uncertainty that leads to linear robust counterparts while monitoring the level
of conservatisms of the solution.

The authors stipulate that the worst case scenario cannot simultaneously affect
all uncertain coefficients. Therefore, they introduce the concept of budget of uncer-
tainty Γ ∈ [0, n] which represents the maximum range of the uncertain travel time
that can simultaneously deviate from their nominal values.

When (Γ = 0, nominal value is considered, and (Γ = n leads to considering the
problem with the greatest travel time. The purpose of setting the parameter Γ is to
restrict the travel time that are greater than the nominal one. Therefore, according
to its prediction, the decisions maker is free to choose any value of the budget of
uncertainty Γ in the interval [0, n] and solve the robust problem.

The robust problem is the following:

min

 nA∑
i=0

nA+1∑
j=1

nR∑
k=1

D̄ijxijk + max∑
i

∑
j φij≤Γ

0≤φij≤n

{
D̂ijxijkφij

} ∀i, j ∈ A, (21)

zj ≥ zi + ti + D̄ij + (xijk − 1) ∗M + max∑
i

∑
j φij≤Γ

0≤φij≤n

{
D̂ijφij

}
∀i, j ∈ A (22)
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where the uncertainty set U(Γ) is defined by:

U(Γ) =
{
Dij ∈ Rn : Dij = D̄ij + D̂ijφij/φij ∈ Z(Γ)

}
∀i, j ∈ A (23)

and

Z(Γ) =

{
φij ∈ Rn/

nA∑
i=1

nA∑
j=1

φij ≤ Γ, 0 ≤ φij ≤ n

}
∀i, j ∈ A. (24)

Considering (20) and (21), we rewrite the problem as:

min
(
max

{
D̂ijφij

})
∀i, j ∈ A,

nA∑
i=1

nA∑
j=1

φij ≤ Γ,

0 ≤ φij ≤ n.

Then, by applying the strong duality theorem, we can substitute inner optimiza-
tion problem by its dual:

min Γα +

nA∑
i=1

nA∑
j=1

rij ∀i, j ∈ A,

α + rij ≥ D̂ij,

α, rij ≥ 0.

The robust problem becomes:

min

(
Γα +

nA∑
i=1

nA∑
j=1

rij +

nA∑
i=0

nA+1∑
j=1

nR∑
k=1

xijkD̄ij

)
∀i, j ∈ A, (25)

zj ≥ zi + ti + D̄ij + (xijk − 1) ∗M + D̂ijζij ∀i, j ∈ A, (26)

α + rij ≥ D̂ij ∀i, j ∈ A, (27)

α, rij ≥ 0 ∀i, j ∈ A. (28)

4 FUTURE WORK AND PERSPECTIVES

With the interests of improving the HHC and managing the flow of information
concerning the patients, everyone agrees that HHC approach, in general, has reached
a stage where it is more than necessary to cross a new stage in order to be able to
address the new challenges to be faced for next decades. This new stage is imposed
by technological and digital evolutions and transformations (big data, Internet of
Things, cloud computing, etc.).
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The expansion of new communication and information technologies and the
evolution of logistics activities and emergence of HHC services entail the need of
restructuring, relocating and grouping in the forms of interest and management
centres. The ultimate aim is to facilitate the interactions of all involved actors and
performing common activities concerning HHC such as cares, housework, catering,
etc. efficiently (see Figure 1).

Figure 1. HHC system architecture

To do so, it is required to develop organizational solutions allowing to have the
right service in the right place and at the right time. Figure 1 presents an architec-
ture of such solution that will be developed in our future research as a continuation
of our current work presented in this paper. It is a collaborative platform that will
integrate the proposed optimal solutions in this paper in order to further contribute
to improving stakeholder performance and managing activities successfully. This
platform will be based on the deployment and integration of new information and
communication technologies, and on the adoption of new management and planning
methods based on optimization models as developed in this paper.

This solution, based on the emergence of new efficient, reliable and quality
services, should make it possible to achieve objectives such as:

• facilitate the services and logistics activities of the involved actors (mobility,
management, coordination, planning, etc.),

• responsiveness managing, adaptability, agility and reconfigurability,
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• management and sharing of resources (material and human) in a more organized
and optimal way,

• facilitate decision-making,

• gain in terms of time and efficiency.

The information sharing approaches and platforms we have developed recently in [67]
and [68], for the management of logistics flows and transportation services, will be
adapted and served as a basis of this new platform (Figure 1). This is a promising
solution for managing HHC daily activities and scheduling tasks and associated
services which are often fluctuating.

5 CONCLUSIONS

This paper deals with the formulation of new optimization models for a home health
care scheduling problem. These models take into account uncertainties in the man-
agement of activities of caregivers within HHC. Two robust formulations are pro-
posed and can be solved easily using Cplex solver.

Due to the NP hardness of the considered problem, the proposed MIP models
are able to solve instances with more than 20 patients approximately. So, as per-
spective, we will develop a metaheuristic approach to solve large problem instances.
And as aforementioned, we will focus in our future work on the development and
implementation of a collaborative platform for information and resources sharing in
HHC systems. Based on the obtained optimal solutions from optimization models
associated with new technologies, this innovative platform will gear to improvement
of the quality of the healthcare for patients while involving different, complementary
and distributed actors.
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[55] Souyris, S.—Cortés, C. E.—Ordóñez, F.—Weintraub, A.: A Robust Op-
timization Approach to Dispatching Technicians Under Stochastic Service Times.
Optimization Letters, Vol. 7, 2013, No. 7, pp. 1549–1568, doi: 10.1007/s11590-012-
0557-6.

[56] Yuan, B.—Liu, R.—Jiang, Z.: A Branch-and-Price Algorithm for the Home
Health Care Scheduling and Routing Problem with Stochastic Service Times and Skill
Requirements. International Journal of Production Research, Vol. 53, 2015, No. 24,
pp. 7450–7464, doi: 10.1080/00207543.2015.1082041.

[57] Agra, A.—Christiansen, M.—Figueiredo, R.—Hvattum, L.M.—

https://doi.org/10.1007/978-1-4419-1642-6_14
https://doi.org/10.1007/978-1-4419-1642-6_14
https://doi.org/10.1016/S0305-0548(97)00085-3
https://doi.org/10.1016/S0305-0548(97)00085-3
https://doi.org/10.1016/j.ejor.2003.07.007
https://doi.org/10.1007/s10107-003-0396-4
https://doi.org/10.1007/s10107-003-0396-4
https://doi.org/10.1287/opre.21.5.1154
https://doi.org/10.1016/S0167-6377(99)00016-4
https://doi.org/10.1016/S0167-6377(99)00016-4
https://doi.org/10.1016/j.ejor.2014.07.048
https://doi.org/10.1287/trsc.1110.0387
https://doi.org/10.1016/j.cie.2011.10.001
https://doi.org/10.1080/07408170701745378
https://doi.org/10.1287/opre.1120.1136
https://doi.org/10.1007/s11590-012-0557-6
https://doi.org/10.1007/s11590-012-0557-6
https://doi.org/10.1080/00207543.2015.1082041


306 A. El-Amraoui, S. Harbi, A. Nait Sidi Moh

Poss, M.—Requejo, C.: The Robust Vehicle Routing Problem with Time
Windows. Computers and Operations Research, Vol. 40, 2013, No. 3, pp. 856–866,
doi: 10.1016/j.cor.2012.10.002.

[58] Montemanni, R.—Gambardella, L.M.: A Branch and Bound Algorithm for
the Robust Spanning Tree Problem with Interval Data. European Journal of Opera-
tional Research, Vol. 161, 2005, No. 3, pp. 771–779, doi: 10.1016/j.ejor.2003.10.008.

[59] Chassein, A.—Goerigk, M.: On the Recoverable Robust Traveling Sales-
man Problem. Optimization Letters, Vol. 10, 2016, No. 7, pp. 1479–1492, doi:
10.1007/s11590-015-0949-5.

[60] Minoux, M.: Solving Some Multistage Robust Decision Problems with Huge Implic-
itly Defined Scenario Trees. Algorithmic Operations Research, Vol. 4, 2009, No. 1,
pp. 1–18.

[61] Minoux, M.: Models and Algorithms for Robust PERT Scheduling with Time-
Dependent Task Durations. Vietnam Journal of Mathematics, Vol. 35, 2007, No. 4,
pp. 387–398.

[62] Minoux, M.: Robust Linear Programming with Right-Handside Uncertainty, Du-
ality and Applications. In: Floudas, C., Pardalos, P. (Eds.): Encyclopedia of Opti-
mization. Springer, Boston, MA, 2008, doi: 10.1007/978-0-387-74759-0 569.

[63] Remli, N.—Rekik, M.: A Robust Winner Determination Problem for Combi-
natorial Transportation Auctions Under Uncertain Shipment Volumes. Transporta-
tion Research Part C: Emerging Technologies, Vol. 35, 2013, pp. 204–217, doi:
10.1016/j.trc.2013.07.006.

[64] Lamine, E.—Bastide, R.—Bouet, M.—Gaborit, P.—Gourc, D.—
Marmier, F.—Pingaud, H.—Schneider, M.—Toumani, F.: Plas’O’Soins:
An Interactive ICT Platform to Support Care Planning and Coordination
Within Home-Based Care. IRBM, Vol. 40, 2019, No. 1, pp. 25–37, doi:
10.1016/j.irbm.2018.10.015.

[65] Zhang, L.—Bouchet, P.Y.—Lamine, E.—Fontanili, F.—Bortolaso, C.—
Derras, M.—Pingaud, H.: Home Health Care Daily Planning Considering
the Satisfaction of All the Stakeholders. 2019 International Conference on Indus-
trial Engineering and Systems Management (IESM), IEEE, 2019, pp. 1–6, doi:
10.1109/IESM45758.2019.8948201.
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