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Abstract. Industrial companies are more and more interested in the use of arti-
ficial intelligence (AI) in the control and monitoring of their processes. They try
to take advantage of the power of this technology in order to increase the level of
automation and to build smarter machines with new capabilities of self-adaptation
and self-control. Especially, the automotive industry, with their high requirements
in productivity and diversity management, are eager to adapt AI concepts to their
processes. However, the training of Deep Learning (DL) models requires an impor-
tant effort of data preparation, providing a dataset of all possible configurations.
Indeed, this dataset must be collected and then annotated. Considering the fact
that automotive industry deals with a huge number of references and that it often
and quickly needs to modify their products, it is very difficult, if not impossible,
to gather sufficient datasets for each produced reference and to have the time to
train DL models in the plants with the traditional methods. This paper presents an
innovative methodology to prepare the dataset by creating virtual images instead
of collecting real ones and then automatically annotating them. It will demonstrate
that this method will reduce the efforts and the time of the preparation of the
dataset significantly. The paper will also present how this method was deployed for
the quality control of welding operations in the automotive industry.

Keywords: Industry 4.0, automatic annotation, dataset generation, automotive
industry, welding, artificial intelligence, deep learning

1 INTRODUCTION

New industrial machines are now more and more equipped with computer vision
applications that are based on artificial intelligence (AI). In the context of the au-
tomotive industry these machines are now designed to be reconfigurable to produce
a vast amount of parts references. Computer vision modules equipped in these
machines need to have a set of trained models corresponding to the different refer-
ences that are produced by each machine in order to be able to work properly. To
train these different models, the process engineers need to collect datasets for each
produced reference on each machine and then annotate them (i.e. describe what is
present in each image). These datasets are tricky to create as they must cover all
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the possible configurations for each reference and all the possible variations to the
production environment (e.g. changes to the lighting or to the background). Not
only is this process time-consuming but also extremely prone to annotation mistakes
especially in large datasets. Furthermore, this process must be repeated for each ref-
erence making it extremely repetitive. Reducing the time needed for the collection
of these datasets becomes a priority for the viability of the industrial applications.

The main contribution of this paper is to propose a methodology to automate the
preparation of the datasets that will be used to train Deep Learning (DL) models
for new parts references by creating realistic synthetic images and automatically
annotating them.

This methodology is being deployed in the plant of a tier one automotive supplier
for the quality monitoring and trajectory adjustment of welding operations.

The paper is organized as follows: In Section 2, we present the use-case of
a welding operation, its quality challenges and how the use of a DL based approach
allows us to improve the quality of welding operations, and we expose the problem
of dataset preparation for new references. Then in Section 3, we will discuss our
proposed methodology to generate the datasets by using synthetic images rendered
in a virtual environment instead of real ones and by the automation of the entire
workflow. Finally, we will present considered future work.

2 THE DEVELOPED DEEP LEARNING SOLUTION
FOR ROBOT TRAJECTORY ADJUSTMENT
IN WELDING PROCESSES AND ITS LIMITATIONS

The case study concerns an assembly operation by welding in an automotive supplier
plant. The welding operation is caried out by robots. For this case study the target
was to locate a welding edge of a set of identical parts. Since this edge is specific
and unique in terms of thickness and length, as a part of the whole welding process,
the involved robot could be trained with a Deep Learning approach to classify the
images to locate the edges to weld parts. Therefore, an image classification approach
could be used as an alternative to complex edge detection methods.

2.1 The Deep Learning Solution

A neural network based on the MobileNets [1] model definition was used to decide
if the edges that need to be welded together are present in 3 distinct areas in each
Region of Interest. These areas are called zones A, B and C (see Figure 1). Thus,
based on the presence or absence of the edge in each different zone, we will determine
the robot’s welding trajectory adjustment.

To train the deep learning model we needed at least 2 000 photos of the parts
that are going to be welded (equal to 2 weeks of production, as each day the plant
produces 250 parts). After collecting our dataset, the regions of interest representing
the welding seams had to be cropped. Then, these crops were annotated manually
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Figure 1. Layout of the overlapping zones A, B and C

to indicate whether a welding seam is present in one or in multiple defined zones in
the image.

This way the model was trained to determine if the welding seam is present in
any of those areas, and depending on the combination of presence/absence predic-
tions, an offset is calculated and transferred to the robot to adjust its trajectory.
An application for patent delivery has been submitted for this solution.

2.1.1 First Experimental Results and Limitations

First experimental results. The validation of this solution was done by a proof
of concept to study the functionality and to analyze if it returns what it is
intended. The System was installed at Faurecia Columbus South in the United
States of America, on a line where mislocated welds were the main reason for
reworks (over 90% of reworked parts).

The plant had a rework rate of 7% and the objective was to reduce this number
at least by half. This proof of concept was turned on at the beginning of the
year 2020 and we can clearly see a huge impact on the rework rate – from 7%
to approximately 1% after 4 weeks of production (see Figure 2).

Then, after six full weeks of production, we turned off the system to see the effect
of disabling Robot Trajectory Auto Adjustment. We can see that from week 12
the number of reworks has increased to reach 6%. The algorithm prediction
was monitored regularly to keep track of the accuracy. After each cycle, all
the values of offset were saved in text file and then analyzed in order to make
a comparison between the ground truth and the value predicted.

Real dataset limitations. Data collection is the most important phase when aim-
ing to train a neural network (supervised learning). It consists of gathering
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Figure 2. Rework rate before and after switching on the system

a large dataset so it can be annotated and only then the model can be trained.
In this industrial application this phase can take up to 2 weeks of production
to gather the needed amount. Indeed, on the production line it is not always
the same part reference that is produced. In the context of automotive tier one
suppliers, a large variety of references are produced by the same machines and
the process of gathering images that cover all the possible variations might take
a lot of time.

Variation can be either in the geometry, the dimensions or the localization of
the welding area which we analyze. We talked about implementing a deep learning
method using MobileNets model to detect and calculate if the welding edge has
moved and send the necessarily offset to the robot. However, this approach was
only effective on simple pieces because we had a rich dataset that contains all the
possible variety, but it does not have the same effectiveness when we work on complex
parts. This lower efficiency is due to the lack of the variety of images in the training
dataset. So, by creating a virtual dataset we can enrich our dataset and create
a more accurate model.

3 THE PROPOSED APPROACH

One of the most hindering points in this application is the fact that for every new
reference to be added a new Deep Learning model must be trained. And in order
to do that new training, a dataset with images of that reference must be generated.
The generation of that new training dataset requires approximately 2 weeks in this
application. So, in order to reduce this delay, the usage of simulated images in the
training phase is being considered as a viable solution.

The training dataset will be generated using a software developed internally
(based on the Unity 3D engine). This software takes as input configured CAD
models of the parts/systems, their environment/machine and configuration data for
the simulation and generates the corresponding annotated image dataset.
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3.1 CAD Models

As mentioned by Posada et al. [2] CAD models that are used in industrial applica-
tions (solid or shell) are usually overly detailed as they represent the exact shapes
of the products. So, in order to optimize the memory usage and the performance of
our solution, the models need to be simplified. To do so, and to be able to render
realistic images, the CAD models need to be converted to a shell model format that
is readable by the Unity 3D engine (.fbx or .obj files in our case). The generated
meshes must then be simplified/optimized.

In our application the CAD files are originally created in the CATIA software
and are available in the CATProduct/CATPart file formats which need to be first
converted to .STL or similar shell file formats (.obj or .fbx in our case) to get the
meshes needed for the rendering of realistic images.

3.2 The Considered Variations

To make sure that our dataset covers all possible configurations that can be ob-
served in real-world images and that our trained models will become as robust as
possible to these variations, the simulation environment will be randomized before
the generation of each image. This domain randomization [3] is completely config-
urable before launching any dataset generation process. These are the considered
variations that we will be randomizing in our generated datasets.

Lighting. We will be randomizing a few settings that will impact the lighting of the
scene. These settings include the number of light sources, their types (area, spot,
directional, point), intensity, color, range and their pose (position/orientation).

Figure 3. Images of different lighting settings of the same test environment. In this envi-
ronment we placed a sphere with a background and two light sources to show the effect of
variating lighting settings on sample images.

Blurriness. In some situations, the images captured by the camera can get slightly
blurry and if not taken into account while creating the dataset this can lead to
some overfitting. So, we decided to add a depth of field effect to the simulated
cameras to randomly add blurriness to some images.

Noise. Random noise will be added to the rendered images to make sure that the
trained model’s inference results will be the same regardless of the noise that
can be applied to the images. This should make the model more robust to noise
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Figure 4. Depth of field effect applied to a sample image

and force it to focus on other features. To achieve this result, the noise type
(Gaussian, Poisson, . . . ), size and colors can be randomized.

Figure 5. Zoom in on a sample image with (left) and without (right) a noise postprocessing
effect

Part’s position and rotation. The aim of this database generation is to get a di-
versified dataset representing different shifts of the part and their annotation,
so this factor is expected to be the most influential on the model’s performance.

a) b) c) d)

Figure 6. Images of the same part with randomized positions and orientations. To create
this environment we placed a cube, a background, and a directional light source. We then
added a noise and a distortion effect to the rendering camera. In a) there is the result
rendering this scene with the original configuration of the cube. In b) we randomized
the rotation of the cube. In c) only the position of the cube was randomized. Lastly, in
d) both the rotation and the position of the cube were randomized.
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3.3 The Workflow

The aim of this proposed approach is to automate most of the dataset generation
approach using an internally developed software to help reduce the time-to-market
of new projects by minimizing the time needed to generate training datasets for new
references.

In order to be able to use the dataset generation software on a new reference,
the following steps must be taken:

New reference’s CAD model optimization and preparation. As specified in
the Secion 3.1, the CAD models need to be converted and simplified before they
can be used in our software. The second step is to configure the materials of
the optimized meshes to make them look as realistic as possible and then to add
the proper behaviors to the different CAD models to specify how they behave
during the simulation. This step should be repeated for each new reference as
every reference has specific properties.

Simulation environment preparation (as close as possible to the real-
world environment). The aim of this step is to use the CAD models of
the machine/production system (or to approximate them if it is not possible
to obtain them) to recreate a simulation environment for the generated images
of our parts to be as realistic as possible in terms of objects placement in the
scene [4] or in terms of 3D rendering (in our case achieved through the use of
Unity 3D’s High Definition Rendering Pipeline HDRP [5]). To do so, first we
need to gather ground truth images extracted from the cameras in the machine
representing different variations of the environment. Then we must optimize the
CAD models and prepare them by configuring their materials (we chose to use
Physically Based Rendering PBR materials to add to the realism of the gener-
ated images) and adding their behaviors (scripts) to match as close as possible
what is represented in the ground truth images. All that remains is to add the
cameras and lighting sources and configure them accordingly (based on ground
truth images) to obtain the best rendering.

This step (see Figure 7) needs to be done only once per machine. It is not
necessary to reconfigure the environment if we are only adding a new reference
to our production system.

Simulation configuration and dataset generation. Once the environment and
the part’s model have been configured, we specify how the simulation environ-
ment will be randomized to generate a new dataset of training images. A graph-
ical user interface has been added to the software to make this configuration as
intuitive as possible.

Dataset adaptation. The previous annotation process requires a person to manu-
ally indicate if the edge is present in each of the zone. When creating randomized
images, the current version of the developed software also generates the corre-
sponding annotations.
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Figure 7. A visual representation of the preparation of a new environment, in which we
sum up the tasks to be done in order to prepare the CAD files of a new environment

Figure 8. A visual representation of the dataset generation step, in which we sum up the
tasks to be done in order to configure and generate a new dataset

In prior case studies, we focused on object detection dataset and thus our anno-
tation software generates annotation in the form of bounding boxes lists. This
automatic annotation tool needs to be updated to be compatible with the classi-
fication requirement of this application. So, a new script will be added to modify
the generated images (by taking crops of the regions of interest in each image)
and adapt annotations to be ready for training.

The following steps will allow us to automate the annotation of the produced
dataset:

1. Identifying the concerned segments of edges for each Region of Interest on the
CAD model.

2. Placing transparent features on the edge segment corresponding to each Region
of Interest. Each feature will be named with a different label to help with its
identification.
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3. Converting the 3D coordinates of each feature to screen space to get the pixel
coordinates of that feature (the current annotation algorithm gives a list of all
features in the image as bounding boxes with 0 pixels in both width and height).

4. Estimating the slope and y-intercept of the edge based on the pixel coordinates
of the features (for each RoI).

5. Knowing the slope and y-intercept of each edge on the master image which was
used for calibration and the height of every annotation zone (A,B and C) we will
be able decide if the estimated edge in this image is present in each zone and
convert this decision to the annotation “in which zones is the edge present?”.

With this automation we can represent the tasks needed to be done in this step,
as shown in Figure 9.

Figure 9. A visual representation of the dataset annotation’s adaptation that sums up
the tasks to be done in order to adapt the annotation of the dataset

Figure 10 illustrates the expected results of this process on a RoI crop. Steps 1
to 3 will provide us with the pixel coordinates corresponding to each feature. Step 4
will allow us to determine the position of the edge relatively to the crop. And step
5 will determine if the edge is present in each zone and convert the annotation to
the corresponding format.

Figure 10. An illustration of the usage of features to determine the edge’s location

Figure 11 represents the chronological order of the different steps that need to
be taken as well as the inputs and outputs of every step. The first two steps (new
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parts preparation and new environments preparation) can be done separately, and
their results (configured parts/environments) can be saved to add more flexibility to
the process. The last two steps can be repeated as much as needed until the results
satisfy the requirements.

Figure 11. A visual representation of the proposed approach.

3.4 Expected Results of the Proposed Approach

If applied correctly, this approach can result in the generation of highly realistic
images that are automatically annotated and are featuring our parts in a simulated
environment that is as close as possible to the real-world environment.

In order to apply this approach, many tools and softwares need to be developed.
Most of these tools have already been prepared by our team for prior projects. And
we are in the process of adapting them to this use-case.

As this is a work in progress, we cannot yet show any simulated images for this
project. In Figure 12 you can see crops of images of the same parts’ reference in
real-world and in a simulated environment that we prepared for another project/use-
case.

The aim of these images is to show the realism that can be achieved with the
current version of our software.

Please note, that in this case the original images have a resolution of (4 096 ×
3 000) pixels. In addition, these images are crops of the same Region of Interest with
a resolution (140× 200) pixels in these 3 images. Each one of these crops shows the
same edge in a random position. Therefore, even if these images were not meant
to be used in this way, they can showcase how we will apply our approach on the
images that will be rendered later.

As it can be seen in Figure 13, this edge’s position varies from one crop to
another relatively to the 3 zones which were defined based on the position of the
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a) b) c)

Figure 12. Crops of the same Region of Interest (140× 200) pixels in three images: a) is
a crop from a real image that was taken as a reference to create the simulated environment
used to generate the original images that were cropped to obtain b) and c). In these images
lighting, noise, and parts’ positions were randomized.

edge in the Master Image (crop a) in this case). As specified in Section 3.3, the
slope and y-intercept of the edge will be estimated based on the position of trans-
parent features in the 3D model. The script will then be able to automatically
evaluate if the edge is present or not in each of the zones corresponding to the
generated images. These calculations should lead us to the results specified in Ta-
ble 1.

a) b) c)

Figure 13. The position of the edge relatively to the defined zones A, B, and C in each of
the crops a), b) and c)

The different combinations of presence or absence of the edge in zones A, B, and
C will lead to an estimation of the needed trajectory adjustment to minimize the
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Crop a) b) c)

Is the edge present in Zone A? Yes Yes Yes

Is the edge present in Zone B? Yes Yes No

Is the edge present in Zone C? Yes Yes No

Estimated trajectory adjustment 0mm 0mm Depends on calibration

Table 1. Presence of the edge in the different zones represented on each image crop and
the estimated trajectory adjustment based on the combination of presence/absence of the
edge in these zones

rework rate on these parts. This estimation is based on the results of a calibration
process. This calibration process is repeated for each Region of Interest to generate
the adjustment values for each combination. Since these images were generated for
another project, no calibration was done for these parts. Which is why we mentioned
that in Table 1. For crop c) the estimated trajectory adjustment depends on the
calibration process.

3.5 Potential Applications of the Proposed Approach

This approach can be applied to multiple industrial projects and is not limited to
this case study. Our team has been trying to implement it to different applications,
using the internally developed tools. As mentioned in Section 3.3, during the new
parts’ reference preparation phase and during the new environments’ preparation
phase we must specify the behavior of the different components in this environ-
ment/part.

In the current version of our software, it is possible to simulate different behaviors
from which we can mention the randomization of the position and the orientation
of a component relatively to the part or environment. And the presence or absence
of some components of the parts or environments. It is also possible to randomize
some parameters in the shaders of the materials that are affected to the different
CAD models in our parts and/or our environment to add to the randomization of
the simulated images. The combination of these behaviors allows us to create rich
and unique randomized datasets that cover a wider domain, and allow our trained
models to be more robust.

The usage of the behaviors shown in Figures 14 and 15 allows us to create
datasets which are fit to train models for simple visual inspection applications. That
makes it possible to imagine implementing this methodology for other use-cases in
the future.

3.6 Limitations of the Proposed Approach

As promising as this approach can be, it is very challenging to put it in place.
The needed effort/time to develop such generic applications/pipelines should not
be underestimated. Furthermore, the optimization and the preparation of the
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Figure 14. Zoom in on rendered images of components (screws) which have been config-
ured to randomly rotate and/or disappear

Figure 15. Example of a component (yellow plastic cap) being absent (left) or present
(right) during the generation of simulated images

CAD files and the textures/materials needed to make their rendering realistic for
parts and/or for environments can be time consuming and can require a specific
set of skills that are not common in an industrial environment. We also have to
stress the fact that this approach is not necessarily adaptable to all use-cases as
it can be even more challenging to recreate realistic variations in some cases (e.g.
rendering images of defects in visual inspection applications with randomized de-
fects).

4 CONCLUSION AND FUTURE WORK

In this paper, we presented, as a case study, a computer vision application for robot
trajectory adjustment using deep learning for welding processes in the automotive
industry. We discussed the requirements of this application, the approach that was
used to generate and annotate the needed dataset for the training, the results of the
integration of this case study as a proof of concept in a factory, and we exposed its
limitations.
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We then detailed the approach that we will be taking to remediate to this sit-
uation and the expected results once this solution is applied. In future work we
will be adding the environment representing the machine to our image generation
application to create a simulated dataset, train the model on it and then compare
the results on a real test dataset. We will also prepare hybrid datasets by mixing
both real and synthetic images and analyze the impact of using different ratios on
the inference on real-images-only test dataset.

The work in progress concerns the automated dataset generation and annota-
tion. New models will be trained on the randomly generated datasets and a com-
parison of the results of the training on the original dataset and the results of our
proposed approach will be conducted. With the implementation of the proposed
approach, we expect to reduce the time-to-market of newly added references by
reducing the dataset creation time from 2 weeks to approximately one day (includ-
ing new reference’s CAD model optimization and preparation, if the environment
has already been prepared for other references). This estimation is subjective but
based on the time-to-market reduction of prior industrial projects. We also ex-
pect the training metrics to improve as the dataset will be more diversified and
aimed to give a better representation of all the possible variations to the environ-
ment making the inference more robust regarding lighting condition variation and
blurriness.
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