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Abstract. The identification of tumorous tissues in the brain based on Magnetic
Resonance Images (MRI) analysis is a challenging and time consuming task that
highly depends on radiologists expertise. As prompt diagnosis of tumors can often
be inherent to the patient’s survival, it is however crucial to decrease the amount
of time spent on the manual analysis of MRI while increasing the accuracy of the
detection process. To tackle these issues, many research works have already inves-
tigated efficient computer vision systems. They offer new opportunities to assist
health care providers in the establishment of fast and more accurate tumor de-
tection, classification and segmentation. However, often based on deep learning
methods, the development and tuning of these solutions remains time and energy
consuming while inducing a lack of explainability in the decision making system. In
this study, we respond to these issues by solving a brain tumor detection task using
the Selective Search (SS) algorithm coupled with a simplified Pulse-Coupled Neural
Network (PCNN) for visual feature extraction and detection validation. The per-
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formed experiments showed promising results in terms of computational cost and
detection accuracy. This leads to the development of a light-weight brain tumor
detection system.

Keywords: Biomedical imaging, brain tumor detection, pulse-coupled neural net-
work, selective search, differential evolution

1 INTRODUCTION

In recent years, an urgency to assist health-care providers with modern analysis
tools appeared with the increasing amount of recorded cases of cancer worldwide
and the particular high mortality induced by brain tumors [1]. As the analysis
of brain images is a tedious, time consuming and costly process [2], the need for
automatic computer-aided diagnosis systems is growing. The diagnosis task per-
formed by radiologist being prone to misinterpretation and up to a 5% day-by-day
error rate [3, 4], assisting their decision making could allow to make early tumor
detection more accurate, anticipate a potential therapy and decrease the costs of
cancer care. The advances in computer vision and the growth of open-source med-
ical data has brought a major breakthrough in the development of such system
based on medical image analysis. Deep learning is one of the most preeminent
domain contributing to these advances. It takes the form of Artificial Neural Net-
works (ANNs) modeling to solve medical vision tasks such as disease detection,
unhealthy tissues classification or MRI segmentation. Although, these deep learn-
ing based methods seem to be remarkably accurate when solving vision tasks, their
development, optimization and generalization still appear to be tedious. Moreover,
they bring a few limits that do not make them realistically viable in the medical
field.

Firstly, with a dependence to powerful hardware or costly cloud infrastruc-
tures [5], they bring along a cost efficiency problem that prevents their deployment
in domain with limited resources. As hospitals and clinics always aim to reduce
their costs, seeking to incorporate these expensive solutions to their image analysis
environment could be very difficult. Secondly, training ANNs for computer vision
often requires a need for large datasets [6], which can be hard to find in the medical
field because of ethics and privacy protecting patients data. As most of the state-
of-the-art medical image analysis methods are supervised, these datasets also need
to be labelled, which complicates even more their collection. Finally, deep learning
methods face a lack of explainability [7] reflected by the black box property of ANNs
that prevent their deployment in domains where the outcomes of a decision making
system have to be fully understood. Hence, a replacement or modification of deep
learning based methods have to be considered to develop accessible yet powerful
computer-aided diagnosis systems meeting the requirements exposed by healthcare
providers.
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In an attempt to address some of the aforementioned problems, several methods
emerged to step towards more viable medical image analysis solutions. Spike based
systems for computer vision nowadays appear as good competitors to replace ANNs
as they rely on biological models that tackle the lack of explainability and cost
efficiency of deep learning methods. Bio-plausible neural networks such as Convolu-
tional Spiking Neural Networks (CSNN) [8] or PCNN [9] are thus being investigated
as alternatives to ANNs and the number of studies aiming to use them to build
recognition systems is quickly growing. For image processing, the PCNN has been
widely studied. Contrary to any other artificial or spiking neural network, it is
non-trainable and its synaptic weights remain constant. This behaviour allows such
network to output quickly and deal with different tasks without having to modify
its structure completely. Studies on its applicability to segmentation and detection
tasks were successfully investigated [10, 11]. Mostly developed to perform grayscale
image segmentation, some modified PCNN models appeared to increase the range
of its applicability and decrease its computational cost. From feature extraction
[12] to image fusion [13] the use of such network in the development of fast medical
image processing systems is yet to be investigated. Taking advantage of their com-
putational speed, PCNN models can be coupled with Machine Learning classifiers or
region-based segmentation methods to create accurate and scalable tumor detection
systems. The simple structure of PCNN models also encourages the implementation
of medical image analysis processes on cost efficient embedded systems. Our work
thus provides an implementation of such system.

In this paper, we first propose an introduction to a PCNN based image pro-
cessing scheme for MRI sequence fusion and visual features extraction. Then we
discuss the development of a brain tumor detection process by coupling the Se-
lective Search (SS) algorithm, the PCNN feature extraction and a distance based
validation. Finally, we discuss the optimization of our proposed method with the
use of an evolutionary algorithm by tuning the PCNN parameters to fit an objective
criteria.

2 THE PCNN MODEL

A recent interest for Spiking Neural Networks (SNN) applied to computer vision
motivated the investigation of PCNN for medical image processing. By making
spatially connected neurons fire together to group pixels with similar intensities,
these networks can be particularly efficient for segmentation or clustering tasks.
The standard PCNN model is a network of laterally connected neurons, all linked to
image pixels. The network is divided into three parts, namely the feeding receptive
field, the linking modulation and the pulse generator, as shown in Figure 1. The
receptive field part is responsible for the input reception and divides it into a feeding
channel Fij that takes an external and local stimulus and a linking channel Lij that
takes a local stimulus. The input takes the form of a grayscale image Sij in which
each pixel at position (i, j) is represented by one neuron in the network. The pulsing
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process of the PCNN being iterative, the feeding and linking channels dynamics are
described by the following equations at the nth iteration:

Fij[n] = exp−αf Fij[n− 1] + VF

∑
k,l

Mij,k,lYij[n− 1] + Sij, (1)

Lij[n] = exp−αL Lij[n− 1] + VL

∑
k,l

Wij,k,lYij[n− 1] (2)

where Yij[n] is the output pulse of a neuron, M and W are constant synaptic weight
matrices and (k, l) refers to neighboring neurons. VF and VL are the voltage potential
of the channels and αF , αL are their attenuation time constants.
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Figure 1. The standard pulse-coupled neural network

In the linking modulation part, both feeding and linking signals are grouped and
sent to the internal activity Uij of the neuron, which is described as:

Uij[n] = Fij[n](1 + βLij[n]) (3)

where β is the positive linking parameter. Finally, in the pulse generator, Uij is
compared to a dynamic threshold θij to make the neuron fire by setting Yij to 1 if
Uij > θij as:

Yij[n] =

{
1, Uij[n] > θij[n],

0, otherwise,
, (4)

θij[n] = exp−αθ θij[n− 1] + VθYij[n] (5)

where Vθ and αθ are the voltage potential and the time attenuation constant of the
dynamic threshold. This standard form of the PCNN was proven to be efficient for
image processing [14] but setting its parameters remains a tedious task to automate.
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Some modified versions of it aimed to reduce its amount of parameters to make it
suitable for other type of computer vision tasks like classification or image fusion.

3 PROPOSED METHOD

If it mostly proved its efficiency towards solving simple binary and multi-channel
segmentation tasks, some modification in a PCNN’s structure can let it be used to
perform different tasks such as image fusion or feature extraction. In this study,
we also prove that these models can be coupled with region proposal algorithms to
solve tumor detection problems.

3.1 Multi-Channel PCNN Based Medical Image Fusion

Scanning the human body in search of a tumor or any unhealthy group of cells
often requires the acquisition of a set of images with different appearances. These
sets, also called sequences, are obtained using different radiofrequency pulses and
gradients and allow an in-depth analysis of the body part being scanned. The
most common types of acquisitions found in open-source brain MRI datasets include
the T2-weighted (T2), the T2 Fluid Attenuated Inversion Recovery (FLAIR), T1-
weighted (T1) and post-contract T1-weighted (T1c) sequences. Clinical experts
can take advantage of this amount of data by studying each image individually.
However, building a computer-aided analysis system taking multiple sequences at
the same time can lead to heavy computational workloads. In this work, the BraTS
2020 dataset [15] was used as it comprises all four mentioned sequences along with
a ground truth segmentation map for each brain scan. This dataset is composed of
pre-operative MRI scans of glioma cases manually segmented by 3 to 4 raters. As
it was originally designed as a support to build fully automatic high-grade and low-
grade glioma segmentation systems, we extended the dataset by creating ground
truth bounding boxes for each MRI slices using the segmentation map provided.
These bounding boxes were only set to catch the whole tumor structure as our work
did not aim to detect tumor sub-regions.

In computer vision, fusion techniques are used to fasten data processing and
analysis, aiming to create one single image out of multiple ones by keeping the
amount of information underlying each of them. Some recent works using image
fusion in the medical field relied on the use of discrete wavelet transform (DWT) [16,
17]. When using this method, a template sequence first has to be used for reference to
match the histograms of the other sequences to it. Then, the sequences are fused by
pair and the resulting fused images are fused again until obtaining one single image
containing information from all of the latters. This process illustrated in Figure 2
can be time-consuming and does not allow the processing of a large amount of data
when facing the availability of limited resources. To replace or improve this method,
the m-PCNN [18, 19] was proposed to fusion MRI and Computerized Tomography
(CT) scans.
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Figure 2. Fusion process of a 4-sequence MRI scan from the BraTS dataset by the discrete
wavelet transform

In the m-PCNN the linking modulation is replaced by an information fusion
layer that receives multiple inputs and merged them into the internal state of the
neuron. This new part is the key behind m-PCNN performances for image fusion
as it allows the network to receive multiple input at the same time in the feeding
receptive field. While the dynamics of the threshold and the pulse generator are the
same as in the standard PCNN model presented above, for a fusion of k = 4 MRI
sequences, m-PCNN defines the neuron internal activity Uij and the fusion channel
Hk

ij as:

Uij[n] = Mk(Y [n− 1]) + Sk
ij, (6)

Hij[n] =
K∏
k=4

(
1 + βkHk

ij[n]
)
+ σ (7)

where Mk is a weight matrix, βk is a weighting factor to increase or decrease the
importance of one particular sequence during the fusion process. σ is the level factor
that controls the average level of the internal activity. Without a linking channel,
the m-PCNN is easier to tune than the standard model as it reduces the amount
of parameters. In the case of the fusion of our 4 sequences taken from the BraTS
dataset, we apply the same parameters as in [19] except for each βk. Indeed, in order
to help the detection process, we first tuned these parameters to let the FLAIR and
T2 sequences be more important during the fusion process because they provide
higher intensities to voxels representing unhealthy tissues. Note that each scan in
the dataset has been registered. Without registration this fusion process would imply
the presence of visual anomalies caused by a wrong layering of the images. Figure 3
shows one MRI slice taken from the dataset with all 4 sequences along with the
fused image obtained by m-PCNN with {β1, β2, β3, β4} = {0.8, 0.3, 0.3, 0.8}, where
1, 2, 3 and 4 corresponds to the FLAIR, T1, T1c and T2 sequences respectively.
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Figure 3. 4 sequences of a random MRI slice taken from the BraTS 2020 dataset and the
fused sequence obtain by m-PCNN

3.2 Fast-Linking Spiking Cortical Model for Feature Extraction

By keeping track of its pulsing activity, a PCNN model can be used as an efficient
feature extraction model [20]. This idea was first introduced by McClurkin et al. [21]
in a work where they studied a macaque’s neural response to colour and pattern
stimuli individually. They discovered the creation of pattern in the subject’s brain
that were correlated to precise input stimuli. The response to a combination of
patterns and colours stimuli was shown to be the multiplication of both individual
stimulus. These findings led Johnson [22] to investigate the use of PCNNs to encode
images into univariate time series called Image Signatures (IS) composed of the sum
of all spikes at each n iteration. These signatures are specific to shapes that can be
found in the image.

This feature extraction method has the advantage of being fast and to provide
smaller representation of the original data which can be crucial in environment with
limited memory. This makes it particularly interesting to build cost-efficient image
analysis systems. An important quality of an IS is that it contains sub-signatures
of objects held in the image it represents. Generally, the IS of an image displaying
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an object is the summation of the background IS with the object IS. Although
this induces a sensitivity to complex background, retrieving the sub-signature that
defines a particular object can still be done using the entire image signature. Hence,
we assume that PCNNs can be used to retrieve meaningful information in MRI slices
in order to build a brain tumor detection system. This is illustrated in Figure 4 in
which the signature of an MRI slice from the BraTS dataset is compared with the
signature of a sub-region extracted using the ground truth map. The figure shows
that the signature obtained from the patch is clearly identifiable within the MRI
slice IS and thus motivates the use of IS in brain tumor detection systems. This
process was firstly successfully used to solve object recognition tasks [23, 24] by
computing the Euclidean distance between a global IS representing the entire image
containing the object to detect and local IS representing small patches within the
image. This method works well for objects with well defined edges and when a high
contrast exist between the background and the object to identify. However, without
an optimization scheme for the PCNN parameter tuning and the right strategy to
find the right patch size this method appears tedious to adapt to the medical field
where the object to detect does not stands out of the background or does not have
refined edges.

0 20 40 60 80 100 120

0

10
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30

40

50 MRI slice signature
Tumor patch signature

Figure 4. The local image signature of a sub-region containing a tumor compared to the
image signature of the MRI slice

To make the parameter initialization easier and build a faster feature extraction
model, we proposed the use of a modified version of the standard PCNN called
Fast-linking Spiking Cortical Model (FLSCM) [25]. This model is based on the
neuronal activity of spiking cortical neurons and combines an external stimulus with
a synaptic modulation from neighboring neurons to drive membrane potentials. In
this network, the feeding channel and the linking channel are removed and the
dynamics of the cortical neuron for IS creation is described as:

Uij[n] = αUUij[n− 1] + Sij(1 + γ
∑
kl

WijklYkl[n− 1]), (8)
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θij[n] = αθθij[n− 1] + hYij[n], (9)

Yij[n] =

{
1, Uij[n] > θij[n− 1],

0, otherwise,
(10)

θij[n] = θij[n− 1]− δ, (11)

S[n] =
∑
ij

Yij[n] (12)

where S is the obtained image signature. αU and αθ are the attenuation constants
of the membrane potential and the threshold. h is the refractory period of the
neuron and δ a decay factor. Here, the linking coefficient γ is defined as a factor of
a Laplacian operator. This model allows similar neurons to fire faster and performs
better than a standard PCNN. For feature extraction we first implemented this
model without a fixed iteration number, instead, the model was ran until every
single neuron fired, allowing to represent each pixel intensity group within the obtain
signature. By analysing the time series we then set the number of iterations to
n = 125 as only after this threshold the neurons associated with low intensities
corresponding to healthy tissues were able to fire. A moving average smoothing was
also used to remove the noise caused by neurons spiking individually and to enhance
the exposition of high intensity pixels. For all the experiments carried in this work,
the parameters were set as in [25], creating IS of 258 values before clipping the
number of iterations. An example of an IS obtained from an MRI slice using the
FLSCM is shown in Figure 5.
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Figure 5. a) An MRI slice and b) its image signature obtained with FLSCM feature
extraction
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3.3 Tumor Detection

A major problem to solve when using PCNN for an object detection task lies in the
choice of the right patches to build local signatures. In the work of Gu [23], a sliding
window is used to produce the sub-region signatures and find objects contained in the
studied images. In this method, the width and height of the window are incremented
until a match is found between the local and the global signature. For a tumor
detection process, this method appears to be non-viable and counter productive.
Indeed, extracting overlapping patches of fixed sizes in each MRI slice would be
computationally expensive and would not allow to obtain a pixel perfect detection as
the shape of tumors is not necessarily squared. To fit this method to the problem we
expose in this work, both width and height of the window should be incremented or
decremented at each iteration leading to an even more complex algorithm. Instead,
a segmentation based algorithm could be used to extract information out of an MRI
slice before computing the detection task.

Region proposal algorithms have gathered attention in deep learning [26] to
avoid generating and testing a multitude of sizes for detection bounding boxes. The
Selective Search (SS) algorithm [27] is one of them. It relies on a graph-based
segmentation method proposed by Felzenszwalb and Huttenlocher [28]. It groups
similar parts of the image by using different strategies like colour space and texture
analysis. The advantages of the SS for medical image analysis is its computational
speed and its ability to create box proposals with different width and height. Using
SS for tumor detection allows us to drastically decrease the computational workload
of the algorithm and create a faster detection process.

For a complete tumor detection using SS and PCNN feature extraction, the
proposed algorithm is thus given as:

Step 1: Compute Selective Search on M to create Bij bounding boxes.

Step 2: Remove boxes with area greater than threshold θ.

Step 3: Extract image patches Pij from the boxes.

Step 4: Convert each Pij to signature Sij.

Step 5: Compute the Euclidean distance between each Sij and the signature Msign

obtained from M .

Step 6: Retain Bmin the box that gives the smallest distance Dmin as the complete
tumor detection box.

Here the threshold θ was obtained after experimental observations and by ac-
counting the average volume of a glioma tumor, which is the type of tumor contained
in the BraTS dataset. The setting of a threshold allows to eliminate large box can-
didates and reduce computational cost.
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4 EXPERIMENTAL STUDY

To evaluate the performances of our proposed detection method, we took a set of
MRI cases from the dataset and ran the algorithm on all slices. We ran several
experiments to build intuition in the setting of the PCNN parameters during both
fusion and feature extraction and analyse their importance during the detection
process.

4.1 Detection Accuracy and Parameter Tuning

Since our method is not relying on a ground truth to validate the choice of a bound-
ing box, no accuracy evaluation is performed during the detection process. However,
in order to prove the efficiency of the model we took advantage of the BraTS dataset
and extended it by automatically attaching bounding boxes to each ground truth
segmentation map. With this new information, we measured the accuracy of a de-
tection with the Intersection over Union (IoU) metric described as:

IoU =
B ∩G

B ∪G
(13)

where B is the predicted bounding box and G the ground truth bounding box. As
the detection validation process is mostly based on PCNN models, the importance
of parameter tuning was crucial as identifying the tumor’s edges is determinant for
the right segmented areas to stand out when computing the Felzenszwalb algorithm.
Indeed, applying the right over-segmentation can lead to better accuracy as it is often
not necessary to create an important amount of segmented areas. Note that further
pre-processing operations could be applied to the MRI in order to enhance edge
detection and optimize the over-segmentation before the creation of the bounding
boxes. An example of correct and false detection using different fusion parameters
can be seen in Figure 6. We can see that for a badly fused image, the amount of
regions proposed is higher as the fusion process failed to enhance the pixel intensity
of the tumorous region. Hence, this bad parameter initialization is also increasing
the computational cost of the algorithm as the main IS will have to be compared to
every single proposed region.

For this model to aim for better accuracy it is thus crucial to optimize the
fusion process. This can be done using an evolutionary algorithm or by simply
adding a weight factor to sequences that show high contrasts around the tumor and
low ones in any other area of the brain. By setting the parameters manually in
some of our experiments we weighted the FLAIR and T2 sequences as explained
above, but witnessed that low contrast was the key to creating local IS that will
be close enough to global IS to perform an accurate tumor detection. We thus
implemented an optimization process based on the Differential Evolution algorithm.
It was tested on two different fitness functions, one searching to minimize entropy
to induce information gain and an other one to minimize standard deviation (SD)
to decrease high contrast present in healthy regions of the brain scan. In our case,
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Figure 6. Correct and wrong detection using different fusion parameters. Correct de-
tection parameters: {αT , vT , β

1, β2, β3, β4, σ} = {0.015, 20, 0.8, 0.4, 0.4, 0.8, 1.3}. Wrong
detection parameters: {αT , vT , β

1, β2, β3, β4, σ} = {0.005, 20, 0.3, 0.6, 0.1, 0.8, 1.3}.

minimizing the SD worked better and often induced the β associated with the T1c
sequence to be higher than other ones. However, we recorded samples in which
a low SD value would not allow the creation of an appropriate IS, in these cases,
minimizing the entropy appeared to be a better strategy.

4.2 Results and Discussions

Computed on a CPU, the fast bounding boxes proposal provided by Selective Search
allowed our algorithm to take 8 seconds on average to perform the detection on each
MRI slice when the maximum number of boxes was not set. In other experiments,
setting the maximum number of proposals to 10 bounding boxes induced a decrease
in the computational time of the algorithm which led to an average of 3 seconds per
slice.

This emphasizes the efficiency of our method as it ran relatively fast without the
need for GPU power. However, the detection was often not pixel perfect due to the
poor amount of pre-processing operations done to the original data. This made the
algorithm produce a few inaccurate boxes. Note that we decided not to apply any
transformation to each MRI slice to decrease the time needed to perform the entire
process. This however proves the performance of PCNN models without alteration
on the original data. Figure 7 shows a set of successful detection with their IoU
score and their ground truth bounding boxes.

Although the methods performed an accurate detection on slices containing
medium or large tumor areas, the accuracy when searching for very small tumors
in the first and last few slices of each scan appeared to be drastically lower. In
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Figure 7. Example of several successful brain tumor detection. The blue box in each
image corresponds to the ground truth containing the complete tumor and the red box is
the result of our detection method.

fact, these tumorous regions made of only a few voxels can in some cases barely
be identified. Since early and late slices are also only made by small spatially
independent groups of voxels, comparing the entire image signature to any of these
groups would lead to small euclidean distances and thus false the detection process.
This also had an effect on the segmentation performed by Selective Search as the
variation in all types of similarities computed by the algorithm induced the creation
of wrong bounding boxes, this can be seen in Figure 8. Without context around the
tumor area the algorithm thus failed to detect it.

For these reasons, the model was evaluated only on slices that provided enough
contextual information to distinguish tumorous tissues. Every scan in the BraTS
dataset was thus processed by our method and an average IoU score of 0.78 was
recorded. As the algorithm proposed in our work was kept as simple as possible
to obtain low computational workloads we believe some further investigation could
come increasing its performances. We first think that some future works could
improve the detection score by investigating the use of image pre-processing op-
erations to focus enhancing the contrast between tumorous and healthy tissues in
early slices and make the algorithm more sensitive to small clusters of pixels cor-
responding in the tumor area. A multi-criteria optimization based on a genetic
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IoU Score : 0.08
Predicted box
Ground truth box

Figure 8. Wrong detection of a tumor in an early slice of a BraTS MRI scan caused by a
lack of contextual information

algorithm could also be applied during the fusion process to find a balance between
reducing the contrasts by minimizing the SD of the image while minimizing the
entropy at the same time or by basing the fitness function on Mutual Informa-
tion.

Extending this work to a multi-label detection process could also be done by
running the algorithm again on the predicted image patches and tuning the fusion
process to enhance specific tumorous regions. Our experiments showed that when
the fusion process was highly influenced by the T1c sequence, the algorithm was
able to detect the boundaries of the core tumor region. In contrast, letting the
FLAIR and T2 sequences influence the fusion more than other sequences led to
better accuracy in detecting the complete tumor. Note that this approach can
only provide meaningful results when the first IoU score is highly greater than 0.5.
Indeed, a score greater than 0.5 would insure that the majority of the tumor lies
within the patch and the algorithm could be used to find inner structures. For that,
however, the patch would have to go through the same processing operations as the
entire MRI slice before and the PCNN models would have to be retuned. A classifier
like the Support Vector Machine could then be used to label each sub-region leading
to the creation of a full computer-aided diagnosis system.
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5 CONCLUSION

In this work, we studied the development of a new method to build a fast and
lightweight brain tumor detection system in order to address the limitations brought
by most deep learning methods found in the state-of-the-art. Aiming to meet the
requirements exposed by healthcare providers in terms of cost efficiency and explain-
ability, we first reviewed the use of the PCNN model for computer vision. We dis-
cussed its applicability to image fusion while highlighting the importance of tuning
its parameters to increase the performance of the visual task to perform. A modified
version of this model was also investigated to produce a feature extraction method
and obtain a new representation of an open-source brain image dataset. By cou-
pling this model with the Selective Search algorithm, a region proposal algorithm,
we were able to prove the effectiveness and efficiency of our method in performing
a complete tumor detection system and gave intuition to enhance the solution by
repeating the process to predicted patches for multi-label brain tumor detection and
by tuning the fusion process.

We proposed the use of the differential evolution algorithm as a mean to op-
timize the medical image fusion in order to increase detection accuracy. Although
our method exposes some bases to build tumor detection system with PCNN and is
perfectible, our results showed that the detection of complete tumors can be done
without training a deep neural network and by tuning a simple spike-based model,
encouraging the development of fast, light and scalable medical image analysis sys-
tems.
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