
Computing and Informatics, Vol. 40, 2021, 1370–1397, doi: 10.31577/cai 2021 6 1370

MULTIFACTORIAL EVOLUTIONARY ALGORITHM
FOR SIMULTANEOUS SOLUTION
OF TSP AND TRP

Ha-Bang Ban, Dang-Hai Pham∗

School of Information and Communication Technology
Hanoi University of Science and Technology
Hanoi, Vietnam
e-mail: {BangBH, HaiPD}@soict.hust.edu.vn

Abstract. We study two problems called the Traveling Repairman Problem (TRP)
and Traveling Salesman Problem (TSP). The TRP wants to minimize the total
time for all customers that have to wait before being served, while the TSP aims
to minimize the total time to visit all customers. In this sense, the TRP takes
a customer-oriented view, whereas the TSP is server-oriented. In the literature,
there exist numerous algorithms that are developed for two problems. However,
these algorithms are designed to solve each problem independently. Recently, Mul-
tifactorial Evolutionary Algorithm (MFEA) has been a variant of Evolutionary
Algorithm (EA) aiming to solve multiple optimization tasks simultaneously. The
MFEA framework has yet to be fully exploited, but the realm has recently at-
tracted much interest from the research community. This paper proposed a new
approach using the MFEA framework to solve these two problems simultaneously.
The MFEA has two tasks simultaneously: the first is solving the TRP problem,
and the second is solving the TSP. Experiment results show the efficiency of the
proposed MFEA: 1. for small instances, the algorithm reaches the optimal solutions
of both problems; 2. for large instances, our solutions are better than those of the
previous MFEA algorithms.

Keywords: MFEA, TSP, TRP, EA

∗ Corresponding author

https://doi.org/10.31577/cai_2021_6_1370

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1371

1 INTRODUCTION

Evolutionary Algorithms are optimization techniques that begin from natural evo-
lutionary inspiration. They have been widely applied to solve problems in various
fields. Currently, a new approach called MFEA [6, 11, 14, 26, 27, 29] has been
developed to incorporate the characteristics of Evolutionary Algorithms into multi-
tasking to handle multiple search spaces of multiple problems at the same time. The
advantage of the approach is that the phenomenon of implicit genetic transfer in
multitasking can exploit the presence of transferrable knowledge between optimiza-
tion tasks, thereby facilitating improved performance characteristics for multiple
tasks simultaneously. Moreover, instead of solving a pool of similar optimization
problems singly, it handles various requests and performs multiple tasks for sys-
tems. Therefore, it decreases the response time, that is one of the most important
keys of the Cloud service from the clients’ perspective.

The TSP [3, 9, 10, 13, 16, 18, 19], and TRP [2, 4, 5, 7, 8, 17, 22, 23] are
combinatorial optimization problems that have many practical situations. In this
paper, we consider the problem in the metric case, and formulate the TSP and TRP
as follows:

Given a complete graph Kn with the vertex set V = {v1, v2, . . . , vn} and a sym-
metric distance matrix C = {c(vi, vj) | i, j = 1, 2, . . . , n}, where c(vi, vj) is the dis-
tance between two vertices vi and vj. Suppose that T = {v1, . . . , vk, . . . , vn, vn+1 ≡
v1} is a tour in Kn. Denote by P (v1, vk) the path from v1 to vk on this tour and
by l(P (v1, vk)) its length. The arrival time of a vertex vk (1 < k ≤ n) on T is the
length of the path from starting vertex v1 to vk:

l(P (v1, vk)) =
k−1∑
i=1

c(vi, vi+1).

In the TRP, the cost of the tour T is defined as the sum of arrival times of all
vertices:

n∑
k=2

l(P (v1, vk)).

In the TSP, the salesman must return to v1. Therefore, the cost of the tour
T is defined as the sum of the length of the path from v1 to vn+1 on this tour:
l(P (v1, vn+1)). Note that: vn+1 ≡ v1.

The TSP and TRP ask for a tour with minimum cost, which starts at a given
vertex v1 and visits each vertex in the graph exactly once.

The TRP wants to minimize the total time for all customers that have to wait
before being served, while the TSP aims to minimize the total time to visit all nodes.
Currently, there exist many algorithms that are proposed to solve them. However,
these algorithms are designed to solve each problem independently. In this paper,
we introduce the algorithm based on the MFEA framework to solve two problems
simultaneously. The major contributions of this work are as follows:

1372 H.B. Ban, D.H. Pham

• From the algorithmic design, we develop a metaheuristic based on the MFEA
framework. Our metaheuristic combines MFEA and Randomized Variable
Neighborhood Descent (RVND), in which MFEA ensures diversification while
RVND maintains intensification. This combination maintains the right balance
between diversification and intensification. It is the first metaheuristic based on
the MFEA framework to solve two problems at the same time.

• From the computational perspective, extensive numerical experiments on bench-
mark instances show that the proposed algorithm reaches good solutions in
a short time for two problems simultaneously. Moreover, it obtains better solu-
tions than the previous MFEA algorithms in many cases.

The rest of this paper is organized as follows. Sections 2 and 3 present the liter-
ature and preliminaries, respectively. Section 4 describes the proposed algorithm.
Computational evaluations are reported in Section 5. Sections 6 and 7 discuss and
conclude the paper.

2 LITERATURE

2.1 MFEA

In the literature, MFEA [6, 11, 14, 26, 29] have been known as a framework that can
effectively solve many optimization problems. The main advantage of MFEA is to
solve multiple problems at the same time. Therefore, it can be applied in a limited
computational system. Furthermore, some articles show that the genetic transfer
has occurred in relevant multitasking tasks to facilitate finding optimal solutions for
multiple problems at the same time [6].

Recently, some variants of MFEA are also introduced. Yuan et al. extended the
first study on evolutionary multitasking [29] to develop evolutionary multitasking
in permutation-based combinatorial optimization problems. They implement it on
some popular combinatorial optimization problems. The experiment results show
the potential scalability of evolutionary multitasking to many-task environments.

One of the first articles is introduced by Bali et al. [6] since they proposed an im-
proved version of this algorithm. This study suggested an online rmp (rmp is the
probability of crossover) estimation technique minimizing the negative interactions
between optimization tasks. Osaba et al. [20] then proposed a dMFEA-II framework
that exploited the complementarities among the tasks, which is often achieved via
genetic information transfer. The experiments on some combinatorial optimization
problems confirm the good performance of the developed dMFEA-II and concur
with the insights drawn in previous studies for continuous optimization. To com-
bine the MFEA framework with the other metaheuristic algorithm, Feng et al. [11]
proposed a mechanism for combining MFEA with Particle SWarm Optimization Al-
gorithm (PSO). In the new algorithm, a new assortative mating scheme is proposed.
At the same time, the other components, such as unified individual representation,
vertical cultural transmission, etc., remain unchanged as in the original MFEA. Xie

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1373

et al. [26] then combined MFEA and PSO in which PSO plays the role of local search
in the Multifactorial Optimization (MFO). Experimental comparisons between their
algorithm and the original MFEA show that the particle swarm update operators
can effectively accelerate the convergence on some benchmark problems.

2.2 TSP and TRP

The Travelling Salesman Problem (TSP) is a popular NP-hard combinatorial op-
timization problem studied much in the literature [3, 9, 10, 13, 16, 18, 19]. The
problem can be formulated as follows: Given a set of cities and the travel costs
between each pair, find the cheapest tour to visit each city exactly once, returning
to the point of origin. In the formulation approach, many algorithms were designed
to minimize the distance of a single-tour vehicle over the past few decades [12, 19].
In an approximation approach, numerous algorithms [9, 16, 18] were proposed in
the literature.

In recent years, the interest in another NP-hard combinatorial optimisation
problem known as the Traveling Repairman Problem (TRP) has grown [2, 4, 5,
7, 8, 17, 22, 23]. Given a metric space with n vertices and a tour starting at some
vertex and visiting all of the others, the waiting time (or latency) of a vertex is de-
fined to be the total distance traveled before reaching it. The Traveling Repairman
Problem (TRP) asks for a tour starting at a root r and visiting all vertices, such that
the total waiting time is minimized. The TRP models routing problems in which
one wants to minimize the average time each customer has to wait before being
served, rather than the total time to visit all vertices, as in the TSP case. In this
sense, the TRP takes a customer-oriented view, whereas the TSP is server-oriented.
Various works were proposed to solve the problem. We can divide them into three
types:

1. The exact algorithms [2, 4, 17] solve the problem with up to 50 vertices;

2. Several approximation algorithms [7, 8] were provided in the literature. The
best approximation ratio known is 3.59. However, their algorithms are quite
a complexity to implement, and the best ratio is not good enough in practical
situations;

3. Heuristic or metaheuristic [5, 22, 23] were used to solve the problem with larger
sizes in a short time.

Figures 1 and 2 show the difference between the TRP and TSP in TSPLIB [30].
The eil51 instance includes 51 vertices that places an x-y-coordinate system on
a plane. In Figure 1, we show the optimal TRP and TSP tours for this instance.
The initial vertex in this instance is vertex 1. In this instance, the optimal TSP
tour’s total waiting time is 4.48 times as large as that of the optimal TRP tour.
In [22], Salehipour et al. show that a good metaheuristic algorithm for the TSP
does not produce good solutions for the TRP and vice versa.

1374 H.B. Ban, D.H. Pham

Recently, in [1], Arellano-Arriaga et al. provided the bi-objective approach that
considers a single-vehicle tour and seeks to minimize the travel time and the la-
tency of that tour simultaneously. They called this problem the Minimum Latency-
Distance Problem (MLDP). Their approach minimizes only one problem with two
objective functions, while the proposed approach minimizes two objective functions
simultaneously.

The above algorithms are the state-of-the-art algorithms for the TSP and TRP.
However, they solve each problem well independently, but they cannot simultane-
ously produce good solutions for two problems. That means the proposed approach
is the first algorithm that obtains two good solutions for both the TSP and TRP.

2.3 The Proposed Approach

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

X

Y

Figure 1. The optimal TSP tour on the eil51 instance

The problem is also NP-hard because it is a generalization case of the TSP
and TRP. For NP-hard problems, there are three common approaches to solve the
problem, namely,

1. exact algorithms,

2. approximation algorithms,

3. heuristic (or metaheuristic) algorithms:

• The exact algorithms guarantee to find the optimal solution and take expo-
nential time in the worst case.

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1375

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

X

Y

Figure 2. The optimal TRP tour on the eil51 instance

• An α-approximation algorithm produces a solution within some factor of α
of the optimal solution.

• Heuristic (metaheuristic) algorithms perform well in practice and validate
their empirical performance on an experimental benchmark of interesting
instances.

The problem is NP-hard problem; thus, a (heuristic) or metaheuristic algorithm is
a suitable approach for a short computation time. Previously, several metaheuristics
have been proposed [5, 9, 16, 18, 22, 23]. However, they are designed to solve each
problem independently. That means they cannot solve two problems well at the
same time.

In this paper, we propose a new approach using the MFEA framework to solve
two problems simultaneously. The proposed MFEA has two tasks simultaneously:
the first is solving the TRP problem, and the second is solving the TSP. Experiment
results show the efficiency of the proposed MFEA:

1. for small instances, the algorithm reaches the optimal solutions of both problems;

2. for large cases, our solutions are better than those of the previous MFEA ap-
proaches.

1376 H.B. Ban, D.H. Pham

3 PRELIMINARIES

The concept of multifactorial optimization (MFO) is formalized in [6]. After that,
we describe how to use the concept of MFO in EA briefly. Assume that, we have k
optimization problems needed to be performed simultaneously. Without loss of gen-
erality, all tasks are assumed to be minimization problems. The jth task, denoted Ti,
has objective function fj : Xj ⇒ R, in which Xj is solution space. We need to find k
solutions {x1, x2, . . . , xk−1, xk} = argmin{f1(x), f2(x), . . . , fk−1(x), fk(x)}, where xj

is a feasible solution inXj. Each fj is considered as an additional factor that impacts
the evolution of a single population of individuals. Therefore, the problem also is
called k-factorial problem. For a composite problem, general method for comparing
individuals is necessary. Each individual pi (i ∈ {1, 2, . . . , |P |}) in a population P
has a set of properties as follows: Factorial Cost, Factorial Rank, Scalar Fitness,
and Skill Factor. These properties allow us to sort, and select individuals in the
population.

• Factorial Cost cij of the individual pi is its fitness value for task Tj (1 ≤ j ≤ k).

• Factorial rank rij of pi on the task Tj is its index in the list of population indi-
viduals sorted in ascending order with respect to cij.

• Scalar-fitness ϕi of pi is given by its best factorial rank over all tasks as ϕi =
1

minj∈1,...,k rij
.

• Skill-factor ρi of pi is the one task, amongst all other tasks, on which the indi-
vidual is most effective, i.e., ρi = argminj{rij} where j ∈ {1, 2, . . . , k}.

According to the scalar-fitness, we can compare population individuals in a mul-
titasking environment. The basic structure of the MFEA (presented in Figure 2)
includes main steps: population generation with skill-factor in unified search space,
assortative crossover and mutation operator, skill-factor assignment, and elitist. We
describe the pseudo-code of the basic MFEA in Algorithm 1 as follows: We initialize
Sp (Sp is the size of population) individuals in the unified search space. They then
are evaluated by calculating the factorial fitness and skill-factor of each individual.
After the initialization, the iteration begins with selecting parents for the crossover
and mutation operators. The output of these operators are offsprings. After that,
the skill-factors selected randomly among those of the parents are assigned to those
of the offsprings. Next, the offspring and the parent are merged to create a new
population that has 2×Sp individuals, and finally the Elitist strategy keeps the Sp
best solutions in terms of scalar-fitness for the next generation. The algorithm stops
when the stop condition is satisfied.

Figure 3 shows the difference between the traditional GA and MFEA. In the
MFEA, the crossover and mutation are also applied like the traditional GA. Un-
like the traditional GA, the productions depend on two aspects: 1) the parents’
skill factor and random mating probability (notation: rmp). More specifically,
the offspring is created using crossover from parents that have the same skill fac-
tor. Otherwise, the offspring is produced by a crossover with the random mat-

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1377

A representation

Initiate
Population with

fitness

Evaluate P with
fitness

child=genetic
operator

Add child to P

Elitist (P)

Condition
satisfied

no

yes

the best
solution

A unified
representation

Initiate
Population with

skill-factor

Evaluate P with
skill-factor

Evaluate child
with fitness

child=genetic
operator

Assigne skill-factor
to child

Add child to P

Elitist (P)

Condition
satisfied

no

yes

the best
solution

Evaluate child
with skill-factor

Figure 3. The similarity and difference between EA and MFEA

unified Search Space Y

X1
X2 Xk

F1 F2 Fk

Multifactorial
Optimization

...

...

Design space X

f
1

f
2

f
m...

Multiobjective
optimization

Figure 4. The difference between multiobjective and multifactorial optimization [15]

1378 H.B. Ban, D.H. Pham

ing probability or mutation when parents have different skill factors. A large rmp
creates more knowledge exchanging between two tasks. Also, unlike traditional
GA, the offspring is not evaluated directly. The skill factor is assigned to the off-
spring.

Also, in Figure 4, the MFEA is different from multiobjective optimization. In
multiobjective optimization, only one problem with many objective functions is
solved, while the MFEA aims to optimize many tasks simultaneously. More clearly,
While multiobjective optimization generally uses a single representative space for
all objective functions, the MFEA unifies multiple representative spaces for many
problems.

4 THE PROPOSED ALGORITHM

In this section, we introduce pseudocode of the proposed MFEA to solve two
problems simultaneously. The TSP task is corresponding to a particular task in
MFEA, while another is the TRP task. In the initial step, we created Sp indi-
viduals in the unified search space. Each individual is evaluated by calculating
its factorial fitness and skill factor. After the initialization, the algorithm repeats
these following actions until the stop condition is satisfied. The next step, selec-
tion operator picks parents to crossover or mutate. After the crossover and mu-
tation operators, the offsprings are generated. The skill-factors among those of
the parents are assigned to the obtained offsprings randomly. Next, the offspring
and parent are merged to obtain a new population that has 2 × Sp individuals,
and the Elitist strategy keeps the Sp best solutions in terms of scalar-fitness for
the next generation. In the population, we choose the individual with the best
scalar-fitness to implement RVND procedure. The proposed algorithm is shown in
Algorithm 1.

4.1 Creating Unified Search Space – USS

For two problems, many representations are proposed in the literature. These works
indicate the efficiency of permutation representation in comparison with the others.
In this paper, the permutation encoding is used, in which an individual is represented
as a list of n vertices (v1, v2, . . . , vk, . . . , vn), where v1 is root and vk is the kth vertex
to be visited. Figure 2 depicts this encoding for two tasks.

4.2 Initializing Population

Each tour created randomly takes a role as an individual in the population. There-
fore, we have Sp individuals in the initial population for the genetic step.

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1379

Algorithm 1 MFEA-RVND

Input: Kn, Cij, P, Sp, rmp are the graph, the cost matrix, the population, the size
of population, and probability of crossover operator, respectively.

Output: The best solution T ∗.
Create Unified Search Space – USS;
Init population;
while (The termination criterion of the GA is not satisfied) do
{Genetic operators step}
for (j = 1; j ⩽ Sp; j ++) do
(TP,TM) = Selection(P,NG); {select two parents TM, TP from the popu-
lation}
if TM and TP have the same skill-factor or (rand(1) ⩽ rmp) then
TC1, TC2 = Crossover(TP,TM); {TC1, TC2 are the children}
TC1, TC2’s skill-factors are set to TP or TM randomly;

else
TC1 = Mutate(TP);
TC1 = Mutate(TM);
TC1’s skill-factor is set to TP ;
TC2’s skill-factor is set to TM ;

end if
P = P ∪ {TC1, TC2}; {Add TC1, TC2 to the current population}

end for
Update scalar-fitness for all individuals in P ;
P = Elitism-Selection(P); {Keep the best Sp individuals}
T = Select the best individual from P ;
{RVND step}
convert a solution from unified representation to representation for each task;
RVND(T);

end while
return T ∗;

A solution
(unified representation)

1 2 3 4 ... n

1 2 3 4 ... n 1 2 3 4 ... n

Solution for TSPTW Solution for TRPTW

Figure 5. The interpretation of unified representation for each task

1380 H.B. Ban, D.H. Pham

Algorithm 2 Crossover(TP, TM)

Input: TP , TM are the parent tours, respectively.
Output: A new child T .
type = rand(3);
rnd = rand(3);
if (type==1) then
{the first type crossover is selected}
if (rnd==1) then
TC = PMX(TP, TM);{PMX is chosen}

else if (rnd==2) then
TC = CX(TP, TM);{CX is selected}

else if (rnd==3) then
TC = POS(TP, TM){POS is selected}

end if
else if (type==2) then
{the second type is selected}
if (rnd==1) then
TC = EXX(TP, TM);{EXX is selected}

else if (rnd==2) then
TC = EAX(TP, TM);{EAX is selected}

else if (rnd==3) then
TC = HGreX(TP, TM){HGreX is selected}

end if
else if (type==3) then
{type 3 is selected}
if (rnd==1) then
TC = SC(TP, TM);{SC is selected}

else if (rnd==2) then
TC = MC(TP, TM);{MC is selected}

else if (rnd==3) then
TC = ULX(TP, TM){ULX is selected}

end if
end if

4.3 Evaluating for Individuals

The fitness function represents the method for the evaluation of individuals. We
calculate skill-factor and scalar-fitness for each individual. The larger the scalar-
fitness, the better the individual is.

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1381

Algorithm 3 Mutate(TC)

Input: TC is the child tour, respectively.
Output: A new child TC.
{Choose a mutation operator randomly}
rnd = rand(3);
if (rnd==1) then
TC = EM(TC){EM is selected}

else if (rnd==2) then
TC = IM(TC){IM is selected}

end if

Algorithm 4 RVND(T)

Input: T is a tour.
Output: A new solution T .
Initialize the Neighborhood List NL;
while NL ̸= 0 do
Choose a neighborhood N in NL at random
T

′ ← arg min N(T); {Neighborhood search}
if ((W (T

′
) < W (T ∗)) then

T ← T
′

Update NL;
else
Remove N from the NL;

end if
if (W (T

′
) < W (T ∗)) then

T ∗ ← T
′
;

end if
end while

4.4 Selection Operator

The selection phase is the process where the individuals are selected based on
their scalar-fitness to mate and produce new offspring. There is no special se-
lection method. In this work, the tournament selection operator is applied [24].
A group of NG individuals with a specified size is selected on a random basis.
Then, two individuals that have the best scalar-fitness in the group will be chosen.
These individuals will become parental individuals. Increased selection pressure
can be provided by simply increasing the size of the group, as the winners from
a larger size will, on average, have higher scalar-fitness than the winners of a small
size.

1382 H.B. Ban, D.H. Pham

A solution
(unified representation)

1 2 3 4 ... n

1 2 3 4 ... n 1 3 2 4 ... n

Solution for TSPTW

RNVS

Improved solution
(unified representation)

1 3 2 4 ... n

A solution
(unified representation)

1 2 3 4 ... n

1 2 3 4 ... n 1 3 2 4 ... n

Solution for TRPTW

RNVS

Improved solution for TSPTW

A solution
(unified representation)

1 3 2 4 ... n

Solution for TRPTW

Figure 6. An illustration of converting unified representation to particular representation

4.5 Crossover Operator

The operator is done with the predefined crossover probability (rmp) or if parents
have the same skill-factor. In [25], they divide the crossover operators into three
types. We found no logical explanation of which one should bring a better per-
formance or better overall results. In a pilot study, we found that the algorithm’s
performance is relatively insensitive to crossover operators, which are used. As test-
ing our algorithm on all operators would have been computationally too expensive,
we implement our numerical analysis on some selected operators for each type. In
this work, the following operators are selected: type 1 (PMX, CX, and POS), type 2
(EXX, EAX, and HGreX), and type 3 (SC, MC, and ULX) [25]. Using multiple
crossovers makes the population more diverse than using only one crossover. There-
fore, it can help the algorithm to prevent being trapped in a local optimum. The
offspring’s skill-factor is set to the one of father or mother randomly. The detail of
this step is given in Algorithm 2.

4.6 Mutation Operator

The operator is done if the above crossover does not occur. Mutation is an op-
erator that serves as the means to keep the diversity of the population. It is one
of the easiest operators to implement, so we have quite different mutation meth-
ods. Several mutations are used in our algorithm. Firstly, the simplest mutation

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1383

(EM) is the basic random exchange of two adjacent customers on tour. Secondly,
another simple method is the insertion mutation (IM), which removes the customer
from its place and inserts it in a random place on tour in another position. Spe-
cific time this mutation is performed, we select one of three operators randomly.
After the mutation operator, two offsprings are created from the parents. Their
skill-factors are set to those of parents. The detail of this step is given in Algo-
rithm 3.

4.7 Elitism Operator

Let us start with the very popular elitism operator [24]. Elitism is a process that en-
sures the survival of the best intermediate solutions, so they are not lost through the
evolutionary processes. Researchers define the number (usually very small, equal, or
below 15%) of the best solutions that automatically advance to the next generation.
Our method chooses Sp individuals to the next generation, in which 15% of them
are the best solutions in the previous generation, and the remaining individuals are
chosen randomly from P.

4.8 RVND

Every search algorithm needs to balance the exploration and exploitation of a search
space. Exploration is the process of finding new promising space, whilst exploitation
is the process of exploiting good regions of visited search space. Our GA is also
combined with RVND to keep a balance between exploration and exploitation. The
GA helps to explore the promising solution spaces while the RVND exploits these
spaces. Before the RVND step, we convert a solution from unified representation
to representation for each task. The RVND then applies to this solution. Finally,
the output of the RVND is converted into a unified representation for the next
step.

For the RVND step, we use several neighborhoods such as remove-insert, rein-
sertion, swap-adjacent, swap, 2-opt, and or-opt in [28]. A pseudocode of the RVND
algorithm is given in Algorithm 4.

The stop condition: After the number of generations (Np), the best solution
has not been improved, the GA stops.

5 COMPUTATIONAL EVALUATIONS

We have implemented the algorithm in C# language to evaluate its performance.
The experiments are conducted on a personal computer equipped with a Xeon
E-2234 CPU and 16GB bytes RAM memory. Through preliminary experiments,
we observed that the values m = 10, Sp = 300, NG = 5, rmp = 0.7, and Np = 20
resulted in a good trade-off between solution quality and run time. This parameter
setting has thus been used in the following experiments.

1384 H.B. Ban, D.H. Pham

The instances are gotten from the TSP and TRP benchmark in [22, 30]. We
implemented our experiments on selected instances because testing on all instances
would have been computationally too expensive. These are instances as follows:

1. The TSPLIB [30] includes many instances from 50 to 200 instances;

2. Three of these sets are generated by [22], where each of them is composed of
20 instances with 20, 30, 40, 50, and 100 customers, respectively.

Note that: TRP-30x and TRP-40x are generated randomly according to the method
described in [22]. The aim of creating additional small instances is to obtain their
optimal solutions from exact algorithm [4]. All tested instances from [2, 20, 22, 23,
29] are only Euclidean instances, and are available upon request.

The efficiency of the metaheuristic algorithm can be evaluated by comparing the
best solution found by our algorithm (notation: Best.Sol) to

1. the optimal solution (notation: OPT); and

2. the previous metaheuristic solution (notation: UB) as follows:

gap1[%] =
Best.Sol−OPT

OPT
× 100%, (1)

gap2[%] =
Best.Sol− UB

UB
× 100%. (2)

In the experiments, our algorithm directly compares with the state-of-the-art
metaheuristic algorithms [20, 29] on the same benchmark. These algorithms are
developed from the MFEA framework. In Tables, OPT, Aver.Sol and Best.Sol are
the optimal, average, and best solution after ten runs, respectively. Let Time be the
running time such that the proposed algorithm reaches the best solution. Moreover,
the proposed algorithm also compares to the known-best solutions (or the optimal
solutions) for the TSP [30, 31] and TRP [2, 23] in the literature. Yuan et al. support
the source code of their algorithm in [29] while the dMFEA-II algorithm [20] was
implemented by us. All algorithms are run on the same instances. Tables 1, 2, 3
and 4 compare between the MFEA+RVND and OA [20], and YA [29]. In the TSP,
the optimal solutions of the TSPLIB-instances are extracted [30] while the optimal
or best solutions are obtained by running Concord tool [31] for the other instances.
In the TRP, the optimal or best solutions are obtained from [2, 23].

5.1 Comparison with the Previous MFEA Algorithms

Tables 1, 2, 3 and 4 compare the proposed algorithm to two algorithms [20, 29] for
one hundred instances of both problems. The values in Table 5 are the average ones
calculated from Tables 1, 2, 3 and 4. Tables 5, 6 and 7 show the results that the pro-
posed algorithm reaches better solutions than the others in terms of the average gap
in both problems. In addition, to more clearly illustrate the proposed algorithm’s

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1385

In
st
an

ce
s

O
P
T

Y
A

O
A

M
F
E
A

T
S
P

T
R
P

T
S
P

T
R
P

T
S
P

T
R
P

T
S
P

T
R
P

be
st
.
ga
p

be
st
.
ga
p

be
st
.
ga
p 1

be
st
.
ga
p 1

be
st
.
av
er
.
ga
p 1

T
im

e
be
st
.
av
er
.
ga
p 1

T
im

e
so
l

so
l

so
l

so
l

so
l

so
l

T
im

e
so
l

so
l

T
R
P
-2
0-
1

35
7

3
17
5

35
7

0
3
17
5

0
35
7

0
3
17
5

0
35
7

35
7

0
0.
70

3
17
5

3
17
5

0
0.
74

T
R
P
-2
0-
2

37
5

3
24
8

37
5

0
3
24
8

0
37
5

0
3
24
8

0
37
5

37
5

0
0.
51

3
24
8

3
24
8

0
0.
77

T
R
P
-2
0-
3

39
1

3
57
0

39
1

0
3
57
0

0
39
1

0
3
57
0

0
39
1

39
1

0
0.
75

3
57
0

3
57
0

0
0.
54

T
R
P
-2
0-
4

34
3

2
98
3

34
3

0
2
98
3

0
34
3

0
2
98
3

0
34
3

34
3

0
0.
78

2
98
3

2
98
3

0
0.
77

T
R
P
-2
0-
5

34
1

3
24
8

34
1

0
3
24
8

0
34
1

0
3
24
8

0
34
1

34
1

0
0.
70

3
24
8

3
24
8

0
0.
69

T
R
P
-2
0-
6

37
9

3
32
8

37
9

0
3
32
8

0
37
9

0
3
32
8

0
37
9

37
9

0
0.
73

3
32
8

3
32
8

0
0.
53

T
R
P
-2
0-
7

35
5

2
80
9

35
5

0
2
80
9

0
35
5

0
2
80
9

0
35
5

35
5

0
0.
72

2
80
9

2
80
9

0
0.
58

T
R
P
-2
0-
8

36
7

3
46
1

36
7

0
3
46
1

0
36
7

0
3
46
1

0
36
7

36
7

0
0.
62

3
46
1

3
46
1

0
0.
66

T
R
P
-2
0-
9

40
3

3
47
5

40
3

0
3
47
5

0
40
3

0
3
47
5

0
40
3

40
3

0
0.
70

3
47
5

3
47
5

0
0.
79

T
R
P
-2
0-
10

43
2

3
35
9

43
2

0
3
35
9

0
43
2

0
3
35
9

0
43
2

43
2

0
0.
55

3
35
9

3
35
9

0
0.
79

T
R
P
-2
0-
11

33
8

2
91
6

33
8

0
2
91
6

0
33
8

0
2
91
6

0
33
8

33
8

0
0.
71

2
91
6

2
91
6

0
0.
55

T
R
P
-2
0-
12

37
3

3
31
4

37
3

0
3
31
4

0
37
3

0
3
31
4

0
37
3

37
3

0
0.
51

3
31
4

3
31
4

0
0.
79

T
R
P
-2
0-
13

39
2

3
41
2

39
2

0
3
41
2

0
39
2

0
3
41
2

0
39
2

39
2

0
0.
58

3
41
2

3
41
2

0
0.
79

T
R
P
-2
0-
14

38
0

3
29
7

38
0

0
3
29
7

0
38
0

0
3
29
7

0
38
0

38
0

0
0.
51

3
29
7

3
29
7

0
0.
65

T
R
P
-2
0-
15

34
1

2
86
2

34
1

0
2
86
2

0
34
1

0
2
86
2

0
34
1

34
1

0
0.
53

2
86
2

2
86
2

0
0.
74

T
R
P
-2
0-
16

38
5

3
43
3

38
5

0
3
43
3

0
38
5

0
3
43
3

0
38
5

38
5

0
0.
75

3
43
3

3
43
3

0
0.
54

T
R
P
-2
0-
17

34
2

2
91
3

34
2

0
2
91
3

0
34
2

0
2
91
3

0
34
2

34
2

0
0.
71

2
91
3

2
91
3

0
0.
63

T
R
P
-2
0-
18

40
2

3
12
4

40
2

0
3
12
4

0
40
2

0
3
12
4

0
40
2

40
2

0
0.
60

3
12
4

3
12
4

0
0.
77

T
R
P
-2
0-
19

37
3

3
29
9

37
3

0
3
29
9

0
37
3

0
3
29
9

0
37
3

37
3

0
0.
79

3
29
9

3
29
9

0
0.
74

T
R
P
-2
0-
20

38
8

2
79
6

38
8

0
2
79
6

0
38
8

0
2
79
6

0
38
8

38
8

0
0.
51

2
79
6

2
79
6

0
0.
79

av
er

0
0

0
0

0
0.
65

0
0.
69

T
ab

le
1.

C
om

p
ar
is
on

of
al
l
al
go

ri
th
m
s
fo
r
T
R
P
-2
0-
x

1386 H.B. Ban, D.H. Pham

In
stan

ces

O
P
T

Y
A

O
A

M
F
E
A

T
S
P

T
R
P

T
S
P

T
R
P

T
S
P

T
R
P

T
S
P

T
R
P

best.
gap

1
best.

gap
1
best.

gap
1

best.
gap

1
best.

aver.
gap

1
T
im

e
best.

aver.
gap

1
T
im

e
sol

sol
sol

sol
sol

sol
sol

sol
T
R
P
-50-1

602
12

198
641

6.48
13

253
8.65

634
5.32

13
281

8.88
610

610
1.33

15.53
12

330
12

330
1.08

15.81
T
R
P
-50-2

549
11

621
583

6.22
12

958
11.51

560
2.09

12
543

7.93
560

560
2.00

19.81
11

710
11

710
0.77

18.97
T
R
P
-50-3

584
12

139
596

2.07
13

482
11.06

596
2.07

13
127

8.14
592

592
1.37

15.02
12

312
12

312
1.43

16.56
T
R
P
-50-4

603
13

071
666

10.46
14

131
8.11

613
1.60

15
477

18.41
610

610
1.16

18.87
13

575
13

575
3.86

17.64
T
R
P
-50-5

557
12

126
579

3.90
13

377
10.32

578
3.72

14
449

19.16
557

557
0.00

19.09
12

657
12

657
4.38

15.83
T
R
P
-50-6

577
12

684
602

4.30
13

807
8.85

600
3.92

13
601

7.23
588

588
1.91

19.34
13

070
13

070
3.04

18.01
T
R
P
-50-7

534
11

176
563

5.46
11

984
7.23

555
4.00

12
825

14.75
547

547
2.43

15.42
11

793
11

793
5.52

16.31
T
R
P
-50-8

569
12

910
629

10.56
14

043
8.78

609
7.04

13
198

2.23
572

572
0.53

17.00
13

198
13

198
2.23

18.27
T
R
P
-50-9

575
13

149
631

9.67
14

687
11.70

597
3.76

13
459

2.36
576

576
0.17

16.30
13

459
13

459
2.36

18.45
T
R
P
-50-10

583
12

892
604

3.64
14

104
9.40

602
3.30

13
638

5.79
590

590
1.20

19.00
13

267
13

267
2.91

18.74
T
R
P
-50-11

578
12

103
607

5.02
13

878
14.67

585
1.22

12
124

0.17
585

585
1.21

17.16
12

124
12

124
0.17

17.25
T
R
P
-50-12

500
10

633
521

4.24
11

985
12.72

508
1.64

11
777

10.76
604

604
20.80

19.55
11

305
11

305
6.32

15.42
T
R
P
-50-13

579
12

115
615

6.23
13

885
14.61

601
3.88

13
689

12.99
587

587
1.38

15.91
12

559
12

559
3.66

16.14
T
R
P
-50-14

563
13

117
612

8.64
14

276
8.84

606
7.64

14
049

7.11
571

571
1.42

16.32
13

431
13

431
2.39

19.57
T
R
P
-50-15

526
11

986
526

-0.08
12

546
4.67

526
-0.08

12
429

3.70
526

526
0.00

15.73
12

429
12

429
3.70

15.76
T
R
P
-50-16

551
12

138
577

4.79
13

211
8.84

564
2.41

12
635

4.09
551

551
0.00

15.68
12

417
12

417
2.30

19.13
T
R
P
-50-17

550
12

176
601

9.21
13

622
11.88

585
6.30

13
342

9.58
564

564
2.55

19.35
12

475
12

475
2.46

17.69
T
R
P
-50-18

603
13

357
629

4.30
14

750
10.43

625
3.64

14
108

5.62
603

603
0.00

17.90
13

683
13

683
2.44

19.98
T
R
P
-50-19

529
11

430
595

12.53
12

609
10.31

594
12.34

12
899

12.85
539

539
1.89

17.75
11

659
11

659
2.00

15.39
T
R
P
-50-20

539
11

935
585

8.53
13

603
13.98

575
6.68

12
458

4.38
539

539
0.00

15.72
12

107
12

107
1.44

17.21
aver

6.31
10.33

4.12
8.31

2.05
17.32

2.72
17.41

T
ab

le
2.

C
om

p
arison

of
all

algorith
m
s
for

T
R
P
-50-x

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1387

In
st
an

ce
s

U
B

Y
A

O
A

M
F
E
A

T
S
P

T
R
P

T
S
P

T
R
P

T
S
P

T
R
P

T
S
P

T
R
P

be
st
.

ga
p 2

be
st
.

ga
p 2

be
st
.

ga
p 2

be
st
.

ga
p 2

be
st
.
av
er
.
ga
p 2

T
im

e
be
st
.

av
er
.
ga
p 2

T
im

e
so
l

so
l

so
l

so
l

so
l

so
l

so
l

so
l

T
R
P
-1
00
-1

76
2
32

77
9

83
0

8.
92

36
01
2

9.
86

80
6

5.
82

36
86
9
12
.4
8

79
1

79
1
3.
81

13
0.
55

35
78
5
35

78
5
9.
17

14
2.
54

T
R
P
-1
00
-2

77
1
33

43
5

80
0

3.
80

39
01
9
16
.7
0

81
7

5.
97

37
29
7
11
.5
5

78
2

78
2
1.
43

14
4.
92

35
54
6
35

54
6
6.
31

12
7.
65

T
R
P
-1
00
-3

74
6
32

39
0

86
5
15
.9
5
38

99
8
20
.4
0

84
9
13
.8
4
34

32
4

5.
97

76
7

76
7
2.
82

13
7.
56

34
32
4
34

32
4
5.
97

13
5.
18

T
R
P
-1
00
-4

77
6
34

73
3

92
9
19
.7
2
41

70
5
20
.0
7

89
7
15
.5
9
38

73
3
11
.5
2

81
0

81
0
4.
38

13
6.
49

37
34
8
37

34
8
7.
53

14
0.
97

T
R
P
-1
00
-5

74
9
32

59
8

79
3

5.
89

40
06
3
22
.9
0

89
9
20
.0
3
37

19
1
14
.0
9

77
4

77
4
3.
34

14
7.
52

34
95
7
34

95
7
7.
24

14
6.
73

T
R
P
-1
00
-6

80
7
34

15
9

90
5
12
.1
4
40

24
9
17
.8
3

88
6

9.
82

40
58
8
18
.8
2

85
4

85
4
5.
82

12
8.
58

36
68
9
36

68
9
7.
41

14
8.
78

T
R
P
-1
00
-7

76
7
33

37
5

78
0

1.
69

38
79
4
16
.2
4

84
9
10
.6
9
39

43
0
18
.1
4

78
0

78
0
1.
69

14
2.
72

35
33
0
35

33
0
5.
86

13
6.
42

T
R
P
-1
00
-8

74
4
31

78
0

82
4
10
.7
5
38

15
5
20
.0
6

84
5
13
.5
8
35

58
1
11
.9
6

76
3

76
3
2.
55

14
2.
61

34
34
2
34

34
2
8.
06

12
4.
16

T
R
P
-1
00
-9

78
6
34

16
7

86
3

9.
80

39
18
9
14
.7
0

85
8

9.
16

41
10
3
20
.3
0

80
9

80
9
2.
93

13
1.
41

35
99
0
35

99
0
5.
34

12
4.
48

T
R
P
-1
00
-1
0

75
1
31

60
5

87
8
16
.9
1
36

19
1
14
.5
1

83
1
10
.6
5
37

95
8
20
.1
0

78
8

78
8
4.
93

13
7.
03

33
73
7
33

73
7
6.
75

12
7.
73

T
R
P
-1
00
-1
1

77
6
34

18
8

83
1

7.
09

39
75
0
16
.2
7

87
6
12
.8
9
41

15
3
20
.3
7

81
4

81
4
4.
90

12
2.
28

36
98
8
36

98
8
8.
19

14
5.
22

T
R
P
-1
00
-1
2

79
7
32

14
6

85
5

7.
29

39
42
2
22
.6
3

85
5

7.
29

40
08
1
24
.6
8

82
3

82
3
3.
26

12
1.
62

34
10
3
34

10
3
6.
09

12
7.
63

T
R
P
-1
00
-1
3

75
3
32

60
4

77
2

2.
46

37
00
4
13
.5
0

77
2

2.
46

40
17
2
23
.2
1

77
1

77
1
2.
39

13
5.
92

35
01
1
35

01
1
7.
38

14
4.
43

T
R
P
-1
00
-1
4

77
0
32

43
3

81
0

5.
19

40
43
2
24
.6
6

81
0

5.
19

36
13
4
11
.4
1

80
0

80
0
3.
90

14
3.
38

34
57
6
34

57
6
6.
61

12
7.
31

T
R
P
-1
00
-1
5

77
6
32

57
4

95
3
22
.8
1
38

36
9
17
.7
9

87
8
13
.1
7
38

45
0
18
.0
4

81
0

81
0
4.
38

14
8.
02

35
65
3
35

65
3
9.
45

14
7.
88

T
R
P
-1
00
-1
6

77
5
33

56
6

83
8

8.
10

40
75
9
21
.4
3

83
5

7.
74

38
54
9
14
.8
5

80
8

80
8
4.
26

12
3.
90

36
18
8
36

18
8
7.
81

13
0.
50

T
R
P
-1
00
-1
7

80
5
34

19
8

93
9
16
.6
5
39

58
2
15
.7
4

88
1

9.
44

42
15
5
23
.2
7

83
8

83
8
4.
10

13
7.
06

36
96
9
36

96
9
8.
10

12
5.
90

T
R
P
-1
00
-1
8

78
5
31

92
9

87
6
11
.5
9
38

90
6
21
.8
5

83
6

6.
50

37
85
6
18
.5
6

81
4

81
4
3.
69

13
4.
08

34
15
4
34

15
4
6.
97

12
7.
53

T
R
P
-1
00
-1
9

78
0
33

46
3

89
9
15
.2
6
39

86
5
19
.1
3

88
1
12
.9
5
40

37
9
20
.6
7

79
7

79
7
2.
18

12
0.
36

35
66
9
35

66
9
6.
59

13
8.
48

T
R
P
-1
00
-2
0

77
5
33

63
2

81
6

5.
30

41
13
3
22
.3
0

90
5
16
.7
7
40

61
9
20
.7
7

80
8

80
8
4.
26

13
0.
11

35
53
2
35

53
2
5.
65

13
4.
20

av
er

10
.3
7

18
.4
3

10
.4
8

17
.0
4

3.
55

13
4.
81

7.
12

13
5.
18

T
ab

le
3.

C
om

p
ar
is
on

of
al
l
al
go

ri
th
m
s
fo
r
T
R
P
-1
00

-x

1388 H.B. Ban, D.H. Pham

In
sta

n
c
e
s

U
B

Y
A

O
A

M
F
E
A

T
S
P

T
R
P

T
S
P

T
R
P

T
S
P

T
R
P

T
S
P

T
R
P

be
st.so

l
g
a
p
1
(
2
)

be
st.so

l
g
a
p
1
(
2
)

be
st.

g
a
p
1
(
2
)

be
st.

g
a
p
1
(
2
)

be
st.

a
v
e
r
.

g
a
p
1
(
2
)

T
im

e
be

st.
a
v
e
r
.

g
a
p
1
(
2
)

T
im

e

so
l

so
l

so
l

so
l

so
l

so
l

so
l

so
l

e
il5

1
4
2
6
*

1
0
1
7
8
*

4
4
6

4
.6
9

1
0
8
3
4

6
.4
5

4
5
0

5
.6
3

1
0
8
3
4

6
.4
5

4
2
6

4
2
6

0
.0
0

1
6
.8
7

1
0
1
7
8

1
0
1
7
8

0
.0
0

1
5
.6
4

b
e
rlin

5
2

7
5
4
2
*

1
4
3
7
2
1
*

7
9
2
2

5
.0
4

1
5
2
8
8
6

6
.3
8

8
2
7
6

9
.7
3

1
5
2
8
8
6

6
.3
8

7
5
4
2

7
5
4
2

0
.0
0

1
6
.4
5

1
4
3
7
2
1

1
4
3
7
2
1

0
.0
0

1
4
.5
6

st7
0

6
7
5
*

2
0
5
5
7
*

7
1
3

5
.6
3

2
2
2
8
3

8
.4
0

7
7
2

1
4
.3
7

2
2
7
9
9

1
0
.9
1

6
8
0

6
8
0

0
.7
4

2
1
.2
0

2
2
2
8
3

2
2
2
8
3

8
.4
0

2
2
.3
2

e
il7

6
5
3
8
*

1
7
9
7
6
*

5
6
0

4
.0
9

1
8
7
7
7

4
.4
6

5
8
9

9
.4
8

1
8
0
0
8

0
.1
8

5
5
9

5
5
9

3
.9
0

3
0
.1
2

1
8
0
0
8

1
8
0
0
8

0
.1
8

2
9
.5
4

p
r7

6
1
0
8
1
5
9
*

3
4
5
5
2
4
2
*

1
1
3
0
1
7

4
.4
9

3
4
9
3
0
4
8

1
.0
9

1
1
7
2
8
7

8
.4
4

3
4
9
3
0
4
8

1
.0
9

1
0
8
1
5
9

1
0
8
1
5
9

0
.0
0

2
8
.9
5

3
4
5
5
2
4
2

3
4
5
5
2
4
2

0
.0
0

2
8
.9
8

p
r1

0
7

4
4
3
0
3
*

2
0
2
6
6
2
6
*

4
5
7
3
7

3
.2
4

2
1
3
5
4
9
2

5
.3
7

4
6
3
3
8

4
.5
9

2
1
3
5
4
9
2

5
.3
7

4
5
1
8
7

4
5
1
8
7

2
.0
0

1
5
1
.2
0

2
0
5
2
2
2
4

2
0
5
2
2
2
4

1
.2
6

1
5
9
.3
2

p
r1

2
4

5
9
0
3
0
*

3
2
8
4
7
4
3
*

6
2
4
6
0

5
.8
1

3
5
4
4
1
0
5

7
.9
0

6
3
6
7
3

7
.8
7

3
5
4
4
1
0
5

7
.9
0

6
0
8
6
3

6
1
2
9
4
.8

3
.1
1

1
5
6
.3
0

3
3
0
4
1
9
7

3
4
1
7
6
3
0
.2
5

0
.5
9

1
7
0
.3
2

p
r1

3
6

9
6
7
7
2
*

6
6
1
8
2
8
8
*

1
0
2
1
7
7

5
.5
9

7
0
2
8
7
0
9

6
.2
0

1
0
2
1
7
7

5
.5
9

7
0
2
8
7
0
9

6
.2
0

9
6
7
7
2

9
6
7
7
2

0
.0
0

1
8
5
.6
5

6
6
1
8
2
8
8

6
6
1
8
2
8
8

0
.0
0

1
8
0
.5
6

ra
t9

9
1
2
1
1
*

5
8
2
8
8
*

1
3
1
6

8
.6
7

6
0
1
3
4

3
.1
7

1
3
6
9

1
3
.0
5

6
0
1
3
4

3
.1
7

1
2
8
0

1
2
8
0

5
.7
0

1
4
8
.6
5

5
8
9
7
1

5
9
5
5
2
.5

1
.1
7

1
4
0
.6
5

k
ro

A
1
0
0

2
1
2
8
2
*

9
8
3
1
2
8
*

2
2
2
3
3

4
.4
7

1
0
4
3
8
6
8

6
.1
8

2
2
2
3
3

4
.4
7

1
0
4
3
8
6
8

6
.1
8

2
1
8
7
8

2
1
8
7
8

2
.8
0

2
1
8
.7
8

1
0
0
9
9
8
6

1
0
3
3
4
3
7
.7
5

2
.7
3

1
9
8
.5
6

k
ro

B
1
0
0

2
2
1
4
1
*

9
8
6
0
0
8
*

2
3
1
4
4

4
.5
3

1
1
1
8
8
6
9

1
3
.4
7

2
4
3
3
7

9
.9
2

1
1
1
8
8
6
9

1
3
.4
7

2
3
0
3
9

2
3
0
3
9

4
.0
6

1
3
4
.6

7
7
6

1
0
0
3
1
0
7

1
0
4
4
5
8
5
.2
5

1
.7
3

1
4
0
.3
2

k
ro

C
1
0
0

2
0
7
4
9
*

9
6
1
3
2
4
*

2
2
3
9
5

7
.9
3

1
0
2
6
9
0
8

6
.8
2

2
3
2
5
1

1
2
.0
6

1
0
2
6
9
0
8

6
.8
2

2
1
5
4
1

2
1
5
4
1

3
.8
2

1
3
0
.1

3
1
6

1
0
0
7
1
5
4

1
0
1
8
9
0
6
.5

4
.7
7

1
3
5
.6
2

k
ro

D
1
0
0

2
1
2
9
4
*

9
7
6
9
6
5
*

2
2
4
6
7

5
.5
1

1
0
6
9
3
0
9

9
.4
5

2
3
8
3
3

1
1
.9
2

1
0
6
9
3
0
9

9
.4
5

2
2
4
3
0

2
2
4
3
0

5
.3
3

1
4
7
.0

0
1
6

1
0
1
9
8
2
1

1
0
4
4
5
6
5

4
.3
9

1
5
0
.3
2

k
ro

E
1
0
0

2
2
0
6
8
*

9
7
1
2
6
6
*

2
2
9
6
0

4
.0
4

1
0
5
6
2
2
8

8
.7
5

2
3
6
2
2

7
.0
4

1
0
5
6
2
2
8

8
.7
5

2
2
9
6
4

2
2
9
6
4

4
.0
6

1
3
1
.0

7
7
4

1
0
3
4
7
6
0

1
0
4
4
6
9
3
.7
5

6
.5
4

1
4
1
.9
6

rd
1
0
0

7
9
1
0
*

3
4
0
0
4
7
*

8
3
8
1

5
.9
5

3
8
0
3
1
0

1
1
.8
4

8
7
7
8

1
0
.9
7

3
6
5
8
0
5

7
.5
7

8
3
3
3

8
3
3
3

5
.3
5

1
2
3
.3

3
6
1

3
5
4
7
6
2

3
6
9
6
7
9
.2

8
5
7

4
.3
3

1
3
2
.1
2

e
il1

0
1

6
2
9
*

2
7
5
1
9
*

6
8
1

8
.2
7

2
8
3
9
8

3
.1
9

6
9
5

1
0
.4
9

2
8
3
9
8

3
.1
9

6
6
2

6
6
2

5
.2
5

1
3
4
.7

2
5
9

2
7
7
4
1

2
7
7
4
1

0
.8
1

1
2
8
.4
5

c
h
1
3
0

6
1
1
0
*

3
5
9
9
5
2
*

6
5
1
2

6
.5
8

3
7
8
0
4
3

5
.0
3

6
6
0
1

8
.0
4

3
7
8
0
4
3

5
.0
3

6
3
3
4

6
3
3
4

3
.6
7

1
8
6
.3
2

3
6
4
3
5
5

3
7
3
3
5
0
.6

6
6
7

1
.2
2

1
7
2
.3
2

ts2
2
5

1
2
6
6
4
3

1
3
5
7
7
3
7
6

1
3
0
1
4
4

2
.7
6

1
4
2
4
1
6
2
1

4
.8
9

1
3
7
6
9
8

8
.7
3

1
4
2
4
1
6
2
1

4
.8
9

1
2
9
6
8
0

1
2
9
6
8
0

2
.4
0

2
5
0
.1
2

1
3
7
4
6
4
5
3

1
3
9
2
9
0
6
6
.8

1
.2
5

2
5
5
.6
3

tsp
2
2
5

3
9
1
9

4
0
1
0
1
2

4
2
0
4

7
.2
7

4
5
1
4
4
5

1
2
.5
8

4
3
1
6

1
0
.1
3

4
5
1
4
4
5

1
2
.5
8

4
2
7
0

4
2
9
4

8
.9
6

2
4
1
.2
1

4
4
8
1
0
8

4
4
9
7
7
6
.5

1
1
.7
4

2
4
3
.2
1

a
v
e
r

5
.5
0

6
.9
3

9
.0
8

6
.6
1

3
.2
2

1
2
9
.0
9

2
.6
9

1
2
9
.4
9

T
ab

le
4.

C
om

p
arison

of
all

algorith
m
s
for

T
S
P
L
IB

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1389

Instances
YA OA MFEA

TSP TRP TSP TRP TSP TRP
gap1(2) gap1(2) gap1(2) gap1(2) gap1(2) Time gap1(2) Time

TRP-20-x 0 0 0 0 0 0.65 0 0.69

TRP-50-x 6.31 10.33 4.12 8.31 2.05 17.32 2.72 17.41

TRP-100-x 10.37 18.43 10.48 17.04 3.22 134.8 7.12 135.18

TSPLIB 5.5 6.93 9.08 6.61 3.69 129.0 2.69 129.49

The better average values are highlighted in boldface

Table 5. Average results for all datasets

Instances R+ R- p-value

TSP 1 986 −157 0.0001

TRP 1 963 −27 0.0001

Table 6. Wilcoxon signed ranks test results between the proposed MFEA and the others
with a level of significance α = 0.05

efficiency, a Wilcoxon Rank-Sum test has been applied to verify the statistical re-
sults. Because we cannot make an assumption about probability distribution of
the outcomes, the non-parametric test like Wilcoxon Rank-Sum Test is a suitable
choice. We have compared the outcomes obtained for each instance and problem
separately for properly performing this Wilcoxon Rank-Sum test, establishing the
confidence interval at 95%. The results of Wilcoxon Rank-Sum test is shown in
Table 6. In two problems, the results in Table 6 indicate that the MFEA + RVND
shows a significant improvement over the state-of-art MFEA algorithms with a level
of significance α = 0.05.

Optimal TSP Optimal TRP
Instances Using TRP Optimal diff [%] Using TSP Optimal diff [%]

Objective TRP Objective TSP
Function Function

st70 22 865 20 557 10 847 675 20

eil51 10 963 10 178 7 482 426 12

berlin52 207 280 143 721 31 8 961 7 542 16

eil101 30 849 27 519 11 751 629 16

pr76 4 019 567 3 455 242 14 131 473 108 159 18

KroA100 1 087 955 983 128 10 23 249 21 282 8

rat99 60 415 56 994 6 1 391 1 211 13

lin105 904 993 585 823 54 17 159 14 379 16

aver 18 15

Table 7. The difference between the optimal TSP using TRP objective function and vice
versa

1390 H.B. Ban, D.H. Pham

5.2 Comparison with the Previous TSP and TRP’s Solutions

In Table 5, the average gap for the TSP and TRP is below 3%. It shows that our
solutions are close to the optimal solutions for both problems. The improvement
is significant since it can be observed that our algorithm is capable of finding good
solutions fast for two problems at the same time. In comparison with the state-of-
the-art solutions for the TSP and TRP, our solutions reach the optimal solutions
in 65 out of 119 cases for the TSP and 64 out of 119 cases for the TRP in a short
computation time.

It is unrealistic to expect that the proposed MFEA gives better solutions than
those of state-of-the-art metaheuristic algorithms for the TSP or TRP in the litera-
ture because their algorithms are designed to independently solve each problem. In
Table 7, the efficient algorithm for the TSP may not be good for the TRP on the
same instances and vice versa. On average, the optimal solution for the TSP using
the TRP objective function is 18% worse than the optimal solution for the TRP.
Similarly, the optimal solution for the TRP using the TSP objective function is
15% worse than the optimal solution for the TSP. We conclude that if the proposed
MFEA simultaneously reaches the good solutions that are near to the optimal so-
lutions for both problems (on average, our solutions are below 3% for the TSP and
TRP in comparison with the optimal solutions), we can still say that the proposed
MFEA + RVND for multitasking is beneficial.

5.3 Convergence Trend

The normalized objective function is used for analyzing the proposed MFEA algo-
rithm’s convergence trends. It calculated as follows:

fj =
(fj − fmin

j)

(fmax
j − fmin

j)

where j = 1, 2 and fmin
j , fmax

j are the minimum and maximum function cost values
across all test runs.

This section analyzes the proposed MFEA algorithm’s convergence trends from
two aspects:

1. single-tasking strategy;

2. multitasking strategy.

In the single-task, we run the MEFA for each task independently. Otherwise, two
tasks are run simultaneously. We select two instances eil51, and TRP-50-R1 in this
experiment. Furthermore, to evaluate the diversification contribution of the MFEA
in the proposed algorithm, in this experiment, we run the algorithm without the
RVND.

The convergence trend of the single-tasking and multitasking is described in
Figures 7, 8, 9 and 10 for eil51 and TRP-50-R1. In these figures, single-tasking (ST)

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1391

0.0

0.2

0.4

0.6

0.8

1.0

1.2
1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

2
0

8

2
1

7

2
2

6

2
3

5

2
4

4

2
5

3

2
6

2

2
7

1

2
8

0

2
8

9

2
9

8

N
o
rm

al
iz

ed
 o

b
je

ct
iv

e
v
al

u
e

Generation

MT ST

Figure 7. Comparing convergence trends of f1 and f2 in multi-tasking and single-tasking
for the TSP in eil51 instance

0

0.2

0.4

0.6

0.8

1

1.2

1 9
1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1

3
1

2
1

1
2

9
1

3
7

1
4

5
1
5
3

1
6

1
1

6
9

1
7

7
1

8
5

1
9

3
2
0
1

2
0

9
2

1
7

2
2

5
2

3
3

2
4

1
2
4
9

2
5
7

2
6

5
2

7
3

2
8

1
2

8
9

2
9

7

N
o
rm

al
iz

ed
 o

b
je

ct
iv

e
v
al

u
e

Generation

MT ST

Figure 8. Comparing convergence trends of f1 and f2 in multi-tasking and single-tasking
for the TRP in eil51 instance

1392 H.B. Ban, D.H. Pham

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

N
o

rm
al

iz
ed

 o
b

je
ct

iv
e

v
al

u
e

Generation

MT ST

Figure 9. Comparing convergence trends of f1 and f2 in multi-tasking and single-tasking
for the TSP in TRP-50-1 instance

0

0.2

0.4

0.6

0.8

1

1.2

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

1
4
5

1
5
4

1
6
3

1
7
2

1
8
1

1
9
0

1
9
9

2
0
8

2
1
7

2
2
6

2
3
5

2
4
4

2
5
3

2
6
2

2
7
1

2
8
0

2
8
9

2
9
8

N
o

rm
la

iz
ed

 o
b

je
ct

iv
e

v
al

u
e

Generation

MT ST

Figure 10. Comparing convergence trends of f1 and f2 in multi-tasking and single-tasking
for the TRP in TRP-50-1 instance

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1393

converges faster than multitasking (MT). Therefore, the multitasking can generally
converge to a better objective value.

In summary, the performance of the multitasking strategy is better than the
one of single-tasking. With the same instances and algorithm, the improvement can
be obtained by exploiting multiple function landscapes via implicit genetic transfer.
Obviously, the process of transferring knowledge during multitasking leads to the
clear dominance of multitasking in comparison with single-tasking. It shows the
advantage of the evolutionary multitasking paradigm.

The proposed algorithm’s average running time does not consume in tables than
the others in [2, 30]. Moreover, it grows quite moderate with the single-tasking
because it runs two problems at the same time.

6 DISCUSSIONS

The MFEA framework [6, 11, 14, 26, 29] has been developed to incorporate Evo-
lutionary Algorithms into multitasking to handle multiple problems at the same
time. Instead of solving a pool of similar optimization problems singly, it handles
various requests and performs multiple tasks for systems. The advantage of the
approach is that the phenomenon of implicit genetic transfer in multitasking can
exploit transferrable knowledge between optimization tasks. The approach is good
for the problems that have the same representative solution space.

The TSP [3, 9, 10, 13, 16, 18, 19], and TRP [2, 4, 5, 7, 8, 17, 22, 23] are
combinatorial optimization problems that have many practical situations. Cur-
rently, there exist many algorithms that are proposed to solve them. However,
these algorithms are designed to solve each problem independently. That means
each problem is solved separately. This paper introduces the first algorithm that
combines the MFEA framework and RVND for solving two problems simultane-
ously. The reason behind the combination is to maintain the right balance be-
tween diversification from the MFEA and intensification from RVND. In the liter-
ature, the idea of the combination between the MFEA and local search (such as
2-opt) is proposed in [29]. However, 2-opt may not exploit well promising solution
space. Conversely, the RVND is a powerful framework that uses many neighbor-
hood search heuristics. It often exploits promising solution space better than 2-opt.
In comparison with the previous schemes, our scheme includes new features as fol-
lows:

• Multiple crossover and mutation operator schemes are used in our MFEA. These
schemes help our algorithm to maintain good diversity.

• The combination between the MFEA with the RVND to keep a right balance be-
tween exploration and exploitation. We use more neighborhoods; therefore, the
explored neighborhood is extended, and the chance to obtain a better solution
is higher.

Summarily, this work’s main contributions can be summarized as follows:

1394 H.B. Ban, D.H. Pham

1. From the algorithmic perspective, the proposed algorithm brings the advantages
of the MFEA with multiple crossover and mutation operators and RVND. The
hybrid consists of new features compared with the previous schemes;

2. From the computational perspective, extensive numerical experiments on bench-
mark instances show that our algorithm solves two problems well simultaneously.

Moreover, it reaches better solutions than the previous MFEA framework in many
cases.

7 CONCLUSIONS

In the paper, we present an effective MFEA framework for solving the TSP and TRP
simultaneously, which combines the MFEA, and RVND. In the proposed algorithm,
the MFEA is used to explore the promising solution areas while the RVND exploits
them. Thus, the combination maintains the balance between exploration and ex-
ploitation. Extensive computational experiments on benchmark instances show that
our solutions reach the optimal solutions in 65 out of 119 cases for the TSP and 64
out of 119 cases for the TRP in a short computation time. Furthermore, it shows
that the proposed algorithm can solve well two problems at the same time. In com-
parison with the state-of-the-art MFEA for solving TSP and TRP, our algorithm
finds either the better solutions in many cases or at least as well as for the others.
However, the running time does not meet real situations. Therefore, enhancing it is
our aim in the future.

REFERENCES

[1] Arellano-Arriaga, N.A.—Molina, J.—Schaeffer, S. E.—Álvarez-
Socarrás, A.M.—Mart́ınez-Salazar, I. A.: A Bi-Objective Study of the
Minimum Latency Problem. Journal of Heuristics, Vol. 25, 2019, No. 1, pp. 431–454,
doi: 10.1007/s10732-019-09405-0.

[2] Abeledo, H.—Fukasawa, R.—Pessoa, A.—Uchoa, E.: The Time Dependent
Traveling Salesman Problem: Polyhedra and Algorithm. Mathematical Programming
Computation, Vol. 5, 2013, No. 1, pp. 27–55, doi: 10.1007/s12532-012-0047-y.

[3] Applegate, D. L.—Bixby, R. E.—Chvatal, V.—Cook, W. J.: The Traveling
Salesman Problem: A Computational Study. Princeton University Press, Princeton,
2007.

[4] Ban, H.B.—Nguyen, K.—Ngo, M.C.—Nguyen, D.N.: An Efficient Exact
Algorithm for the Minimum Latency Problem. Progress in Informatics, Vol. 10, 2013,
pp. 167–174, doi: 10.2201/NiiPi.2013.10.10.

[5] Ban, H.B.: An Efficient Two-Phase Metaheuristic Algorithm for The Time Depen-
dent Traveling Salesman Problem. RAIRO-Operations Research, Vol. 53, 2019, No. 3,
pp. 917–935, doi: 10.1051/ro/2019006.

https://doi.org/10.1007/s10732-019-09405-0
https://doi.org/10.1007/s12532-012-0047-y
https://doi.org/10.2201/NiiPi.2013.10.10
https://doi.org/10.1051/ro/2019006

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1395

[6] Bali, K.K.—Ong, Y. S.—Gupta, A.—Tan, P. S.: Multifactorial Evolutionary
Algorithm with Online Transfer Parameter Estimation: MFEA-II. IEEE Trans-
actions on Evolutionary Computation, Vol. 24, 2020, No. 1, pp. 69–83, doi:
10.1109/TEVC.2019.2906927.

[7] Blum, A.—Chalasani, P.—Coppersmith, D.—Pulleyblank, W.—
Raghavan, P.—Sudan, M.: The Minimum Latency Problem. Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing (STOC ’94),
1994, pp. 163–171, doi: 10.1145/195058.195125.

[8] Chaudhuri, K.—Godfrey, B.—Rao, S.—Talwar, K.: Paths, Trees, and Min-
imum Latency Tours. Proceedings of the 44th Annual IEEE Symposium on Founda-
tions of Computer Science, 2003, pp. 36–45, doi: 10.1109/SFCS.2003.1238179.

[9] Chvátal, V.—Cook, W.—Dantzig, G.B.—Fulkerson, D.R.—
Johnson, S.M.: Solution of a Large-Scale Traveling-Salesman Problem. In:
Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G. L., Pulleyblank, W.R.,
Reinelt, G., Rinaldi, G., Wolsey, L.A. (Eds.): 50 Years of Integer Programming
1958–2008: From the Early Years to the State-of-the-Art. Chapter 1. Springer,
Berlin, Heidelberg, pp. 7–28, doi: 10.1007/978-3-540-68279-0 1.

[10] Dorigo, M.—Gambardella, L.M.: Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation, Vol. 1, 1997, No. 1, pp. 53–66, doi: 10.1109/4235.585892.

[11] Feng, L.—Zhou, W.—Zhou, L.—Jiang, S.—Zhong, J.—Da, B.—Zhu, Z.—
Wang, Y.: An Empirical Study of Multifactorial PSO and Multifactorial DE.
2017 IEEE Congress on Evolutionary Computation (CEC), 2017, pp. 921–928, doi:
10.1109/CEC.2017.7969407.

[12] Fischetti, M.—Laporte, G.—Martello, S.: The Delivery Man Problem and
Cumulative Matroids. Operations Research, Vol. 41, 1993, No. 6, pp. 1055–1064, doi:
10.1287/opre.41.6.1055.

[13] Gutin, G.—Punnen, A. P. (Eds.): The Traveling Salesman Problem and Its
Variations. Springer, New York, Combinatorial Optimization, Vol. 12, 2006, doi:
10.1007/b101971.

[14] Gupta, A.—Ong, Y. S.—Feng, L.: Multifactorial Evolution: Toward Evolution-
ary Multitasking. IEEE Transactions on Evolutionary Computation, Vol. 20, 2016,
No. 3, pp. 343–357, doi: 10.1109/TEVC.2015.2458037.

[15] Gupta, A.—Mańdziuk, J.—Ong, Y. S.: Evolutionary Multitasking in Bi-Level
Optimization. Complex and Intelligent Systems, Vol. 1, 2015, No. 1–4, pp. 83–95,
doi: 10.1007/s40747-016-0011-y.

[16] Laporte, G.: The Traveling Salesman Problem: An Overview of Exact and Approx-
imate Algorithms. European Journal of Operational Research, Vol. 59, 1992, No. 2,
pp. 231–247, doi: 10.1016/0377-2217(92)90138-Y.

[17] Lucena, A.: Time-Dependent Traveling Salesman Problem – The Deliveryman Case.
Networks, Vol. 20, 1990, No. 6, pp. 753–763, doi: 10.1002/net.3230200605.

[18] Lin, S.—Kernighan, B.W.: An Effective Heuristic Algorithm for the Traveling-
Salesman Problem. Operations Research, Vol. 21, 1973, No. 2, pp. 498–516, doi:
10.1287/opre.21.2.498.

https://doi.org/10.1109/TEVC.2019.2906927
https://doi.org/10.1145/195058.195125
https://doi.org/10.1109/SFCS.2003.1238179
https://doi.org/10.1007/978-3-540-68279-0_1
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/CEC.2017.7969407
https://doi.org/10.1287/opre.41.6.1055
https://doi.org/10.1007/b101971
https://doi.org/10.1109/TEVC.2015.2458037
https://doi.org/10.1007/s40747-016-0011-y
https://doi.org/10.1016/0377-2217(92)90138-Y
https://doi.org/10.1002/net.3230200605
https://doi.org/10.1287/opre.21.2.498

1396 H.B. Ban, D.H. Pham

[19] Miller, C. E.—Tucker, A.W.—Zemlin, R.A.: Integer Programming Formu-
lation of Traveling Salesman Problems. Journal of the ACM, Vol. 7, 1960, No. 4,
pp. 326–329, doi: 10.1145/321043.321046.

[20] Osaba, E.—Martinez, A.D.—Galvez, A.—Iglesias, A.—Del Ser, J.:
dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for Permutation-
Based Discrete Optimization Problems. Proceedings of the 2020 Genetic and Evo-
lutionary Computation Conference Companion (GECCO ’20), 2020, pp. 1690–1696,
doi: 10.1145/3377929.3398084.

[21] Orman, A. J.—Williams, H. J.: A Survey of Different Integer Programming For-
mulations of the Travelling Salesman Problem. In: Kontoghiorghes, E. J., Gatu, C.
(Eds.): Optimisation, Econometric and Financial Analysis. Springer, Berlin, Heidel-
berg, Advances in Computational Management Science, Vol. 9, 2007, pp. 91–104, doi:
10.1007/3-540-36626-1 5.

[22] Salehipour, A.—Sorensen, K.—Goos, P.—Braysy, O.: Efficient GRASP +
VND and GRASP+VNSMetaheuristics for the Traveling Repairman Problem. 4OR –
A Quarterly Journal of Operations Research, Vol. 9, 2011, No. 2, pp. 189–209, doi:
10.1007/s10288-011-0153-0.

[23] Silva, M.M.—Subramanian, A.—Vidal, T.—Ochi, L. S.: A Simple and Effec-
tive Metaheuristic for the Minimum Latency Problem. European Journal of Opera-
tional Research, Vol. 221, 2012, No. 3, pp. 513–520, doi: 10.1016/j.ejor.2012.03.044.

[24] Razali, N.M.—Geraghty, J.: Genetic Algorithm Performance with Different
Selection Strategies in Solving TSP. International Conference of Computational In-
telligence and Intelligent Systems (ICCIIS ’11), 2011, pp. 1134–1139.

[25] Abdoun, O.—Abouchabaka, J.: A Comparative Study of Adaptive Crossover
Operators for Genetic Algorithms to Resolve the Traveling Salesman Problem. Inter-
national Journal of Computer Applications, Vol. 31, 2011, No. 11, pp. 49–57.

[26] Xie, T.—Gong, M.—Tang, Z.—Lei, Y.—Liu, J.—Wang, Z.: Enhancing Evo-
lutionary Multifactorial Optimization Based on Particle Swarm Optimization. 2016
IEEE Congress on Evolutionary Computation (CEC), 2016, pp. 1658–1665, doi:
10.1109/CEC.2016.7743987.

[27] Xu, Q.—Wang, N.—Wang, L.—Li, W.—Sun, Q.: Multi-Task Optimization
and Multi-Task Evolutionary Computation in the Past Five Years: A Brief Review.
Mathematics, Vol. 9, 2021, No. 8, Art. No. 864, doi: 10.3390/math9080864.

[28] Vander Wiel, R. J.—Sahinidis, N.V.: Heuristics Bounds and Test Problem Gen-
eration for the Time-Dependent Traveling Salesman Problem. Transportation Science,
Vol. 29, 1995, No. 2, pp. 167–183, doi: 10.1287/trsc.29.2.167.

[29] Yuan, Y.—Ong, Y. S.—Gupta, A.—Tan, P. S.—Xu, H.: Evolutionary Mul-
titasking in Permutation-Based Combinatorial Optimization Problems: Realization
with TSP, QAP, LOP, and JSP. Proceedings of the 2016 IEEE Region 10 Conference
(TENCON), 2016, pp. 3157–3164, doi: 10.1109/TENCON.2016.7848632.

[30] http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

[31] http://www.math.uwaterloo.ca/tsp/concorde.html.

https://doi.org/10.1145/321043.321046
https://doi.org/10.1145/3377929.3398084
https://doi.org/10.1007/3-540-36626-1_5
https://doi.org/10.1007/s10288-011-0153-0
https://doi.org/10.1016/j.ejor.2012.03.044
https://doi.org/10.1109/CEC.2016.7743987
https://doi.org/10.3390/math9080864
https://doi.org/10.1287/trsc.29.2.167
https://doi.org/10.1109/TENCON.2016.7848632
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://www.math.uwaterloo.ca/tsp/concorde.html

Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP 1397

Ha-Bang Ban received his Bc.E. in information technology
and his Ph.D. in computer science from the Hanoi University of
Science and Technology (HUST), Vietnam, in 2006 and 2015, re-
spectively. He is currently Lecturer at the School of Information
and Communication Technology (SoICT), HUST, Vietnam. His
research interests include algorithms, graphs, optimization, lo-
gistics, etc. He has published many publications in peer-reviewed
international journals and conferences.

Hai-Dang Pham received the engineering diploma in informa-
tion technology from the Hanoi University of Science and Tech-
nology (HUST), Vietnam, in 1995 and his Ph.D. in computer
science from Ecole Pratique des Hautes Etudes (EPHE), France,
in 2011. He is currently Senior Lecturer at the School of Informa-
tion and Communication Technology (SoICT), HUST, Vietnam.
His current research interests include algorithms, parallel and
distributed simulation, multi-agent based simulation and high
performance computing.

