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Abstract. During the Covid pandemic, the importance of wearing mask has been
noted globally. Additionally, crowded human clusters facilitated the transmission
of the virus, which brings up the need for new systems for monitoring such situa-
tions. To address such issues, this research proposes an object recognition visual
system based on deep learning to monitor the mask-wearing in a certain space and
the control of the number of people indoors as an important tool during an epi-
demic. This research mainly investigates two types of identification. The first is to
monitor whether people entering the site wear a mask at the entrance and exit of
the field, and the second is to count the number of people entering a specific area.
Experimental results show that by utilising the visual sensor, it is possible to detect
and identify the people who frequently enter and exit in real-time. An advanced
transfer learning approach has been employed to achieve the best discrimination
performance. The actual training results prove that the migration learning Mask
R-CNN algorithm produced by this method and the original Mask R-CNN algo-
rithm have increased the mAP by 3%, reaching a mAP of 96%. In addition, the
accuracy of the random sampling and identification in actual scenes has reached
92.1%. The developed deep learning vision system has an enhanced identification
ability for the verification and analysis of actual scenes and has a great application
potential.

Keywords: Mask R-CNN, object detection, people flow control, deep learning,
transfer learning

1 INTRODUCTION

Coronaviruses are a large group of highly infectious viruses that may cause dis-
eases in animals or humans. In humans, several coronaviruses are known to cause
respiratory infections, from the common cold to more serious diseases such as Mid-
dle East Respiratory Syndrome (MERS) [5], Severe Acute Respiratory Syndrome
(SARS) [22], and COVID-19 [23] which is an infectious disease caused by the coron-
avirus, and has caused a pandemic. Coronaviruses can be spread primarily through
coughing and sneezing, close personal contact such as touching or shaking hands
and touching an object or surface with the virus on it, then touching your mouth,
nose, or eyes. The COVID-19 outbreak has become a pandemic, affecting all the
countries globally.

Deep Learning [12] is an emerging field under machine learning and artificial
intelligence. The motivation is to simulate and build the neural network of the
human brain for analysis and learning via input perception data into the mechanism
of deep neural networks. The identification tasks are classified, grouped, labeled,
or positioned by learning and modeling from the data. By an underlying deep
non-linear network structure, the learning can achieve an approximation of complex
functions, represent a distributed representation of the input data, and get the
powerful ability to assess the basic characteristics behind the finite sample set [15].
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Deep learning could provide various solutions in computer vision, speech recognition
and many other applications [7, 24, 6]. When facing the challenges of the global
pandemic, deep learning could be a good mean to tackle various issues such as
medical and social domains. In general, artificial intelligence could be employed to
create robotic agents for smart epidemic prevention [17].

This paper aims to provide AI solution for pandemic as follows:

• Employing the two-stage object detection approach to correctly and accurately
classify those faces that are wearing a mask.

• Using a universal dataset in order to develop a system which could be used glob-
ally even tough a small amount of self-collected data is used for the validation.

• Experimenting and testing the proposed system in actual scenes for performance
evaluation.

The main contributions of this paper are as following:

• Using the deep learning based object recognition system to detect whether
a mask is worn or not.

• Monitoring and controlling the number of people entering and exiting a specific
field to reduce the virus transmission.

• Development of an augmented Mask R-CNN model by integrating transfer learn-
ing to improve the performance of the system.

The reminder of the paper is organized as follows: Related works are presented
in Section 2, the methodologies of model set up, training and optimisation are
introduced in Section 3, a series of experiments is presented in Section 4 to validate
the proposed method, and a conclusion with future work direction is discussed in
the last section.

2 RELATED WORKS

Rapid progress in Deep Learning (DL) and improvements in its capabilities have
improved the performance and cost-effectiveness of several vision based systems.
Compared to the traditional computer vision techniques, DL enables computer vision
applications to achieve greater accuracy. Since deep neural networks used in DL are
trained rather than programmed, applications using this approach often require less
expert analysis and fine-tuning and exploiting the tremendous amount of visual data
available in the systems. DL also provides superior flexibility because models and
frameworks can be re-trained using a custom dataset for any use case, contrary to
computer vision algorithms, which tend to be more domain-specific [21].

2.1 Traditional Object Detection

Before deep learning gets widely used to various image processing applications, tra-
ditional image feature extraction methods relied on experts in using experience and
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design algorithms. In such approaches, after the features are obtained, a linear or
non-linear classifier is used for the classification task. Regarding the positioning of
the object, it is possible to perform a thorough search of the entire image (sliding
window) and find the possible region of the object (region proposal), and solve the
problem of multiple predictions. The traditional object recognition is divided into
three steps, which are image pre-processing, feature extraction and object position-
ing.

In the image pre-processing module, due to the environmental influences such
as light source interference, camera vibration and excessive image noise, the quality
of the obtained image is poor, or there is unnecessary information in the image. For
that goal, the common approach is to properly process the image to achieve the
effect of removing noise, enhancing the image, RST (Rotation-Scaling-Translation)
and invariant adjustment in order to improve the quality of the image and highlight
the information needed for the next process.

The feature extraction module is to segment the features that are beneficial to
the classification of the objects, and then use these features to describe or represent
the shape and color of an object. In the problem of object detection, the method
of feature extraction is based on a simple observation. This feature must be able
to separate the object from the background and still have the characteristics of
describing the invariance of the object after displacement and deformation. In the
past, most imaging works used the methods of Histogram of Oriented Gradient
(HOG) [2] and Scale-invariant Feature Transform (SIFT) [1] to extract features
that can be used for object detection.

Traditional object recognition often relied on the sliding window algorithm. The
algorithm uses one or more rectangular windows of different sizes to scan the original
image, and extracts the characteristics of each window image according to the above
method. A recognition classifier was then used to determine whether the location of
the window contains the desired object or not. Usually, the sliding window method
causes the object in the test image to have multiple bounding box predictions.
For this, non-maximum suppression (NMS) [3] was usually used to select the best
bounding box as the final prediction.

2.2 Object Detection Based on Deep Learning

There are currently two deep learning algorithms in the field of object detection:
One is one-stage object detection, and the other one is two-stage object detection,
as shown in Figure 1. While the algorithm of the former is faster, the accuracy
is relatively lower than for the latter. The difference in the structure of these two
can be observed from Figure 1. After the image input, a backbone network is used
for feature extraction. The module of two-stage object detection is employed for
separated calculation of object localization and classification, in contrast to that of
one-stage object detection which, taking the computational speed into account, com-
bines the object localization and classification to output. Actually, either one-stage
or two-stage object detections have their own merits depending on the applications.
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Considering that the experimental scenes of this paper are more complicated and
must calculate the number of people accurately, this research has adopted Mask
R-CNN of two-stage object detection for identification accordingly.

Figure 1. Comparison of one-stage and two-stage object detection

2.2.1 Two-Stage Object Detection

For two-stage object detection, various CNN based methods such as R-CNN, Fast
R-CNN and Faster R-CNN are common for object detection. Region-Convolution
Neural Network (R-CNN) [8], proposed by Girshick et al., is the first algorithmic
architecture which successfully applied the deep learning to CNN as a milestone in
the application of CNN for object recognition problems. Beneficial from the CNN’s
excellent feature extraction and classification performance, and the Region Proposal
methodology, R-CNN achieves the object identification in a two-stage manner. Since
the Region Proposal plays a key role in the success of the algorithm, the method is
named after the initial letter R at the beginning which is referring to Region plus
CNN.

Before the popularity of the Fast R-CNN, most of the scholars used SPPnet [13]
to find the optimal solution for the problem of repeated convolution in R-CNN.
However SPPnet has several limitations. On the other hand Fast R-CNN provides
a comprehensive solution. With Fast R-CNN, not only the training steps are re-
duced, but also there is no need to store additional features. For the network struc-
ture, the Fast R-CNN algorithm based on the VGG16 [9] backbone network can be
9 times faster than R-CNN in training speed, and 3 times faster than SPPnet. For
testing speed, Fast R-CNN is 213 times faster than R-CNN, and 10 times faster
than SPPnet. Fast R-CNN reaches 66% mAP on the VOC2012 training set [14].
In the Fast R-CNN algorithm, the involved CNN is executed once, and then the
features extracted by the CNN are used for 2 000 region proposals. Using Region
of Interest (RoI) pooling, the extracted regions can correspond to the feature map
output, and connect to the fully connected layer for Softmax [16] classification and
bounding box regression, as illustrated in Figure 2.

Fast R-CNN integrates and optimizes the steps of R-CNN, which not only greatly
improves the detection speed, but also improves the detection accuracy. The im-
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Figure 2. Fast R-CNN algorithm architecture

provement includes the convolution of the entire image instead of the convolution
of each region proposal. There are three cores of the improved algorithm: the ROI
Pooling, the simultaneous network for both classification and regression training,
and the multi-task loss. The main disadvantage of Fast R-CNN is that the extrac-
tion of region proposals still uses selective search, which is the same as R-CNN. That
increases the time for target detection.

2.2.2 Transfer Learning

The main purpose of transfer learning is to assist the training of the target domain
model with a large number of training samples of the source domain, that is, to
transfer the pre-trained model and parameters that have been trained in the source
domain to the new model of the target domain. In the source domain, there are a lot
of source data that are not directly related to our task, while in the target domain
there is only a small amount of target data that is directly related to the task, but
the two kinds of data are related or similar to each other, as shown in Figure 3. In
the case of mask detection, the large dataset for face is available, however that is
really limited in the case of faces wearing masks. Hence, transfer learning method
could be employed for training.

The transfer learning method extracts knowledge from one or more source tasks
and applies it to the target task. Pan and Yang [4] conducted a survey on trans-
fer learning, in which range, task, and marginal probability were used to provide
a framework to help understand transfer learning. The framework is defined as
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follows: Given the source domain Ds, the corresponding source task Ts, target do-
main DT and target task TT , where Ds is not equal to DT or TT (in most cases,
it is assumed that the number of target samples is much smaller than the num-
ber of source samples). The purpose of transfer learning is to enable us to obtain
information from Ds and Ts to learn the target condition probability distribution
of DT .

A small amount of target data can easily cause overfitting of the target model,
because when the training set is too small, the model cannot find generalized fea-
tures. Therefore, in training, the first few layers of the pre-trained model are usually
locked to reduce the training parameters and avoid overfitting. Yosinski et al. [10]
experimentally quantified the generality versus specificity of neurons in each layer
of a deep convolutional neural network. Through experiments, it is known that
the effect of fixing the first few layers is significant, because the features captured
at the beginning are relatively low-level and have high versatility. It is not re-
quired to manually label the data or train the model from scratch for transfer
learning, instead the process is just to apply the weight of the trained model to
the target field. Using this method, the training time and cost are greatly re-
duced.

Figure 3. Transfer learning concept

3 METHODOLOGY

3.1 Overall System Design

The aim of our design is to develop a vision system for a robotic system for pandemic
situation to count the number of people passing through and detect their facial mask
wearing by a Mask R-CNN model. The introduced vision system is sought to help
the epidemic control when people enter and crowd in a closed space. The system
architecture is shown in Figure 4.
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Figure 4. Visual system architecture diagram

Wearing a mask is one of the keys measures to prevent the epidemic such as
COVID-19, and the calculation of the number of people can prevent too many
people in a closed space, resulting in the lack of circulation and the inability to
maintain social distance. Therefore, the function used can prevent the spread of the
virus in time. The integration of the above-mentioned multiple function system can
send notifications and warnings when someone does not wear a mask or there are too
many people in the community. The proposed robot vision system can be employed
in the entrances of schools and public spaces or applied to automatic surveillance
systems to achieve epidemic prevention and reduce manpower requirements. The
overall system diagram is shown in Figure 5.

3.2 Mask R-CNN

Mask R-CNN is a typical two-stage image processing algorithm. The first stage
is RPN which will be explained in details later in this paper. The second stage
predicts the bounding box and target category in parallel, and then uses RoI to
output an additional binary mask. The classification of objects depends on mask
prediction. The preprocessed picture feeds into the backbone network as an input
to extract the features, so that the corresponding feature map can be obtained, and
the features are also input into the RPN to obtain the corresponding anchor frame.
Then, using the obtained anchor frame and feature map, using RoIAlign, the feature
map corresponding to each anchor frame is unified into a single size to obtain a fixed
size feature map. After obtaining the feature map of each anchor box the mask is
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Figure 5. Overall system diagram

generated and the classification and bounding box regression are generated through
the fully connected layer. This is to apply the bounding box classification and
regression at the same time through the concept of Faster R-CNN. This structure
is shown in Figure 6.

Figure 6. Mask R-CNN structure diagram [25]
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3.2.1 Loss Function

Based on Faster R-CNN, Mask R-CNN is developed by adding a new mask branch.
The structural change makes the loss function of Mask R-CNN changed accordingly.
Due to the addition of a new mask branch, the loss function of each RoI is expressed
as:

L = Lcls + Lbox + Lmask (1)

where Lcls denotes the classification loss and Lbox is the bounding box loss as those
defined originally in Faster R-CNN, and Lmask denotes the loss function incurred
by the addition mask branch. Lmask, here, it was asserted to be proportional to the
output dimension, and it was expressed as [18]:

Lmask = Km2 (2)

where m2 represents the mask size, and K represents number of channels which are
the number of categories to be classified. All the RoIs generate a total of K binary
masks. After the mask prediction is obtained, each value of the mask pixel is
calculated by a sigmoid function, and it results in one of the outputs of Lmask

(binary cross entropy loss function). The operation is illustrated in Figure 7.

Figure 7. Output structure diagram of binary cross entropy loss function.

The expression of channel is 3 in the figure – that means there are 3 categories in
total. The RoI on the upper right corresponds to the category of K = 1, that is, the
two-class classification which is performed for each pixel on the mask of channel –
that is 1. The RoI at the bottom left corresponds to the category of K, that is 3.
The second classification is performed on each pixel on the mask of channel, that
is 3. The classification of each category is through the classification network which
tells which category the RoI is corresponding to the segmentation network. The
advantage of this is that the defined Lmask can generate a mask for each category in
the network, which is only used for the calculation loss of that category. So it will
not lead to the result of each category for competition. After calculating the loss for
the feature map of each fixed category, and then averaging all the pixels, the binary
cross-entropy loss function can be obtained.
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3.2.2 Region Proposal Network

In Mask R-CNN, the principle is the same as in Faster R-CNN. The RPN is first used
to find the proposal and then results are further screened through Mask R-CNN.
The type and location of each target in the picture can be found in the RPN. How-
ever, because the detection effect for smaller objects is poor, further optimization
is required through the framework. In the structure of the RPN, the input image is
extracted through the backbone network to obtain a feature map. The method to
locate the object’s location category from the feature map is to apply the concept of
anchor. Anchor is generated through any pixel on the feature map by first mapping
to a 16 × 16 area on the original image, and then using the center of this area as
the transformation center. The next step is to turn it into an area with three aspect
ratios, and then expand its area 8, 16, or 32 times. The last pixel corresponds to the
9 different rectangular boxes in the original image. These boxes are called Anchor.
The Anchor can be used to generate region proposals. The complete structure is
shown in Figure 8.

Figure 8. Anchor generation diagram

In the RPN structure diagram shown in Figure 9, it can be seen that Mask
R-CNN is a better framework as an improved Faster R-CNN. The RPN is also
reserved to generate region proposals. The operation process first performs an-
other convolution on the previously output feature map and then divide it into two
branches. The above branch is used to determine whether the anchors belong to
the foreground or the background through Softmax. The results of the two classifi-
cations are sent to the proposal layer. The other branch is bounding box regression
to modify anchors to obtain accurate proposals. After the above steps, the final
proposal layer adjusts the position of each anchor according to the regression result
of bounding box regression, and excludes anchors which exceed the boundary and
have a high degree of overlap. Then sorting is performed according to the fore-
ground score, taking out a small number of anchors as proposals, the coordinates of
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each proposal are the coordinates on the original image, which finally send it to the
RoIAlign layer to complete the overall process of RPN.

Figure 9. RPN (Region Proposal Network) structure diagram

3.2.3 Feature Pyramid Network

FPN (Feature Pyramid Network) [19] is a method that uses models to efficiently
extract features in each dimension of an image. In the FPN structure diagram
in Figure 10, the part from top to bottom is a process in which the features are
gradually reduced from bottom to top to express the features. The lower layer
displays the features of the image information of the shallower layers, such as edges.
The higher layers display deeper image feature information, such as object outlines
or categories. The feature map size of the feature output in the upper layer is
relatively small, but it can represent a larger dimensional image information. In the
horizontal output part, the top-level features are used for fusion through upsampling
and layer features, so that each layer is an independent prediction. This paper uses
1×1 convolution to generate output features, which can reduce the number of feature
maps without changing the size of feature maps. After 1x1 convolution and decoder
results are added, the relationship between the feature maps output by each stage
is doubled, so the size of the feature map obtained by the previous layer upsampling
is the same as the size of the current layer, and the corresponding elements can be
added directly. Finally, the 3×3 convolution is used as the output of this layer, and
the number of channels in the decoder part is 256.

3.2.4 RoI Alignment

RoIAlign is a regional feature aggregation method proposed in Mask R-CNN [18],
which solves the problem of regional misalignment by twice discretization steps in
the RoI pool. The concept of RoIAlign is to obtain the point values of an image
of which the primary values of the points are floating numbers by discretization
round-off using a bilinear interpolation. Thereafter, the entire feature aggregation
process could be transformed to be operated continuously. The operational process
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Figure 10. FPN (Feature Pyramid Networks) structure diagram

of RoIAlign is shown in Figure 11. The blue dashed boxes in the figure represent
the feature maps obtained after convolution. The black solid boxes represent the
RoI regions. As shown, the final output size is 2 × 2. The calculated blue dots
are also the ordinary random sampling points in the 2 × 2 cell, so the number and
location of the sampling points will not have a great impact on the performance.
There is no overall round-off operation in the process, and also no induced error in
the calculation. In other words, the pixels and the pixels in the feature map are
completely aligned with no deviation, so the detection accuracy can be improved.

Figure 11. RoIAlign operation process

3.3 Residual Network

The core neural network part is the ResNet neural network [20]. The design concept
of the network structure is that as the network deepens, the more features the
neural network can calculate, the better results it can achieve. The disadvantages
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of deeper neural networks require very large training parameters, which leads to
a large amount of computing resources. But in fact, as the network deepens, the
size of the gradient drops sharply, which will cause the learning rate to be very slow.
In rare cases, the gradient will rise sharply, that is, gradient explosion phenomenon.
Compared with the shallow network, the accuracy shown on the training set is not
improved, but will decrease. The residual network is a kind of network proposed to
solve the network deepening gradient disappearance or gradient explosion, and the
residual network is easier to optimize, and it can increase the accuracy by increasing
a considerable depth. The core is to solve the side effects of increasing depth, which
can improve network performance by simply increasing network depth. Therefore,
this paper uses ResNet-101 as the core of neural network.

In the neural network, VGG and ResNet use the same building blocks to build
the network [26]. Among them, ResNet proposes two mappings, one is identity
mapping, and the other is residual mapping. Identity mapping refers to itself, which
is the x in the formula, while residual mapping refers to the difference, which is y-x,
so the residual refers to the F (x) part (Figure 12).

Figure 12. ResNet’s residual learning unit [20]

In the residual learning unit structure in Figure 12, two weight layers are defined
as new nouns called Residual. The Residual operation value can be expressed as:

Residual = H(x)− x. (3)

That is, the difference output of Residual can be obtained through the above
formula. Therefore, Residual is also a function of x, so it is also written as F (x).
Finally, the expression can be expressed as:

F (x) = H(x)− x. (4)

From the above formula, we can infer that by shifting the term of the expression,
the Residual output can be expressed as:

H(x) = F (x) + x. (5)

After the final result is calculated by Residual, the final result is sent to the
ReLU layer for calculation.
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3.3.1 Experiment Procedures

The experiment process is divided into data collection, labeling, and model training.
In order to accurately detect whether a person is wearing a mask, we use the mask
dataset on Kaggle, plus about 300 pieces of data collected by ourselves as a training
set. In each image, the facial information of each person is manually tagged, and
divided into two categories: masked and non-masked. In the manual labeling of
data, we use Labelme, an image labeling tool developed in collaboration with the
Massachusetts Institute of Technology (MIT) Computer Science and Artificial In-
telligence Laboratory (CSAIL). Through the label tool, we can frame the target in
the form of a polygon and give it a corresponding label, as shown in Figure 13. The
next step is to output the labeled data and use the tags to perform data training.

Figure 13. Labelme labeling data

In the process of training model, parameter setting is an important part of
training. This paper uses the marked data in the previous part and uses GPU for
training through the CUDA computing platform and TensorFlow-gpu. In terms of
parameter setting, the class is set to 3, respectively wearing a mask, not wearing
a mask, and background. According to the number of categories, we set each step
to 100 and train 200 times, and adjust the batch size to the largest possible value,
so we adjust it to 8.n the aspect of image width and height setting. This paper
tried two different methods. The first is to directly train the data set after labeling.
However, the model of this approach is very inaccurate, and the verified model often
has detection errors. So we proceed to use the second method, by first adjusting
the size of the images in the dataset, and we changed the size of the images to
a uniform size. Next step was to test the recognition results of the two. If the photo
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is blurry or occluded, the latter has a relatively higher probability of detection error
compared with the former. Therefore, we adopt the latter method to change both
the output image and the input image to the same size. In the part of the learning
rate, the learning rate in the Mask R-CNN [18] literature is set to 0.02, but since on
the implementation of the platform and the optimization parameters are different,
if it is not changed, the gradient will explode. Therefore, after many tests, it is
found that the training effect is best if the learning rate is set to 0.001. Finally,
we set the verification and training path and set the mAP calculation for training
every 5 steps. After the above-mentioned data labeling and training parameter
setting process, the neural network could complete the specified number of training
iterations to get a trained model.

3.4 Data Augmentation for Training

In deep learning, the performance is usually proportional to the amount of data, so
increasing training data is also an easy way to improve the performance of a model.
Through the augmentation of training data, the accuracy of detection could be in-
creased, i.e., the generalization ability of the model could be improved. Considering
the placement of the visual system, there may be problems with backlighting or
insufficient light. Therefore, this paper uses the ImageDataGenerator category in
the Keras platform to enhance the brightness of the training data. While increasing
the amount of data, it also increases the model’s ability to recognize the bright or
dark environments. The training data augmentation result is shown in Figure 14.

With the above-mentioned data augmentation, we expanded the original 1 000
training data to 1 300 by lighting up or darken down the tone of the whole picture,
in order to achieve the capability in recognizing the objects even when the exposure
is too high or too low. The argumentation dataset has 1 300 images, and for the
sake of training, the dataset was divided into two categories, as shown in Table 1.

Class Name Description No. of Images

With Mask Faces with masks correctly used 642
Without Mask Faces with no masks or masks incorrectly used 658

Table 1. Training dataset category and number

3.5 Enhancing the Model with Transfer Learning

Previously, we have increased the generalization ability of the model by enhancing
the data. In this section, we introduce the method of pre-training the model and
performing transfer learning. For part of the pre-training model, this research uses
COCO weights [11] to train the ResNet-101 model. In the training data part, we
use the 1 300 sheets in previous section as the verification set and 1 040 sheets as
the training set and pre-training model for transfer learning. The process is shown
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Figure 14. Generated image after data augmentation

in Figure 15. We first input the data enhanced by the training data, and then
perform transfer learning through the pre-trained model and data. During transfer
learning, the last prediction layer will be replaced with two fully connected layers
to output two categories. The architecture of the proposed transfer learning is
shown in Figure 16. After continuous evaluation and verification of the model, the
new trained weight file is finally generated which can be used for subsequent model
input of Mask R-CNN.

4 RESULTS AND DISCUSSIONS

4.1 Training Results on Different Models

Regarding the training part of the mask data, we use the Kaggle dataset of multi-
person and environment-intensive photos for data annotation. The data set contains
many different scenes. In each photo, the facial information of each person is man-
ually labeled, and divided into two categories: with-mask and without-mask. The
training epoch is set to 200, that is, 100 steps are done in each epoch, a total of
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Figure 15. Flowchart of transfer learning

Figure 16. Transfer learning model architecture

20 000 iterations. After the above iterative training process, we calculate the mean
average precision (mAP) to observe the evaluation of the training model. The preci-
sion refers to the correct number of all predictions, and its concept can be expressed
as:

precision =
TP

TP + FP
(6)

where TP (True Positive) is a correctly predicted bbox, and FP (False Positive) is a
wrong predicted bbox. This paper sets the threshold of IoU to 0.5. The verification
data greater than 0.5 is classified as TP , and verification data less than or equal to
0.5 is classified as FP . Recall refers to the percent predicted in all correct categories.
The concept can be expressed as:

recall =
TP

TP + FN
(7)

where FN (False Negative) is the number of ground truth (GT ) not detected. After
getting the precision and recall functions, we use recall as the x coordinate and
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precision as the y coordinate. The PR curve is calculated for each category, and
AP can be obtained by the graph area enclosed by the PR curve and the x-axis
recall. Take the average of each type of AP to get mAP. This paper uses 800 of
the 1 000 pictures as the training set, and the remaining 200 as the verification
set. During the training process, repeated verifications are continuously carried out.
Verification is performed every 5 epochs, and the mAP calculation of the above
process is performed.

Experimental studies with/without transfer learning of the same dataset before
and after the data enhancement were conducted. The training data is also 1 300
sheets, which contain random enhancement data with varying brightness and dark-
ness. In the validation set, this research uses 1 300 image data after enhancement
and uses 1 040 random images as the training set, and the remaining 260 images
as the validation set. During the training process, repeated verifications are contin-
uously performed, and mAP calculations are performed every 5 epochs. The data
comparison is shown in Table 2.

Original Model Data Augmentation Only Transfer Learning

Training total loss 0.3 0.083 0.05
Training mAP 91% 93% 96%

Table 2. Comparison of training total loss and mAP for data augmentation and transfer
learning

According to Table 2 listed the difference before and after the transfer learning,
the total loss part of the training is 0.033 less than that before the augmentation,
and the part of the mAP is 3% more than that before the transfer learning. In
addition, we compare the total loss curves of the three models of original data, data
augmentation and transfer learning, as shown in Figure 17.

Figure 17. The total loss comparison line chart of the three models
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In Figure 17, the three curves are the total loss line graphs of the original model,
the data augmentation model, and the transfer learning model. In the curve in the
figure, it can be observed that the total loss curve after transfer learning has the
fastest convergence speed. The total loss has converged to 0.1 at 40 epochs. Com-
pared with the original model and the data augmentation model, the convergence
speed is much faster. In the performance of mAP, as shown in Figure 18 for the
same 40 epochs, the mAP of the original model and the data augmentation model
are 75% and 90%, respectively, but the transfer learning model has reached 95%.
This data comparison also proves that in the case of a small amount of data, transfer
learning not only shortens the model convergence time, but also improves the mAP
of the model.

Figure 18. The mAP comparison line chart of the three models

4.2 Mask Detection Experiments

After training, the system can clearly distinguish in simple scenario those, who wear
a mask and those who do not, as shown in Figure 19. It can be seen that the red
box on the left side of the figure shows that the person is wearing a mask, and the
blue box on the right shows that the person is not wearing a mask.

As expected primarily, the mask detection aims to be used in surveillance sys-
tems or mobile robots. There will be many targets to be detected in one screen for
a single-person or multi-person scenes. Usually, the accuracy of the recognition is
affected by many factors, such as the occlusion of the detected target, the detection
angle, and the size of the detected target in the process of detecting a target. To
evaluate the effects from the factors, a primary model verification was designed and
experimented. Face directions were arranged in respective angles of 0◦ (frontally
aligned), 45◦ and 90◦ (sagittally aligned) for testing (Figure 20). The mask detector
was then used for identifying the mask-wearing.
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Figure 19. Figure of identification results in a simple scenario

The result of experiment could be found in Figure 21. There are no mis-
detections occurred in the output regardless of the facing directions even when the
face turned to sagittally-aligned 90◦. Therefore, as long as the detection angle of the
face is not greater than 90◦, the developed model is able to clearly detect whether
the target is wearing a mask or not.

Figure 20. Experiment with face directions, angle of a) 45◦, b) 90◦ (sagittally aligned),
c) angles 0◦ (frontally aligned)
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Figure 21. The detection result of the face direction angles

The face-angle verification was extensively scaled up to test the capability of
the model. Through the above implemented environment, sets of different images
containing 95 frontally-aligned faces, 88 images 45◦ faces, and 84 sagittally-aligned
faces were used to measure the recognition rate. The results are shown in Table 3.

Angle Correctly Classified/All Recognition Rate

0◦ 91/95 95.7%
45◦ 78/88 88.6%
90◦ 71/84 84.5%

Table 3. Recognition rates of different face direction angles.

According to the actual measurement results in Table 3, the model had the
highest recognition rate on the frontally-aligned direction, with a recognition rate of
95.7%. As the angel of the direction increased, the recognition rates of 45◦ and 90◦

were reduced to 88.6% and 84.5%, respectively. The experimental results confirmed
that the rotation angle of the face has an effect on the recognition rate, but the effect
was not substantial. In our experiment on the actual scenes, if the rotation angle of
the target face is large, the recognition rate is reduced.

4.3 Real Field Application Verification

For model verification, the model may not be good to be verified through only
prepared-ahead pictures with some simple backgrounds. Therefore, cameras were
used at a building gates and entrances to capture the actual scenes. In this experi-
ment when people enter or exit, a picture was taken like those in Figure 22.

As shown in Figure 22, it can be seen that the people are accurately identified
by the model, and the mask and outer frame are displayed in the correct position. In
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Figure 22. Recognition results of experiments in various scenarios.

order to achieve more accurate and digital identification results, we set up cameras
in many different scenes, such as gates and specific entrances and exits for long-
term experiment. After sampling and calculation, we took 107 random passers-by
in different scenarios, and calculated the correct and inaccurate identifications one
by one through statistical methods. Table 5 shows the confusion matrix of the
classification.

Actual Condition

Total = 107 people Wearing a mask Not wearing a mask

Prediction Wear a mask 75 10
Outcome Not wearing a mask 8 14

Table 4.



1286 C.Y. Yang, H. Samani, N. Ji, C. Li, D.B. Chen, M. Qi

It can be observed that the accuracy of this model can be expressed as:

Precision =
TP

TP + FP
. (8)

Through the calculation, it can be seen that the actual detection precision, which
is one of the most common indicators in the theory to measure machine learning
models, of this model is 88%. As a conservative index, the higher the score, the
more accurate the model can predict. In addition, a counterpart Recall variable can
be expressed as:

Recall =
TP

TP + FN
. (9)

In the above formula, TP means that masks are worn in the actual situation,
and the predicted output also includes the number of masks worn. FN is actually
wearing a mask, but the predicted output is not wearing a mask. Furthermore, we
can use Recall and Precision to find the value of F-score which can be expressed as:

F-score =
(1 + β2)precision × recall

β2precision + recall
(10)

where β is a weighting factor to impact Recall or Precision. Since it is an average
problem, there is no need to weight especially Recall or Precision. The same weight
brings β=1 to the expression and leads it to a reduction model:

F-score = 2
precision × recall

precision + recall
. (11)

It brings the calculation as:

2
0.88× 0.90

0.88 + 0.90
= 0.89. (12)

From the result of the above formula, we can see that the model calculates F-
score of 0.89. F-score is a commonly used index to measure the quality of a model,
and it is often used to judge the accuracy of an algorithm. The closer the calculated
F-score is to 1, the higher the accuracy of the model. In terms of the discrimination
of another models, we use the aforementioned data to generate a confusion matrix,
and we use randomly sampled 107 passerby data to make predictions. Based on
that, we calculated the recorded 107 pieces of data according to the predicted and
actual results of each piece of data, and calculated the true positive rate (TPR) and
false positive rate (FPR) in the confusion matrix. Among them, the true positive
rate is also called sensitivity, which is a positive sample of functional judgement.
The higher the value, the better the performance. The calculation formula can be
expressed as:

TPR =
TP

TP + FN
. (13)
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Compared with the true positive rate, the false positive rate is the proportion
of the true negative samples in the positive sample category to the total number of
all negative samples. The calculation formula can be expressed as:

FPR =
FP

FP + TN
. (14)

The ROC curve can be obtained by connecting the TPR and FPR of each
threshold calculated above, as shown in Figure 23.

Figure 23. ROC graph

The yellow line in the above figure is the TPR (x-axis) and FPR (y-axis) curves
of each threshold (0 1), and the orange curve is the separation line of the model pre-
diction. Among them, the larger the value of the area under the ROC curve (AUC ),
the better the performance, the more accurate the classification. The calculation
method of the area under the curve can be expressed as:

AUC =
1

2

M∑
K=i

(f(xi+1) + f(xi)) ∗ (xi+1 − xi). (15)

In the above formula, M is the threshold number, The K variable is the number
represented by each threshold, f(x(i+1)) and f(xi) are the upper and lower bases,
and (x(i+1) − xi) refers to the high parameter. Therefore, by using these variables,
the area under the curve can be calculated from the sum of multiple trapezoids.
The AUC value is a value between 0 and 1, and the closer the value is to 1, the
better the classification ability of the model. After calculation, a fairly good AUC



1288 C.Y. Yang, H. Samani, N. Ji, C. Li, D.B. Chen, M. Qi

value 0.83 has been derived, i.e., the quality of the model is of a high level. Finally,
based on the actual verification, we separately conducted experiments on different
scenarios and Table 5 shows the comparison of the results.

Accuracy Precision Recall F-score AUC

No data augmentation 83% 0.88 0.9 0.89 0.83
Data augmentation 87% 0.9 0.93 0.91 0.86
Transfer learning 92% 0.93 0.96 0.94 0.90

Table 5. Comparison of actual verification results of three models

From the results in Table 5, we can see that the performance of the model can be
increased through transfer learning. It can be seen that even if the amount of data
is very small, it can have a good performance. Under the above-mentioned multiple
different evaluation indicators, the performance of the transfer learning model is
higher than that of the model without transfer learning.

4.4 Mask Detection Performance Comparison with Related Works

To explore the benefit of the proposed model, we compare the performance of our
model with three related works: Jiang et al. [27], Nagrath et al. [28] and Loey et
al. [29]. The average accuracy and the speed are discussed here for performance
comparison. For average accuracy, statistics have been extracted respectively from
the original contributions of [27, 28] and [29], and listed in Table 6. Comparing
to the others listed in the table, the AP value, which represents the performance
accumulated under the ROC curve, of our proposed model outperforms those models
from [28] and [29]. Furthermore, the amount of training samples in [27] is the largest
comparing to that of [28] and [29], however the training samples in both [28] and [29]
are approximately similar in their sample quantities. The comparison, particularly
to [27], measures the balance between the amount of 7 735 samples and 98% of AP
with that of our proposed model, 1 300 samples and 96% of AP, only 2% accuracy
lost from the proposed model. When the amount of data is not huge, the transfer
learning model used in this paper also has good results in terms of accuracy. By
comparing with the results of other related work, we found that the amount of
training data needs to be increased compared with other related work, so that its
average accuracy can be improved.

Adopted Methodology Training Sample Average Precision (AP)

SE-YOLOv3 with SE-Darknet53 7 385 98%
SSD with MobilenetV2 1 376 92%
YOLOv2 with ResNet-50 1 415 81%
Proposed model with ResNet-101 1 300 96%

Table 6. Comparison of different related works in terms of average accuracy (AP)
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For comparison of detection time to the related works, the statistics were listed
in Table 7. It can be found that the method used in proposed model is the slowest
one while the method in [27] is the fastest one.

Reference Model Adopted Methodology Detection Time (ms)

Jiang et al. [27] SE-YOLOv3 with SE-Darknet53 35.5
Nagrath et al. [28] SSD with MobilenetV2 55.5
Loey et al. [29] YOLOv2 with ResNet-50 66.6
Proposed model Mask R-CNN with ResNet-101 71.4

Table 7. Performance comparison of different methods in related work

While the proposed architecture in this paper is a two-stage approach, the other
stumps in the comparison are one-stage approaches. The long span of the two-
stage is the main reason to make the recognition speed slower than those One-Stage
detectors. Therefore, speeding up the recognition without affecting the accuracy of
the recognition could be the direction for future improvements.

5 CONCLUSION

This paper proposed a model for crowd controlling with focus on mask detection
and people counting for the specific usage of pandemic situations. It was shown and
verified that by using deep artificial neural network, the system could perform the
assigned task successfully. Even if the detection background is complex, the system
has demonstrated an excellent performance on the detection of whether the person
is wearing a mask via the model of Mask R-CNN with FPN multi-scale detection.
The accuracy of the recognition during training reached 93% mAP, and through
transfer learning, the accuracy has been increased to 96%. In the verification part
of the actual scene, the identification accuracy reached 92.1%.

In addition to improving the training accuracy and recognition accuracy of the
system, improving occlusion and illumination are an important factor which could be
considered for the improvement of this system. This research assumes the condition
where the person is wearing the mask correctly, i.e., the mask is covering mouth
and nose. However one of the common issues with mask wearing is that many
people are not covering their nose or they wear the mask incompletely. That issue
is an important health aspect and it is required to investigate it in the future by
analysing the face with and without mask separately in order to analyse the proper
mask wearing.

In the future, the proposed system is expected to be employed in various appli-
cations. For example this system could be widely used in surveillance systems which
is not only limited to the pandemic. As an example, mask-wearing could be impor-
tant due to air pollution. Also robotic applications such as mobile robots could use
such system as part of their vision module. It is also expected that through the
above improvements, such a system can be applied to outdoor scenes in addition to
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indoors. Since the mask-wearing is an important measure for prevention of spread-
ing the virus, hopefully such system could be beneficial for developing new tools and
technologies for the future pandemics.
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