
Computing and Informatics, Vol. 40, 2021, 249–276, doi: 10.31577/cai 2021 2 249

UNIFIED ABSTRACT MECHANISM TO MODEL
LANGUAGE LEARNING ACTIVITIES

Gabriel Sebastián

Albacete Research Institute of Informatics
University of Castilla-La Mancha
Campus Universitario, s/n, 02071 Albacete, Spain
e-mail: gabriel.sebastian@uclm.es

Ricardo Tesoriero, Jose A. Gallud

Faculty of Computer Science Engineering
University of Castilla-La Mancha
Campus Universitario, s/n, 02071 Albacete, Spain
e-mail: {ricardo.tesoriero, jose.gallud}@uclm.es

Abstract. Language learning applications define exercises that are pedagogical
tools to introduce new language concepts. The development of this type of ap-
plications is complex due to the diversity of language learning methodologies, the
variety of execution environments and the number of different technologies that can
be used. This article proposes a conceptual model to develop the activities of lan-
guage learning applications. It defines a new abstraction mechanism to model these
activities as part of a model-driven approach to develop applications supporting
different language learning processes running on different hardware and software
platforms. We define a metamodel that describes the entities and relationships
representing language learning activities as well as a series of examples that use
the proposed abstraction mechanism to represent different language learning activ-
ities. The modelling process is simplified using a common representation that does
not affect neither the visual presentation, nor the interaction of each activity. The
article includes an evaluation that analyses the product correctness, robustness, ex-
tensibility, and reusability of the obtained code. These results conclude that the
code generated using the proposed approach overcomes the code generated following
a traditional approach.

https://doi.org/10.31577/cai_2021_2_249


250 G. Sebastián, R. Tesoriero, J. A. Gallud

Keywords: Model-driven development, languages learning methodologies, web
technologies

1 INTRODUCTION

Language learning applications development is complex due to the diversity of learn-
ing language methodologies, the variety of execution environments (Web, mobile and
desktop) and the number of different technologies that can be used [9].

Besides, the development of learning exercises to implement a language learning
application is a repetitive and tedious process. The process involves repeating the
same resource management tasks many times having duplicated code, which is dif-
ficult to maintain. Moreover, the problem of duplicated code and task repetition is
multiplied by the number of different target platforms, making the overall process
more complex and prone to errors. This approach, also known as the traditional
approach, can be improved using a Model-Driven Architecture (MDA) to capture
common features in Computation Independent Models (CIMs).

To capture this common features, we performed an analysis of the Lexiway1

language learning methodology and we experienced the following problems. Initially,
the client requested the development of a mobile application for the iOS platform.
Later on, they requested a Web version of the same application. Therefore, the
development team adapted software resources to produce a new source project for
the new version of the application.

This new development scenario consisted of two independent branches for the
same project which leads to divergent resources and a source code. The resulting
environment was difficult to maintain, impacting negatively on subsequent projects.
For instance, the development of an Android version of the application was aban-
doned due to the high development costs.

The aim of a learning activity is teaching a concept by means of an interactive
experience. Learning activities employ different interaction mechanisms such as fill-
in the gaps (see the right side of Figure 4), joining the lines, Drag&Drop images
(see the right side of Figure 5), and so on.

The traditional software development approach usually forces us to manually
generate the different learning activities or exercises, with their corresponding media
resources (audio, images or video). For example, the JUNIOR 1 level of the Lexiway
learning methodology consists of 6 different blocks composed of 4 units each. In
addition, each unit consists of 2 lessons containing 12 words. Managing all these
learning activities manually involves a high level of resource duplication which leads
to software validation difficult to manage.

1 https://www.facebook.com/LexiwayLearning

https://www.facebook.com/LexiwayLearning


Unified Abstract Mechanism 251

Thus, following the traditional approach to develop multimedia interactive learn-
ing applications, the idea is to develop several prototypical games. For each activity
type, a configuration file or a database register is manually defined. This configura-
tion file defines the data and resources required by the logic layer of the activity to
be executed.

Finally, another conventional aspect in the development process of interac-
tive learning applications is that the navigation among activities and the pro-
gression of the level of difficulty is controlled by complex conditional structures
that are difficult to manage and maintain which usually became a source of prob-
lems.

From the experience achieved during several years of developing language learn-
ing applications, we have learnt that the use of software artefacts (i.e. components,
frameworks) and performing repetitive tasks reduces considerably the development
time and costs. There are two conceptual tools that software engineering has tradi-
tionally employed to accomplish these challenges: increasing the level of abstraction
and reuse.

The development of learning activities requires the specification of a great variety
of aspects. Among the most relevant of them, we mention:

• the concept structure to be learnt,

• the media resources employed to represent these concepts,

• the mechanisms to manage, link and present these concepts,

• the activity workflow that should be followed to learn these concepts.

From the development perspective, all learning activities are different; however,
they could share common aspects. For instance, different activities could employ
the same interaction mechanisms (e.g. fill-in the gaps or joining concepts) to teach
completely different concepts (e.g. fruits, vegetables, transportation, etc.).

This article proposes a conceptual model to develop activities in language learn-
ing applications. In particular, the article presents a new abstraction mechanism
that allows designers to use (and reuse) the same model to represent many dif-
ferent learning activities, which have been taken from the learning methodologies
under study. It defines the “fill-in the gaps” activity as universal abstraction to
represent different kinds of activities. This abstraction is the basis of a model-
driven approach to develop activities for different language learning methodolo-
gies.

This article also shows a series of examples where the “fill-in the gaps” abstrac-
tion is used to represent different kinds of activities for different learning language
methodologies. Thus, the modelling process is simplified, since every activity is
modelled using a common representation which favours the reuse of models. It is
worth to note that this abstraction does not affect neither the visual presentation,
nor the interaction of each activity.

This paper is organized as follows. Section 2 describes the research context
together with the related work. Section 3 briefly describes the metamodel where



252 G. Sebastián, R. Tesoriero, J. A. Gallud

the “fill-in the gaps” abstraction is defined. Section 4 analyses a set of additional
modelling capabilities derived from this proposal. Section 5 describes the users’
evaluation carried out to evaluate the quality in use of our proposal as well as the
product quality. Finally, we present conclusions and future works.

2 RESEARCH CONTEXT

This section contains the research context regarding the development of language
learning applications which includes two main elements: the essential concepts and
features extracted from different learning methodologies to abstract the language
learning process, and the most relevant related work in the field of the model-
driven development which was employed to tackle the problems described in Sec-
tion 1.

Learning a foreign language is a process involving different methods, techniques
and tools, each one appearing to be more effective than the others. In this paper,
we focus on methodologies that offer some type of technological support (Web site,
mobile applications or similar).

We have analysed the following methodologies: Lexiway2, Duolingo3, Babbel4

and Busuu5.

Although these methodologies take different approaches, it is possible to identify
some common elements.

The Model-driven Architecture (MDAs)6 approach proposed by the Object Man-
agement Group (OMG) in 2011 presents a set of tools to abstract these common
elements to improve the software development. This solution gives a leading role to
models in the software development during all phases (i.e. inception, design, build-
ing, development, and maintenance).

The main reason behind this approach is the constant evolution of the soft-
ware technologies. Following a traditional development approach, the functionality
code and the implementation technology code are interweaved. Consequently, when
the technology is enhanced, the functionality is rewritten using the new technol-
ogy.

Under these scenarios, MDAs introduce abstraction levels to promote the soft-
ware reuse by emphasizing the design-time interoperability [20]. This kind of in-
teroperability is possible due to the specification of Platform Independent Models
(PIMs) that enable developers to separate the specification of the application func-
tionality from the technology that implements it.

2 https://www.facebook.com/LexiwayLearning
3 https://www.duolingo.com/
4 https://www.babbel.com/
5 https://www.busuu.com/
6 http://www.omg.org/mda/

https://www.facebook.com/LexiwayLearning
https://www.duolingo.com/
https://www.babbel.com/
https://www.busuu.com/
http://www.omg.org/mda/


Unified Abstract Mechanism 253

Thus, it is possible to reuse the specification of the application functionality for
different implementation technologies. Moreover, this functionality can be executed
on different hardware and software platforms only with minor changes.

The source code of applications is automatically derived from models using
model transformations [16].

In summary, the use of the MDA technology enables the generation of multi-
platform applications from PIMs. This fact leads to several advantages; for example,
let us assume we want to develop a learning activity using the fill-in the gaps inter-
action mechanism for different platforms (e.g. iOS, Web and Android). Following
a traditional approach, we should develop 3 different and independent source code
projects. Following an MDA approach, we specify only one PIM to generate the
source code for the 3 platforms.

The core of the MDA infrastructure is defined in terms of the following OMG
standards: the Unified Modeling Language (UML)7, the Meta Object Facility
(MOF)8, XML Metadata Interchange (XMI)9 and the Common Warehouse Meta-
model (CWM)10 which were successfully used in the modelling and development of
modern systems.

From the Human-Computer Interaction perspective, we can find different ap-
proaches that make use of models to generate user interfaces.

Hence, since our work focuses on the development of interactive systems, the
Model-based User Interface Development (MbUID) provides useful elements to ana-
lyse based on the CAMELEON Reference Framework (CRF) [5].

In recent years, other approaches such as [11] have also encouraged the use of
models to develop multi-modal user interfaces.

The use of Model-driven Development (MDD) for learning applications was ap-
plied in different works, such as those exposed in [8, 2, 18]. However, none of them
formalizes the definition of language learning activities using OMG compliant meta-
models. Nevertheless, there are several works that use MDD techniques based on
MDAs to develop Web applications [17, 3].

An interesting approach that defines a MDA to develop music learning appli-
cations is exposed in [26]. In particular, in this approach a MDA-based System
Development Lifecycle is defined, three Learn-Models are built, and the impor-
tant developing phases are described. The idea of using submodels in a complex
metamodel has been applied in our work. And a methodology to model e-learning
applications can be found in [10]; however, this methodology does not focus on de-
veloping language learning applications. Unlike this approach, our approach presents

7 http://www.omg.org/spec/UML/2.5/PDF
8 http://www.omg.org/spec/MOF/2.5.1/PDF
9 http://www.omg.org/spec/XMI/2.5.1/PDF

10 http://www.omg.org/spec/CWM/1.1

http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/MOF/2.5.1/PDF
http://www.omg.org/spec/XMI/2.5.1/PDF
http://www.omg.org/spec/CWM/1.1


254 G. Sebastián, R. Tesoriero, J. A. Gallud

a set of models at different abstraction levels providing different points of view of
the application depending on the level of abstraction.

A work where the experience of different research groups working in formal and
informal learning language design using mobile devices is presented in [1]. Among
the most relevant works regarding the development of e-learning applications we can
find those presented in [13, 19, 21, 24, 9].

With regard to the use of models to build Web sites, some methodologies (e.g. [7])
and models (e.g. RMM [14], WebML [6] have a direct impact on this research because
they focus on modelling applications at the software level. However, our interest is
focused on higher level of abstraction where the learning activity is the centre of our
modelling interest.

WebML enables to define the high-level description of Web sites considering
several orthogonal dimensions. For instance, the Web site contents (i.e. structural
model), the Web pages that compose the Web site (i.e. composition model), the
link topology among Web pages (i.e. presentation model), and the personaliza-
tion characteristics enabling the one-on-one content delivery (i.e. personalization
model).

The standard Interaction Flow Modeling Language (IFML)11 is designed for
expressing the content, user interaction and control behaviour of the front-end of
software applications in general. In [4], authors describe how to apply model-driven
techniques to the problem of designing the front end of software applications (i.e.
the user interaction).

Our approach proposes a domain specific language based on the definition of
a set of models of a higher level of abstraction presented in [23]. These models rep-
resent the interaction techniques used in language learning activities to maximize
code reuse and minimize maintenance costs. This article presents the abstraction
mechanism that allows designers to use (and reuse) the same model to represent
many different learning activities, which have been taken from the learning method-
ologies under study.

3 METAMODEL TO DEVELOP LANGUAGE
LEARNING APPLICATIONS

The goal of this article is to create the definition of a common representation to
model language learning applications. To accomplish this goal, this section describes
a metamodel that supports the representation of this type of applications. This
metamodel is based on the metamodel presented in [22]. The description presents
the modelling concepts to define applications as well as a set of examples showing
how these concepts are assembled. The formalization of the concepts and the rela-
tionships among them were defined in ECORE12 (Essential MOF dialect13 enriched

11 http://www.omg.org/spec/IFML/1.0/
12 https://wiki.eclipse.org/Ecore
13 http://www.omg.org/spec/MOF/2.5.1/PDF

http://www.omg.org/spec/IFML/1.0/
https://wiki.eclipse.org/Ecore
http://www.omg.org/spec/MOF/2.5.1/PDF


Unified Abstract Mechanism 255

with expressions in OCL14. As a result of the analysis of different methodologies, we
have found a set of common elements.

The first element in common is the definition language concepts (e.g. words,
sentences, etc.) that are hierarchically organized in lessons, units, etc.

The second element is the definition of different representations for these con-
cepts. These representations are media resources (e.g. images, audio recordings,
videos, text, etc.) that can be associated to methodology concepts. For instance,
the “house” concept can be associated to an image of a house, a video of a house
or an audio recording that contains the voice of a person pronouncing the word
“house”.

The third element is the definition of activities enabling users to interact with
the application. There are several types of activities; for instance, multiple choice,
filling the gaps and sentence composition activities.

The fourth element to take into account is the order in which the activities
should be performed by the user. For instance, some methodologies only enable
students to start a lesson if they have passed the previous one. The order in which
activities are carried out is known as the methodology workflow. In summary, the
common elements of language learning applications are:

1. the language concepts and concept hierarchy,

2. the media resources,

3. the learning activities,

4. the activity workflow.

To model these common elements, we leverage the level of abstraction and
reuse following the MDA principle of interoperability at design time. Therefore,
we define four concerns regarding the modelling of language learning methodolo-
gies.

Thus a learning methodology (represented by an instance of the Methodol-
ogy metaclass that is part of the Methodology package) is composed by 4 mod-
els.

The language concept model, representing the language concepts, is modeled
by an instance of the ContentContainer metaclass that is part of the Content
package. The media resource model representing the resources used in the pre-
sentation (or view) of learning activitites, is modeled by an instance of the Me-
diaModel metaclass that is part of the Media package. The model that defines
the set of learning activities is represented by an instance of the ViewModel that
is part of the Presentation package. And the activity workflow model is repre-
sented by an instance of the Workflow metaclass that is part of the Workflow pack-
age.

Figure 1 shows the proposed metamodel exposing the packages of metaclasses
that represent the language learning methodology common elements. The pack-

14 http://www.omg.org/spec/OCL/2.4

http://www.omg.org/spec/OCL/2.4


256 G. Sebastián, R. Tesoriero, J. A. Gallud

age structure for this metamodel is based on the Methodology package which uses
the Commons package containing the Entity and Property metaclasses that are
used as super-metaclasses for all metaclasses in the metamodel. The Methodology
package is the core package of the model architecture, and contains the Method-
ology metaclass, and a set of packages that contains the metaclasses to repre-
sent all models (Workflow, Content, Media, Activity and Presentation). The sixth
package, aka the Commons package, provides metamodel entities with extension
features. Next paragraphs explain the most relevant metaclasses of each pack-
age.

The language concepts and the concept hierarchy are represented by instances
of the metaclasses defined in the Content package. Figure 1 presents the Concept
and ContentContainer metaclasses of Content package. While Concept metaclass
instances represent simple concepts, such as nouns (e.g. orange, apple, peaches) and
verbs (i.e. stare, watch, glance); ContentContainer metaclass instances represent
sets of related concepts (e.g. fruits, ways of looking, etc.).

For example, in a given methodology, a level can be composed of units and,
a unit can be composed of lessons.

The Media package contains the metaclasses to represent the resources used
in the presentation (or view) of learning activities. It enables developers to define
4 types of media resources: audio, text, video and image. These types of media are
represented by Audio, Text, Video and Image metaclass instances. Combinations
of this type of media can be combined to represent complex media resources such
as text and speech. Again, the Composite design pattern [12] is applied to create
a tree-based structure of media resources. The MediaContent metaclass plays the
role of Component, the ComposedContent plays the role of Composite and the Audio,
Video, Image and Text meclasses play the role of Leaves. The media relationship
between the Concept metaclass and theMediaContent metaclass associates language
concepts to media resources to provide these concepts with a concrete representation
to activity presentations.

The definition of the activities of a learning methodology is organized into the
Activity and the Presentation packages. On the one hand, the Activity package en-
ables developers to parametrize the functionality of the activities conducted during
the learning process. Every Activity metaclass instance provides users with infor-
mation to perform learning activities. While Ground metaclass instances define
activity statements represented by MediaContent metaclass instances; Gap meta-
class instances define the information to be introduced by students. Gap metaclass
instances are enriched with Option metaclass instances to define the potential infor-
mation (including the correct answer to the activity) to be introduced by students.
Option metaclass instances are related to language concepts that are linked to in-
stances of theMediaContent metaclass which provide the presentation of the concept
in the activity.

On the other hand, the Presentation package defines the ViewModel and the
Slide metaclasses to represent the user interface and interaction mechanism of the
activities offered to the students during the learning process. This package defines



Unified Abstract Mechanism 257

Figure 1. Language learning methodology metamodel



258 G. Sebastián, R. Tesoriero, J. A. Gallud

the concept of slide. It is defined by Slide metaclass instances that associate activ-
ities represented by Activity metaclass instances defined from the Activity package
to specific interaction mechanisms. Consequently, students can interact with the
same activity information using different interaction mechanisms (modalities), and
vice-versa.

For instance, users can identify fruits matching images using the drag and drop
or joining with lines interaction mechanisms. While an Activity metaclass instance
contains the text for the statement of the activity; the options to be presented to
the user and the option that solves the statement are represented by instances of
the Option metaclass. And a MultipleChoicePhotoText metaclass instance defines
the interaction mechanism.

The activity workflow defines the order in which learning activities should be
performed by students, which is a crucial issue in the definition of learning method-
ologies. The Workflow package is responsible for representing this aspect of learning
methodologies. This package defines the Workflow metaclass, whose instances de-
fine graphs. The nodes of the graph are defined by instances of the State metaclass,
which are associated to instances of the Slide that represent them. The edges of
the graph represent transitions (i.e. Transition metaclass instances) between states
leading to transitions between learning activities.

Finally, theMethodology package defines theMethodology metaclass representing
all the elements that define learning methodologies.

All the metaclasses in this metamodel inherit from the Entity metaclass defined
in the Commons package which provides identification (i.e. Entity metaclass) and
extension (i.e. Property metaclass) features to the rest of the metaclasses. This
package is designed to take into account variable aspects of the activitites (aesthetical
customization, look and feel of the user interface, structural limitations defined by
a methodology, etc.).

Additionally, we have developed a language learning methodology model editor
to create, edit and verify models according to the proposed metamodel. It was
developed as an Eclipse plugin employing the Eclipse Modeling Framework (EMF)15

to follow the MDA OMG standards. The metamodel was defined in OclInEcore16

which is a dialect of the OMG Essential Meta-Object Facility (EMOF) enriched
with OCL. This language is used to define the model invariants and queries that are
the foundations for model verification.

3.1 Analysis of Language Learning Activity Modelling

In [23] we illustrate the flexibility and adaptability of the proposed metamodel to
represent different language learning methodologies. Figure 2 shows the correspon-
dence among the different elements of the model of a multiple-choice learning activity
Lexiway as well as Duolingo. Thus, Figure 2 illustrates the expressiveness power of

15 http://www.eclipse.org/modeling/emf/
16 https://wiki.eclipse.org/OCL/OCLinEcore

http://www.eclipse.org/modeling/emf/
https://wiki.eclipse.org/OCL/OCLinEcore


Unified Abstract Mechanism 259

Figure 2. Reusing of the multiple-choice learning activity model for Lexiway and Duolingo
methodologies

this modelling tool, since the same model represents two similar activities in two
different learning methodologies.

As we have mentioned, the user interfaces of learning activities are defined in
the presentation model which is an instance the ViewModel metaclass. Each type
of user interface is defined by a Slide sub-metaclass.

Learning activity user interfaces are customized with information provided by
the activity model represented by an instance of the Activity metaclass. Activity
metaclass instances define two types of ActivityComponent metaclass instances that
composes the definition of an activity model. Ground metaclass instances represent
fixed parts of the activity (e.g. parts of sentences, audio recordings, videos, etc.).
Gap metaclass instances represent the user inputs to introduce information in the
activity (e.g. an input field to type a word, an input area to type a sentence, a combo
box to select a word, a list to select an image, etc.). In any case, Gap metaclass
instances define a set of Option metaclass instances that represent the options that
are associated to list or combo box items as well as references to the set of options
that are considered correct answers to the activity. Gap and Option metaclass
instances are linked to Concept metaclass instances to provide Slide sub-metaclass
instances with multi-modal user interface representations.

This modelling approach enables developers to reuse different media models
in different activities as well as provide customized different learning activities with
different looks. For instance, you could provide customized media resources to adapt
the learning activities to colour-blind people.

Besides, this approach also enables developers to reuse the same activity model
in interaction mechanisms. For instance, the Match and MultipleChoicePhotoText
Slide metaclass instances reuse the same activity model to present the same activity
employing different interaction techniques.



260 G. Sebastián, R. Tesoriero, J. A. Gallud

The learning methodology activity workflow model enables developers to reuse
learning activities in different learning paths. For instance, developers reuse the
learning activities defined for the workflow of the Standard version of Lexiway in
the workflow of the Junior version of Lexiway because the main difference between
these two versions lays on the number of concepts that are presented to students on
each lesson.

Finally, we expose different ways to extend the proposed metamodel. Firstly, the
Slide metaclass can be extend to introduce new interaction mechanisms to learning
activities. Secondly, metamodel entities represented by sub-metaclasses of the Entity
metaclass defined in the Commons package can be extended by adding Property
metaclass instances.

4 THE NEW ABSTRACTION TO MODEL LANGUAGE
LEARNING ACTIVITIES

This section explains how to use the “Fill-in the Gaps” activity model as a universal
abstraction to represent different language learning activities. Figure 3 depicts the
Activity package which contains the “Fill-in the Gaps” Activity metamodel used to
model language learning activities.

Figure 3. Activity metamodel

As we have mentioned, this model links media resources (i.e. MediaContent
metaclass instances) to Slide sub-metaclass instances using Concept metaclass in-
stances as the glue between these two aspects.

4.1 Fill-in the Gaps Learning Activity

The fill-in the gaps learning activity is a straightforward application of the fill-in
the gaps abstraction. Figure 4 depicts the model and presentation of a fill-in the



Unified Abstract Mechanism 261

gaps activity in the Busuu methodology. While the right side of the figure shows
the actual user interface for the activity; the left side of the figure shows the model
that represents the activity.

Figure 4. Fill-in the gaps activity in Busuu

4.2 Word Ordering Learning Activity

The word ordering learning activity asks students to order a set of words to com-
pose a meaningful sentence. Figure 5 shows the Busuu methodology version of this
activity. The presentation model of this activity is defined by an instance of the
ComposePhrase metaclass. The information to customize the activity is defined by
an instance of the Activity metaclass.

In this case, the activity defines 4 gaps (represented by instances of the Gap
metaclass) composed by 4 instances of 4 options (represented by instances of the
Option metaclass) for each gap. These options are linked to the same text strings
(represented by instances of the Text metaclass) to enable users to choose one
string (i.e. are, Where, from?, you) in any position of the sentence. The order
of the gaps defines the order of the words in the sentence. And each gap defines
only one option as the correct answer to set only one word ordering as correct.
Finally, the Ground metaclass instance defines the learning activity statement.
Ground metaclass instances can also be used as part of the sentence to include
fixed words that cannot be modified by the user (e.g. punctuation marks, words,
etc.).



262 G. Sebastián, R. Tesoriero, J. A. Gallud

Figure 5. Word ordering learning activity in Busuu

4.3 Match-Up Learning Activity

This section describes how to model a match-up learning activity in the Busuu
methodology using the fill-in the gaps abstraction. Figure 6 depicts the learning
activity user interface which consists in locating and matching up the 3 elements on
the left with the corresponding 3 elements on the right.

Figure 6. Match-up learning activity in Busuu

In this case, the presentation of the activity is defined by an instance of the
Match metaclass. The activity information is modelled as a fill-in the gaps exercise



Unified Abstract Mechanism 263

including 3 gaps representing the 3 elements depicted on the right side of the figure
(i.e. ¿Cómo te llamas?, ¿De dónde eres?, ¿Cuántos años tienes? ). Each of gap
presents the same 3 options to be linked to the 3 elements on the left side (How
old are you?, Where are you from?, What’s your name? ) where only one of these
options is defined as the correct answer. As in the previous example, the options
(represented by instances of the Option metaclass) are linked to instances to the
Text metaclass.

4.4 Locution to Text, Multiple Choice and Translate Phrase
Learning Activities in Duolingo

Figures 7, 8 and 9 depict 3 learning activities that illustrate the similarities of the
activity models in different learning activities in the Duolingo methodology. All the
activity models of these learning activities define only one gap (instance of the Gap
metaclass) including several options (instances of the Option metaclass) where at
least one of them is set as the correct one.

Figure 7. Locution to text learning activity in Duolingo using one gap

Figure 8. Multiple choice learning activity in Duolingo using one gap

These models also define instances of the Ground metaclass to represent the
statement of the activity (e.g. Escucha y escribe, Marca todas las respuestas cor-
rectas, Traduce este texto). The Ground and Option metaclass instances are linked



264 G. Sebastián, R. Tesoriero, J. A. Gallud

Figure 9. Translate phrase learning activity in Duolingo using one gap

to media resources represented by instances of the ComposedContent or Text meta-
classes. The ComposedComponent metaclass instances enables developers to provide
different types of media resources (e.g. Text and Audio metaclass instances).

Finally, the locution to text, multiple choice and translate phrase learning activ-
ities are represented by instances of the LocutionToText, MultipleChoice and Trans-
latePhrase metaclasses, respectively.

4.5 Multiple Choice Learning Activity in Babbel, Busuu and Duolingo

The modelling process can be analogously applied to model the information or con-
tent of the same learning activity for different methodologies.

Figure 10, Figure 11 and Figure 12 depict 3 examples of multiple choice activities
in 3 different learning methodologies. (i.e. Babbel, Busuu and Duolingo). All these
examples represent the activity exposed in Section 3 and depicted in Figure 2.

Figure 10. Multiple choice learning activity in Babbel

All these 3 examples define one gap with 3 options. However, each exercise
defines different kinds of media resources to represent the activity statement and
options. For instance, while Figure 10 and Figure 12 depict Babbel and Doulingo



Unified Abstract Mechanism 265

Figure 11. Multiple choice learning activity in Busuu

Figure 12. Multiple choice learning activity in Duolingo

version of a multiple choice activity using 3 pictures to represent gap options; the
Busuu version of the activity depicted in Figure 11 uses a video to represent the
activity statement.

Therefore, the idea of employing the fill-in the gaps activity as an abstraction
for all kinds of learning activities simplifies the modelling process since all activities
are modelled in the same way which favours the reuse of models.



266 G. Sebastián, R. Tesoriero, J. A. Gallud

5 EVALUATING THE PROPOSAL

The main goal of the evaluation section is to evaluate the quality of the code ob-
tained after applying the MDA approach proposed in this article (product quality
evaluation). The quality of the code is evaluated by comparing the code obtained
using the MDA approach against the code generated by an expert (called tradi-
tional approach). The comparison is performed using a set of well-known quality
factors. Before performing the product quality evaluation, we have to prepare the
artefacts using both approaches. The next subsection describes the preparation
process.

5.1 Preparation Process

This section describes the process followed to generate the artefacts (learning activ-
ities) that will be compared in the next subsection.

There are two different mechanisms to obtain the learning activities: the pro-
posed approach and the traditional approach.

5.1.1 Objectives of the Preparation Process

The objective of the preparation is to develop a set of learning activities considering
both the proposed and traditional approaches.

5.1.2 Participants of the Preparation Process

This evaluation is carried out by two participants of different profiles.
The first participant (male, age 23, university graduated) is expert in HTML,

CSS and JavaScript technologies and develops learning activities following a tradi-
tional approach (HTML expert).

The second participant (male, age 41, Ph.D. student) is an expert in the Eclipse
Modeling Framework (EMF) technology designed for model-driven development and
develops learning activities following the proposed approach (MDA expert).

5.1.3 Computing Environment

Each participant performed the preparation test in the ISE Research Group Inter-
action laboratory located in the Albacete Research Institute of Informatics (I3A)
building in Albacete, Spain. This location is equipped with computers and multime-
dia equipment (e.g. video cameras, microphones, and so on) that makes it suitable
for performing HCI (Human-Computer Interaction) interaction evaluations.

Both development processes were performed using the same computing equip-
ment. The hardware consists of a MAC Book Pro 13” Retina laptop computer with
8GB RAM and 256GB SSD. This computer runs the High Sierra iOS, SublimeText
(ver. 3.0), and the Eclipse Modeling Tools NEON 3 IDE including ATL (ver. 3.6.6),



Unified Abstract Mechanism 267

ACCELEO (ver. 3.7.0) and the proposed approach reflexive model editor (ver. 1.0.0)
and transformation (ver. 1.0.0) plugins.

5.1.4 Tasks of the Preparation Process

Participants receive the same list of requirements proposing the development of four
Lexiway learning activities to review student language vocabulary. These activities
look like the learning activity depicted on the left side of Figure 2 that presents four
images and plays the audio file of a word when it starts. Learners should click on an
image corresponding to the word that was played. When an image is clicked, they
receive the result of the matching in terms of negative or positive reinforcement.
If the clicked image does not correspond to the audio played, the file is played
again and the user is asked to click on an image again until they choose the correct
image.

Each participant followed a different path to develop the learning activities.
The MDA Expert had to define a model for each activity, validate the model and
generate the code. The HTML Expert had to use his favourite HTML editor, locate
the resources, write the code, and test the solution.

However, it is possible to identify some general tasks, no matter the tools used
to get them. The development of each learning activity represents a task. Each task
is divided into the sub-tasks, which are defined in Table 1.

5.1.5 Review and Testing

Both participants knew that the learning activities they developed, would be ana-
lyzed by a group of experts. Therefore, they spent some time to check the product
obtained. This process was carried out in different ways by both participants, since
the tools used in each case were different. In the case of the HTML Expert, this pro-
cess includes activities like refactoring, refining, testing, and so on. In the case of the
MDA Expert, this process consists on model review, validate the OCL restrictions,
operate the transformations and review the results.

5.2 Product Quality

This evaluation analyses the quality of language learning activity source codes gen-
erated with the proposed and traditional approaches, obtained in the previous sec-
tion. To carry out this task, we propose an heuristic evaluation where a set of
5 experts evaluates 4 software attributes related to software quality characteris-
tics.

5.2.1 Objective

This heuristic evaluation compares the source code quality of the language learning
application depicted on the left side of Figure 2 generated with the traditional and



268 G. Sebastián, R. Tesoriero, J. A. Gallud

T Description

1 Define the graphic design of the user interface for the learning activity presented
on the left side of Figure 2 using the set of images defined in a specific folder.

1. Slide option images (e.g. clock, spot, fox and box),

2. Common images (e.g. headphones, correct, wrong).

2 Define the audio modality of the user interface for the learning activity presented
on the left side of Figure 2 using audio files defined in a specific folder.

1. Possible slide statement locutions (e.g. clock, spot, fox and box),

2. Common sounds (e.g. correct and wrong answers).

3 Define the learning activity statement linking the click event on the headphones
image to one of the possible locutions for the activity.

4 Define the learning activity answer linking answer images to option images ac-
cording to the selected statement locution for the activity (e.g. the correct answer
image for the learning activity depicted on the left side of Figure 2 is box and
the rest of options are linked to the wrong image).

5 Define the learning activity answer linking answer sounds to option images ac-
cording to the selected statement locution for the activity (e.g. the correct answer
sound for the learning activity depicted on the left side of Figure 2 is box and
the rest of the options are linked to the wrong sound).

6 Define the learning activity behaviour when learners click on the wrong answer
(i.e. play the statement locution again).

Table 1. Common tasks performed by the participants

proposed development processes in terms of software correctness, robustness, extensi-
bility and reusability ; where software correctness refers to the Functional Correctness
sub-characteristic of the Functional Suitability characteristic defined in the Product
quality model of the ISO 25010:2011(E) standard [15], software robustness refers to
the Fault tolerance and Recoverability sub-characteristics of the Reliability charac-
teristic defined in the Product quality model of the ISO 25010:2011(E) standard [15],
software extensibility refers to the Modularity and Modifiability sub-characteristics
of the Maintainability characteristic defined in the Product quality model of the ISO
25010:2011(E) standard [15], and software reusability refers to the Reusability sub-
characteristic of the Maintainability defined in the Product characteristic quality
model of the ISO 25010:2011(E) standard [15].

5.2.2 Participants

This evaluation is performed with 5 experts, whose profiles are exposed in Ta-
ble 2. Participant profiles include information such as gender, age, and experience
in HTML, JavasScript, Language Learning Applications and Software Quality.



Unified Abstract Mechanism 269

Participant Gender Age
Experience

HTML JavaScript L. L. Apps. Soft. Quality

1 M 38 5 5 3 5
2 F 35 5 4 5 4
3 M 39 5 5 3 4
4 M 45 4 5 5 4
5 F 48 5 5 4 5

Table 2. Participant profiles

5.2.3 Computing Environment

This evaluation was carried out in the ISE Research Group interaction laboratory
located in the Albacete Research Institute of Informatics (I3A) building in Albacete,
Spain. This location is equipped with computers and multimedia equipment (e.g.
video cameras, microphones, and so on) that makes it suitable for performing HCI
interaction evaluations.

The evaluation was performed on a Dell XPS 702x laptop computer running
Microsoft Windows 10. The Internet browser used to run both implementations is
Chrome version 64.

5.2.4 Metrics

The metrics to evaluate software correctness, robustness, extensibility and reusability
are scored from 1 to 5 according to experts’ criteria where 1 and 5 represents the
lowest and highest scores of the software product for a specific attribute, respec-
tively.

5.2.5 Procedure

The evaluation procedure starts when participants receive the source codes of the
language learning activity (both traditional and proposed) presented on the left side
of Figure 2, and a form to score these source codes in terms of selected software
attributes as well as an extra section to justify the software product scoring. It
is worth to highlight that how source codes were generated is unknown to partici-
pants.

The W3C Validator 17 and the JSHint18 tools are available to participants to
help them to score the software product.

5.2.6 Results

The overall results of the comparison between the traditional approach and the
proposed approach are exposed in Table 3.

17 https://validator.w3.org/
18 http://jshint.com/about/

https://validator.w3.org/
http://jshint.com/about/


270 G. Sebastián, R. Tesoriero, J. A. Gallud

Part. Approach Correctness Robustness Extensibility Reusability Average

1
Traditional 3 4 2 3 3
Proposed 5 5 5 5 5

2
Traditional 3 3 3 3 3
Proposed 5 5 5 5 5

3
Traditional 5 2 1 2 2.5
Proposed 5 5 4 4 4.5

4
Traditional 5 5 3 5 4.5
Proposed 4 5 5 5 4.75

5
Traditional 5 4 3 4 4
Proposed 5 4 4 5 4.5

Average
Traditional 4.2 3.6 2.4 3.4 3.4
Proposed 4.8 4.8 4.6 4.8 4.75

Std. Traditional 1.09 1.14 0.89 1.14
Dev. Proposed 0.44 0.45 0,55 0.45

Max
Traditional 5 5 3 5
Proposed 5 5 5 5

Min
Traditional 3 2 1 2
Proposed 4 4 4 4

Table 3. Heuristic evaluation results

According to experts, the proposed approach based on models overcomes the
traditional approach because while the proposed approach scores 4.75 out of 5 in
the overall scoring, the traditional approach only obtained 3.4 out of 5. Moreover,
the scores of the proposed approach are higher than 4 out of 5 in all evaluated
software attributes.

The standard deviation on the proposed approach also delivers scores on all
attributes are close to the average score which is above 4.6 out of 5 showing an
homogeneous consensus on the experts.

The proposed approach does not only overcomes the traditional approach in the
overall results; it also overcomes all evaluated software attributes.

The score is even more significant when evaluating the extensibility of the soft-
ware product (it almost doubles the score of the traditional approach). Participants
also highlighted the quality of the code using the traditional approach is more dif-
ficult to extend than the code generated using the proposed approach avoiding the
great impact on code modifications.

Although the proposed approach obtains a higher score than the traditional
approach in terms of correctness ; the average score in this subject for the traditional
approach is really good obtaining a difference less than 0.6 with a standard deviation
of 1.09 with respect to the proposed approach.

Comparing both approaches in terms of robustness, participants state that con-
ditional structures in the code generated using the traditional approach are not as
well-structured as in the proposed approach.



Unified Abstract Mechanism 271

About the code reusability, they mention that the code generated using the
proposed approach organizes multimedia resources (i.e. media files, JavaScript and
Cascade Style Sheets) more efficiently than the code generated using a traditional
approach, because the proposed approach groups common resources to all activities
encouraging their reuse. Moreover, all participants highlight the code structure
generated using the proposed approach because it defines parametrized functions
encouraging their reuse too.

6 CONCLUSIONS

This article proposes the fill-in the gaps abstraction to model language learning
activities in the context of an MDA to develop language learning applications.

It shows, by means of a series of examples, how the fill-in the gaps abstraction is
used to represent different learning activities in different language learning method-
ologies. These examples show how the modelling process is simplified since activity
models can be easily reused to:

1. customize the interaction mechanism of the learning activity,

2. adapt the application look to users’ needs (i.e. colour-blind people),

3. model the same activity for different learning methodologies.

Traditional approaches force developers to build applications for different plat-
forms (e.g. Web, iOS, Android, Windows, etc.) leading to different development
branches which are prone to errors, difficult to maintain and test (e.g., changes and
fixes on the application domain model should be addressed in all platforms).

Model-driven architectures decouples application functionality from technology
which enable developers to create Platform Independent Models (PIMs) and Plat-
form Specific Models (PSMs) to derive application source code semi-automatically
using model transformations.

One of the main features of employing MDAs is the design time interoperability.
This feature captures different application concerns in independent models which
are integrated at the last stage of development (just before the generation of the
application source code).

This proposal defines 5 concerns regarding the development of activities for lan-
guage learning methodologies (i.e. learning methodology contents, learning activity
workflows, learning media resources, learning activity interaction mechanisms, and
learning activity model). The main advantage behind this feature is the capabil-
ity of modifying the model with minimum impact on the others. For example, the
representation of a concept (i.e. an image) can be changed by modifying only the
media resource model without affecting the other models (i.e. content, workflow,
interaction mechanism or activity model).

We performed a users’ evaluation to analyse the product quality of our proposal.
The product quality analyses the product correctness, robustness, extensibility, and
reusability. These results conclude that the code generated using the proposed



272 G. Sebastián, R. Tesoriero, J. A. Gallud

approach overcomes the code generated using a traditional approach in the selected
metrics.

The future work for this project includes the development of graphic modelling
editor using the GMF framework to create, edit and verify learning methodol-
ogy models generated with our metamodel. We are working on extensions to the
proposed metamodel that allow improving the validation of the models through
the definition of customized OCL expressions that are loaded dynamically (using
the Complete OCL plugin 19). These extensions are defined based on the sub-
classification of meta-classes, which allow introducing new features in a flexible and
robust way.

Moreover, we are addressing the process of model-to-model (M2M) and model-
to-text (M2T) transformations required for source code automatic generation (i.e.
HTML and JavaScript) of language learning applications. To carry out these trans-
formations, the ATLAS Transformation Language20 (ATL) and ACCELEO21 trans-
formation languages are used respectively.

This transformation process requires 3 M2M transformations: (1) a M2M trans-
formation to generate the Activity Model and Workflow Model instances that are
part of the PIM layer of the model architecture using a Content Model instance
that is part of the CIM layer; (2) another M2M transformation at PIM layer to
generate Presentation Model and Media Model instances from Activity Model and
Workflow Model instances; finally, (3) the last M2M transformation generates the
TagML [25] PSM layer model from Activity Model and Workflow Model PIM layer
instances.

In addition, the transformation process also involves 2 M2T transformations.
While the first one generates HTML source code from TagML [25] PSM model to
define the application UI structure; the second one generates JavaScript source code
from Workflow Model PIM layer instance to define the application UI behavior.
Thus, the whole process generates the Implementation Specific Model (ISM) of
a fully functional application.

Finally, we are also exploring the adaptation of this model architecture to gen-
erate a wide variety of interactive multimedia applications including gamification
features.

Acknowledgements

This work has been partially supported by the national project granted by the Min-
istry of Science, Innovation and Universities (Spain) with reference RTI2018-099942-
B-I00 and by the project TecnoCRA (ref: SBPLY/17/180501/000495) granted by

19 https://marketplace.eclipse.org/content/eclipse-ocl
20 https://eclipse.org/atl/
21 https://www.eclipse.org/acceleo/

https://marketplace.eclipse.org/content/eclipse-ocl
https://eclipse.org/atl/
https://www.eclipse.org/acceleo/


Unified Abstract Mechanism 273

the regional government (JCCM) and the European Regional Development Funds
(FEDER).

REFERENCES

[1] Bárcena, E.—Read, T.—Underwood, J. et al.: State of the Art of Language
Learning Design Using Mobile Technology: Sample Apps and Some Critical Reflec-
tion. In: Helm, F., Bradley, L., Guarda, M., Thouësny, S. (Eds.): Critical CALL –
Proceedings of the 2015 EUROCALL Conference. Padova, Italy, 2015, pp. 36–43, doi:
10.14705/rpnet.2015.000307.

[2] Bizonova, Z.: Model Driven E-Learning Platform Integration. In: Maillet, K.,
Klobucar, T., Gillet, D., Klamma, R. (Eds.): Proceedings of the EC-TEL 2007 PRO-
LEARN Doctoral Consortium. CEUR Workshop Proceedings, Vol. 288, 2007.

[3] Blumschein, P.—Hung, W.—Jonassen, D.—Strobel, J. (Eds.): Model-Based
Approaches to Learning: Using Systems Models and Simulations to Improve Un-
derstanding and Problem Solving in Complex Domains. Brill, Leiden, The Nether-
lands, Modeling and Simulation for Learning and Instruction, Vol. 4, 2009, doi:
10.1163/9789087907112.

[4] Brambilla, M.—Fraternali, P.: Interaction Flow Modeling Language: Model-
Driven UI Engineering of Web and Mobile Apps with IFML. 1st Edition. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2014.

[5] Calvary, G.—Coutaz, J.—Thevenin, D.—Limbourg, Q.—Bouillon, L.—
Vanderdonckt, J.: A Unifying Reference Framework for Multi-Target User In-
terfaces. Interacting with Computers, Vol. 15, 2003, No. 3, pp. 289–308, doi:
10.1016/s0953-5438(03)00010-9.

[6] Ceri, S.—Fraternali, P.—Bongio, A.: Web Modeling Language (WebML):
A Modeling Language for Designing Web Sites. Computer Networks, Vol. 33, 2000,
No. 1-6, pp. 137–157. doi: 10.1016/S1389-1286(00)00040-2.

[7] Conallen, J.: Building Web Applications with UML. 2nd Edition. Addison Wesley,
Reading, Massachusetts, October 2002.

[8] Conn, S.—Forrester, L.: Model Driven Architecture: A Research Review for In-
formation Systems Educators Teaching Software Development. Information Systems
Education Journal, Vol. 4, 2006, No. 43, pp. 3–11.

[9] Dodero, J.M.—Garćıa-Peñalvo, F.-J.—Gonzãlez, C.—Moreno-Ger, P.—
Redondo, M.-A.—Sarasa-Cabezuelo, A.—Sierra, J.-L.: Development of
E-Learning Solutions: Different Approaches, a Common Mission. IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje, Vol. 9, 2014, No. 2, pp. 72–80, doi:
10.1109/RITA.2014.2317532.

[10] Fardoun, H.—Montero, F.—López Jaquero, V.: eLearniXML: Towards
a Model-Based Approach for the Development of E-Learning Systems Considering
Quality. Advances in Engineering Software, Vol. 40, 2009, No. 12, pp. 1297–1305,
doi: 10.1016/j.advengsoft.2009.01.019.

[11] Feuerstack, S.—Pizzolato, E.B.: Engineering Device-Spanning, Multimodal
Web Applications Using a Model-Based Design Approach. In: Bressan, G., Sil-

https://doi.org/10.14705/rpnet.2015.000307
https://doi.org/10.1163/9789087907112
https://doi.org/10.1016/s0953-5438(03)00010-9
https://doi.org/10.1016/S1389-1286(00)00040-2
https://doi.org/10.1109/RITA.2014.2317532
https://doi.org/10.1016/j.advengsoft.2009.01.019


274 G. Sebastián, R. Tesoriero, J. A. Gallud

veira, R.M., Munson, E.V., Santanchà, A., da Graça Campos Pimentel, M.
(Eds.): Proceedings of the 18th Brazilian Symposium on Multimedia and the
Web (WebMedia ’12). Association for Computing Machinery, 2012, pp. 29–38, doi:
10.1145/2382636.2382646.

[12] Gamma, E.—Helm, R.—Johnson, R.—Vlissides, J.: Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley, Massachusetts, 1995.

[13] Garćıa-Peñalvo, F. J.: Advances in E-Learning: Experiences and Methodologies.
Information Science Reference, 2008, doi: 10.4018/978-1-59904-756-0.

[14] Isakowitz, T.—Stohr, E.A.—Balasubramanian, P.: RMM: A Methodology
for Structured Hypermedia Design. Communications of the ACM, Vol. 38, 1995, No. 8,
pp. 34–44, doi: 10.1145/208344.208346.

[15] ISO. ISO/IEC 25010. Systems and Software Engineering – Systems and Software
Engineering Quality Requirements and Evaluation (SQuaRE) – Systems and Software
Quality Models, 2006.

[16] Kleppe, A.—Warmer, J.—Bast, W.: MDA Explained: The Model Driven Ar-
chitecture: Practice and Promise. Addison-Wesley Professional, 2003.

[17] Koch, N.—Kraus, A.: Towards a Common Metamodel for the Development of Web
Applications. In: Lovelle, J.M.C., Rodŕıguez, B.M.G., Gayo, J. E. L., del Puerto
Paule Ruiz, M., Aguilar, L. J. (Eds.): Web Engineering (ICWE 2003). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 2722, 2003, pp. 497–506,
doi: 10.1007/3-540-45068-8 92.

[18] Lahiani, N.—Bennouar, D.: A Model Driven Approach to Derive E-Learning
Applications in Software Product Line. Proceedings of the International Confer-
ence on Intelligent Information Processing, Security and Advanced Communication
(IPAC ’15), ACM, 2015, Art. No. 78, doi: 10.1145/2816839.2816850.

[19] Lanzilotti, R.—Ardito, C.—Costabile, M. F.—De Angeli, A.: eLSE
Methodology: A Systematic Approach to the E-Learning Systems Evaluation. Edu-
cational Technology and Society, Vol. 9, 2006, No. 4, pp. 42–53.

[20] Mellor, S. J.—Scott, K.—Uhl, A.—Weise, D.: MDA Distilled: Principles of
Model-Driven Architecture. Addison Wesley, 2004.

[21] Dehbi, R.—Talea, M.—Tragha, A.: A Model Driven Methodology Approach
for E-Learning Platform Development. International Journal of Information and Ed-
ucation Technology, Vol. 3, 2013, No. 1, pp. 10–15, doi: 10.7763/IJIET.2013.V3.225.

[22] Sebastián, G.—Tesoriero, R.—Gallud, J. A.: Modeling Language-Learning
Applications. IEEE Latin America Transactions, Vol. 15, 2017, No. 9, pp. 1771–1776,
doi: 10.1109/TLA.2017.8015084.

[23] Sebastián, G.—Tesoriero, R.—Gallud, J.A.: Model-Based Approach to De-
velop Learning Exercises in Language-Learning Applications. IET Software, Vol. 12,
2018, No. 3, pp. 206–214, doi: 10.1049/iet-sen.2017.0085.

[24] Tang, S.—Hanneghan, M.: A Model-Driven Framework to Support Development
of Serious Games for Game-Based Learning. 2010 Developments in E-Systems Engi-
neering, 2010, pp. 95–100, doi: 10.1109/DeSE.2010.23.

https://doi.org/10.1145/2382636.2382646
https://doi.org/10.4018/978-1-59904-756-0
https://doi.org/10.1145/208344.208346
https://doi.org/10.1007/3-540-45068-8_92
https://doi.org/10.1145/2816839.2816850
https://doi.org/10.7763/IJIET.2013.V3.225
https://doi.org/10.1109/TLA.2017.8015084
https://doi.org/10.1049/iet-sen.2017.0085
https://doi.org/10.1109/DeSE.2010.23


Unified Abstract Mechanism 275

[25] Tesoriero, R.—Sebastián, G.—Gallud, J.A.: TagML – An Implementation
Specific Model to Generate Tag-Based Documents. Electronics, Vol. 9, 2020, No. 7,
Art. No. 1097, doi: 10.3390/electronics9071097.

[26] Tian, Y.—Yang, H.—Landy, L.: MDA-Based Development of Music-Learning
System. In: Zhang, S., Li, D. (Eds.): Proceedings of the 14th Chinese Automation
and Computing Society Conference, 2008, pp. 97–102.

https://doi.org/10.3390/electronics9071097


276 G. Sebastián, R. Tesoriero, J. A. Gallud

Gabriel Sebasti�an received his Ph.D. and M.Sc. degrees from
the University of Castilla-La Mancha (UCLM) and B.Sc. degree
from Polytechnic University of Valencia (UPV) – all the three
degrees in computer science. His main research interests are mul-
timedia, human-computer interaction and software engineering.
He was involved in the development of many projects related
to distributed user interfaces and model-driven development of
user interfaces focused on the web as the deployment platform.
He published more than 25 research articles and book chapters
in journals and international congresses. Currently, he works as

Project Manager in the Interactive Systems Engineering Research Group of the Comput-
ing System Department (Faculty of Computing Science Engineering) in UCLM, and he
works as Researcher in the Albacete Research Institute of Informatics (I3A) in Albacete,
Spain.

Ricardo Tesoriero received his Ph.D. and M.Sc. degrees from
the University of Castilla-La Mancha (UCLM), Spain and a B.Sc.
degree from National University of La Plata (UNLP), Argenti-
na – all the three degrees in computer science. His main research
interests are model-driven development of user interfaces focused
on the web as deployment platform and human-computer inter-
action on ubiquitous computing environments. He published
more than 70 research articles and book chapters in journals
and international congresses. He performed a post-doctoral stay
in the Université Catholique de Louvain (UCL) in Louvain-la-

Neuve, Belgium where he performed research activities on model-driven development of
user interfaces. He was committee member in several scientific conferences and workshops,
including DUI (Distributed User Interfaces), INTERACCCION, ISEC, IADIS/WWW (La
Web), etc. He is Associate Professor of the Computing System Department at the Faculty
of Computer Science Engineering of the UCLM teaching web engineering and services,
and human-computer interaction subjects since 2008.

Jose A. Gallud received his Ph.D. degree from the University
of Murcia and the M.Sc. and B.Sc. degrees from the Polytechnic
University of Valencia – all the three degrees in computer science.
His main research of interest focuses on human-computer inter-
action, development of interactive systems and distributed user
interfaces. He has published widely in these areas. He has been
Guest Editor for several international journals, such as JSS (The
International Journal of Software and Systems), IJHCS (Interna-
tional Journal of Human Computer Studies), JUCS (Journal of
Universal Computer Sciences). He has some books and chapters

in the field of human-computer interaction. He is member of different national and inter-
national societies (ACM and AIPO). Currently, he works as Professor at the University
of Castilla-La Mancha.


