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1 INTRODUCTION

Reed Solomon (RS) codes were discovered more than 60 years ago [3]. Their practical
importance was proven by mass applications in such systems as CD or DVB [4].
More surprisingly, in recent years a new interest in these codes has risen in the
research community. It is caused by the fact that they are extensively used in cloud
technology, namely in distributed storage systems [5, 6, 7, 8, 9]. In [1] it was shown
that RS codes could be extended not only three times, but even five times when
they are constructed over certain finite fields. For such five times extended RS codes
a decoding algorithm is known [2] which is suitable only for erasure decoding. In
case of erasures the positions are known in a received vector and therefore only
the erasure values have to be found out during decoding. In contrast to this, the
positions of the errors in received vectors are unknown; therefore both error values
and error positions have to be determined during decoding. The error correction
is useful in many applications of RS codes [4]. For example, in [10] syndrome
decoding is patented for random access-based computer memory systems by IBM
Corp. Interestingly, it contains a reference to [11] in which the authors of this paper
proposed a related code which inspired the construction of five times extended Reed
Solomon codes [1].

In this paper a decoding algorithm is presented which allows correcting at least
2 errors in five times extended RS codes from [1].

The paper is organized as follows. In Section 2 a short introduction to the
original (not extended) RS codes error correcting decoding via syndromes is pre-
sented. In Section 3 the error correcting decoding of the original RS codes is given.
In Section 4 the novel error correcting algorithm for five times extended RS codes
introduced in [1] is presented. In Section 5 some remarks on the decoding implemen-
tation are given. In Section 6 the complexity estimation of the algorithm is made.
Conclusions in Section 7 summarize the results of the paper.

2 A SHORT INTRODUCTION TO ORIGINAL RS CODES

RS codes are linear block codes which could be described by many mathemati-
cal tools and which have many interesting connections with different mathematical
branches. In this section only a short introduction to RS codes is given. The
interested reader could find a more detailed explanation of RS codes and their ap-
plications for example in [4]. To explain the proposed decoding algorithm a basic
description of RS codes as linear block codes via matrices and as cyclic codes using
polynomials is given.

A linear block code is defined as a k-dimensional subspace of an n-dimensional
vector space over a finite field GF (q). Basic parameters of linear block codes are:
the codeword length n, the number of information symbols k in each codeword
and the code distance dm which is a minimal Hamming distance between any two
codewords. Sometimes linear block codes are in shorthand using a triple [n, k, dm],
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which contains these fundamental parameters. The code distance dm and the num-
ber of correctable errors t in a linear code are connected by the following inequal-
ity:

2t+ 1 ≤ dm.

Because a linear block code is defined as a k-dimensional subspace of an n-di-
mensional vector space over a finite field GF (q) it could be described via a k × n
generator matrix Gk×n which contains as rows k linearly independent vectors with
length n. In systematic form:

Gk×n =
[
Ik×k | Pk×(n−k)

]
(1)

where Ik×k and Pk×(n−k) are the identity and parity matrices, respectively. For
decoding purposes a control matrix is defined as:

H(n−k)×n =
[
PT

(n−k)×k | I(n−k)×(n−k)
]

(2)

where I(n−k)×(n−k) and PT
(n−k)×k are the identity and transposed parity matrices,

respectively. The following equation is valid:

Gk×n.H
T
n×(n−k) = 0k×(n−k) (3)

where HT
n×(n−k) and 0k×(n−k) are the transposed matrix H and all zeros matrix,

respectively.
In [1] a new family of codes constructed over GF (2ζ), where ζ ≥ 3 is an odd

integer, using the H matrix (4) was proposed.

H =


α0 α0 · · · α0 α0 α0 1 0 0 0 0
α(q−2) α(q−3) · · · α2 α1 α0 0 1 0 0 0
α2(q−2) α2(q−3) · · · α4 α2 α0 0 0 1 0 0
α3(q−2) α3(q−3) · · · α6 α3 α0 0 0 0 1 0
α4(q−2) α4(q−3) · · · α8 α4 α0 0 0 0 0 1

 . (4)

The basic parameters of this family of block codes can be characterized by
a triple [q + 4, q − 1, 5].

3 ERROR CORRECTING DECODING OF ORIGINAL RS CODES

The definition of original RS codes correcting t errors requires that each codeword of
these cyclic codes has 2t consecutive and distinct elements of a finite field as roots.
In other words the generating polynomial should also have the same property. In
GF (2ζ), ζ ≥ 2 we get:

g(x) =
(
x+ αj

) (
x+ αj+1

) (
x+ αj+2

)
. . .
(
x+ αj+2t−1

)
(5)

where j is an integer (for convenience usually equal to 0 or 1). In the following
explanation we will use j = 0 for simplicity. Then the generator polynomial can be
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written as follows:

g(x) =
(
x+ α0

) (
x+ α1

) (
x+ α2

)
. . .
(
x+ α2t−1

)
. (6)

The original RS codes could be described using the following control matrix:

HRS =


α0 α0 · · · α0 α0 α0

α(q−2) α(q−3) · · · α2 α1 α0

...
... · · · ...

...
...

α(2t−1)(q−2) α(2t−1)(q−3) · · · α(2t−1)2 α(2t−1) α0

 (7)

which is in fact a Vandermonde matrix V2t×n over GF (2ζ).

There are numerous different decoding algorithms for original RS codes. In this
section, we will describe only the basic algorithm for error correction of codewords
of RS codes based on syndromes. The reason is that this algorithm is the most
related to the proposed decoding algorithm for the five times extended RS codes,
which will be described later.

The main goal of error correcting codes and their decoding is to decrease the
number of errors and/or erasures which can occur during the information trans-
mission or storage. Next, we will focus on error correction. The codewords of RS
codes can be described as vectors in which the coordinates are symbols from the
underlying finite field:

c = (cn−1, cn−2, . . . , c1, c0). (8)

Another possibility is to use polynomials for descriptions:

c(x) = cn−1x
n−1 + cn−2x

n−2 + . . .+ c1x
1 + c0x

0. (9)

The symbols ci in (8) and 9 are elements from GF (q). In the present digital era
the most practical choice are finite fields GF (2ζ), which are extensions of the binary
finite field. ζ ≥ 2 is positive integer.

In such fields the ith error in a codeword could be described using two un-
knowns – the so called error value Yi ∈ GF (2ζ) and its position, which is given by
a corresponding error locator Xi ∈ GF (2ζ). The decoder needs to calculate both
of these values for each error in order to correct one error in a codeword. On the
other hand, each polynomial 9) representing a codeword from the RS code has 2t
roots which are consecutive elements in GF (2ζ). This allows the formation of 2t
equations in order to correct t errors in one codeword from the original RS code.
The following explanation and example of the basic decoding algorithm makes it
more obvious.

The model of an additive error channel is illustrated in Figure 1.

Because for any codeword of a cyclic code the following two equations hold:

c(x) mod g(x) = 0 (10)
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Figure 1. Additive error channel model. ⊕ denotes a polynomial addition over GF (2ζ),
c(x) is the transmitted codeword, e(x) is an error polynomial and v(x) is the received
polynomial which can contain errors.

and
g(αk) = 0; k = j, (j + 1), . . . , (j + 2t− 1) (11)

then the following equation is also valid:

c(αk) = 0; k = j, (j + 1), . . . , (j + 2t− 1). (12)

One of the many algorithms which are known for error correcting decoding for
original RS codes is the following syndrome method. The first step consists of
inserting the roots, which define the concrete RS code via (5) into the received
polynomial v(x) = vn−1x

n−1 + vn−2x
n−2 + . . .+ v1x

1 + v0x
0:

Sk = v(αk) = c(αk) + e(αk); k = j, (j + 1), . . . , (j + 2t− 1). (13)

If j = 0:
S0 = v(α0),

S1 = v(α1),

...

S2t−1 = v(α2t−1)

(14)

where Sj denotes the jth syndrome, j = 0, 1, . . . , 2t− 1. From (12) and (13):

Sk = e(αk); k = j, (j + 1), . . . , (j + 2t− 1). (15)

Therefore each syndrome is dependent only on the error polynomial written as
e(x) = en−1x

n−1 + en−2x
n−2 + . . . + e1x

1 + e0x
0 and it could be expressed also via

the unknowns which have to be calculated in order to correct the errors. Namely
the error locators Xi; i = 0, 1, 2, . . . , t and error values Yi; i = 0, 1, 2, . . . , t:

Sk =
t∑
i=1

YiX
k
i ; k = 0, 1, . . . , 2t− 1. (16)

(At this stage it is not known how many errors τ occurred in reality, but we
suppose that τ ≤ t and so we start with the worst case assumption, that τ = t.)
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Actually (16) is a system of nonlinear equations which could not be solved
directly. It could be better seen after writing (16) in a more detailed fashion:

Y1 + Y2 · · · + Yt = S0,

Y1X1 + Y2X2 · · · + YtXt = S1,

Y1X
2
1 + Y2X

2
2 · · · + YtX

2
t = S2,

...

Y1X
2t−1
1 + Y2X

2t−1
2 · · · + YtX

2t−1
t = S2t−1.

(17)

A clever way to deal with this difficulty is to first find the error locators and then
after introducing them into (16) the system turns into a system of linear equations
which could be solved by standard algorithms, for example Gauss elimination.

The error locator polynomial could be used for this purpose. The error locator
polynomial: λ(x) = λtx

t + λt−1x
t−1 + . . .+ λ1x+ 1 is a polynomial which has roots,

which are error locators. It could be expressed as follows:

λ(Xi) = 0 i = 0, 1, . . . , t. (18)

In order to find an error locator polynomial we can rewrite (18):

λtX
t
i + λt−1X

t−1
i + . . .+ λ1Xi + 1 = 0 i = 0, 1, . . . , t. (19)

(19) could be multiplied by YiX
z
i ; i = 1, 2, . . . , t; z ∈ Z:

λtYiX
t+z
i + λt−1YiX

t+z−1
i + . . .+ λ1YiX

z
i + YiX

z
i = 0 i = 0, 1, . . . , t. (20)

Now we can write (18) for fixed values of z ∈ Z. For z = 0 we get:

Y1X
0
1 + λ1Y1X

1
1 + · · · + λtY1X

t
1 = 0,

Y2X
0
2 + λ1Y2X

1
2 + · · · + λtY2X

t
2 = 0,

...

YtX
0
t + λ1YtX

1
t + · · · + λtYtX

t
t = 0.

(21)

Summation of (21) gives us:

S0 + λ1S1 + . . .+ λtSt = 0. (22)

Similarly for z = 1 we get:

Y1X
1
1 + λ1Y1X

2
1 + · · · + λtY1X

t+1
1 = 0,

Y2X
1
2 + λ1Y2X

2
2 + · · · + λtY2X

t+1
2 = 0,

...

YtX
1
t + λ1YtX

2
t + · · · + λtYtX

t+1
t = 0.

(23)
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Summation of (23) gives us:

S1 + λ1S2 + . . .+ λtSt+1 = 0. (24)

We can continue in a similar way until we get the following system of equations:

S0 + λ1S1 + · · · + λtSt = 0,

S1 + λ1S2 + · · · + λtSt+1 = 0,

...

St−1 + λ1St + · · · + λtS2t−1 = 0.

(25)

This system of linear equations could be solved by any standard method, for
example by Gauss-Jordan elimination. As a result we get the coefficients of the
error locator polynomial.

The error locator polynomial determination from the calculated syndromes could
also be done using different approaches, for example the Berlekamp-Massey algo-
rithm [12, 13].

In the third step the locators are found via Chien search [14]. It is, in princi-
ple, a slightly augmented brute force algorithm in which the symbols are inserted
consecutively into the locator polynomial, evaluated and tested if:

λ(Xi) = 0 i = 0, 1, . . . , τ ; τ ≤ t (26)

until we get τ locators. This algorithm is possible because the underlying field is
finite. It will stop when we get enough solutions. In other words it means that with
high probability we do not usually have to insert all nonzero elements.

Nevertheless, the Chien search has high complexity. If the error locator has
a small degree it could be solved directly [15, 16, 17]. Or theorem 3.2.15 in [18]
can be used with much smaller computational complexity. For example the method
in [16] has very low complexity.

The result of this step will be the set of error locators: Xi; i = 0, 1, . . . , τ , where
τ is the number of errors which actually occurred during transmission in the decoded
codeword.

The fourth step is the calculation of error values. This can be done thanks to
known syndromes, which could be expressed in another form:

Sk =
τ∑
i=1

YiX
k
i k = 0, 1, . . . , 2t− 1. (27)

In this step it remains to calculate the error values Yi; i = 0, 1, . . . , τ . This could
be accomplished simply by solving the set of equation given by (27). At first we
have to insert the values of error locators into it which will transform it into a set
of linear equations. (The error locator values are elements of the finite field and
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therefore also their powers are elements of the same finite field.) Then this set of
linear equations could be solved by the Sarus rule or by Gauss-Jordan elimination.

In this step the attempt to correct the received word could be done by adding
the error values to received symbols in positions determined by error locators.

One may ask how the actual number of errors τ ≤ t could be obtained in
the third step of the above algorithm. When using Gauss-Jordan elimination it
is quite straightforward. When using the Sarus rule we have to test if the de-
terminant of the system is zero. We have to suppose that τ = t first. If the
determinant of the matrix corresponding to the system of equations is zero, we
will have to suppose that τ = t − 1 and again compute the new determinant
and test if it is zero and if not then we can conclude that τ = t − 1. If it
is zero we can continue to decrease τ and modify the corresponding system ma-
trix by deleting the last row and last column until we get a nonzero determinant.
It has to be said that there exists a much more efficient method to find the er-
ror locator, namely the Berlecamp Massey algorithm. The details can be found
in [12, 13].

The last step is obtaining the estimation of the transmitted or stored codeword
from the received word – the actual error correction of the received word. This is
done by adding the error values to the positions determined by error locators in the
received codeword.

4 A DECODING ALGORITHM FOR ERROR CORRECTION
FOR FIVE TIMES EXTENDED RS CODES

In [1] it was proven that the code distance of each code from this family is 5. This
code distance potentially allows for correcting up to two errors in a codeword. This
is a necessary but insufficient condition. The additional condition which has to be
fulfilled is the knowledge of a decoding algorithm.

Unfortunately the approach presented in the previous section is not applicable
to codes proposed in [1]. It is because (4) contains not only a Vandermonde matrix
as a submatrix, but also an additional identity matrix in juxtaposition. It becomes
obvious by inspection of the matrix (4), which can be represented in a compact form
as:

H5×n =
[
V5×(q−1) | I5×5

]
. (28)

Therefore in this section a new specialized error correcting algorithm will be
presented for codes from [1]. The main problem is that the classical syndrome
method in this case is not able to distinguish between different error patterns by
analyzing the values of syndromes. The approach which will overcome this difficulty
is similar to using sieves for mechanical separation by size. In other words the
algorithm deals first with error patterns detectable by syndromes. The rest of the
error patterns are processed at the end of decoding.

At first we will introduce notation which will allow us to underline some proper-
ties, which will be exploited in the decoding algorithm. The codewords of the codes
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from [1] will be denoted as follows:

c = (ck−1, ck−2, . . . , c1, c0, p0, p1, p2, p3, p4) (29)

where the left part contains information vector: c = (mk−1,mk−2, . . . ,m1,m0), or
in other words:

ci = mi i = 0, 1, . . . , k − 1 (30)

and

pI =
k−1∑
i=0

miα
I ; I = 0, 1, . . . , 4. (31)

It is obvious that (30) and (31) could also be used for systematic encoding of
codes from [1]. The received vector which has to be decoded and therefore can
contain errors will be denoted as follows:

v = (vk−1, vk−2, . . . , v1, v0, r0, r1, r2, r3, r4). (32)

The decoding algorithm starts with the calculation of 5 syndromes via multi-
plying the received vector by the transposed control matrix (4):

s = v.HT
5×n. (33)

The resulting vector will contain, as its coordinates, the desired syndromes:

s = (S0, S1, S2, S3, S4). (34)

The second step consists of analysing s. The algorithm will continue in depend-
ing on this analysis.

1. If all coordinates of s are zeros:

s = (0, 0, 0, 0, 0) (35)

the algorithm ends, and it is supposed that no errors occurred, therefore:

ĉ = v (36)

where ĉ is the estimation of the transmitted or stored codeword.

2. If only one syndrome SI (one coordinate) is nonzero and all other four are zeros,
then it is supposed that only one error occurred in the parity symbol correspond-
ing to the position of the nonzero element in s. This symbol can be corrected
simply by calculating the corresponding parity symbol again using the received
non corrupted symbols corresponding to information symbols. Assuming that
SI 6= 0 then SI = Y and:

p̂I = SI + rI . (37)

For the other coordinates of the decoded word (36) is valid.
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3. If only two syndromes e.g. SI 6= 0 and SJ 6= 0 and all other are zeros, then
it is supposed that only two errors occurred and only in the parity positions.
Otherwise, if one error is in the parity part and the other in the information
part or both errors are in the information part, or only one error occurred in
the information part then at least one other syndrome would be nonzero. This
follows from the properties of Vandermonde matrices. In this case the two
corresponding parity symbols could be computed similarly as in case 2. Now
SI 6= 0 =⇒ SI = Y1 and SJ 6= 0 =⇒ SJ = Y2 then:

p̂I = SI + rI ,

p̂J = SJ + rJ .
(38)

Note: In the following steps a situation when one or two errors can occur in the
information part, or one error can occur in the information part and one in the
parity part, has to be investigated and decided. For these tests a set of auxiliary
variables is computed:

A1 = S1

S0
,

A2 = S2

S1
,

A3 = S3

S2
,

A4 = S4

S3
.

(39)

In connection with (39) possible division by 0 has to be taken into account in
any practical implementation e.g. by substituting a value not present in the given
GF (q).

4. At first let us assume that one error occurred in the information part. In this
case all of the following equations must be fulfilled:

S0 = Y,

S1 = XY,

S2 = X2Y,

S3 = X3Y,

S4 = X4Y.

(40)

From (40) follows that:

A1 = A2 = A3 = A4 = X = αj (41)

where j gives the position of the error in the information part to which the error
value Y = S0 (from (40)) has to be added in order to correct the received word:

ĉj = vj + Y. (42)
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5. If in one or in two cases Ai 6= Ai+1, i = 1, 2, 3 then one error occurred in the
information part and one in the parity part. In order to test in which position
in the parity part the error occurred, one of the following 5 sets of equations
is valid. In order to determine the error position in the parity part one of the
following tests has to hold.

(a) If J = 0 then:
S0 = Y1 + Y2,

S1 = X1Y1,

S2 = X2
1Y1,

S3 = X3
1Y1,

S4 = X4
1Y1.

(43)

Test if the following is true:

A1 6= A2 ∧ A2 = A3 ∧ A3 = A4. (44)

From (43) follows that:
X1 = S2

S1
= αj,

X2 = α0,

Y1 =
S2
1

S2
,

Y2 = S0 +
S2
1

S2
.

(45)

(b) If J = 1 then:
S0 = Y1,

S1 = X1Y1 + Y2,

S2 = X2
1Y1,

S3 = X3
1Y1,

S4 = X4
1Y1.

(46)

Test if the following is true:

A1 6= A2 ∧ A2 6= A3 ∧ A3 = A4. (47)

From (46) follows that:

X1 = S3

S2
= αj,

X2 = α1,

Y1 = S0,

Y2 = S1 + S3

S2
S0.

(48)
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(c) If J = 2 then:
S0 = Y1,

S1 = X1Y1,

S2 = X2
1Y1 + Y2,

S3 = X3
1Y1,

S4 = X4
1Y1.

(49)

Test if the following is true:

A1 6= A2 ∧ A2 6= A3 ∧ A1 = A4. (50)

From (49) follows that:
X1 = S1

S0
= αj,

X2 = α2,

Y1 = S0,

Y2 = S2 +
S2
1

S0
.

(51)

(d) If J = 3 then:
S0 = Y1,

S1 = X1Y1,

S2 = X2
1Y1,

S3 = X3
1Y1 + Y2,

S4 = X4
1Y1.

(52)

Test if the following is true:

A1 = A2 ∧ A2 6= A3 ∧ A3 6= A4. (53)

From (52) follows that:
X1 = S1

S0
= αj,

X2 = α3,

Y1 = S0,

Y2 = S3 +
S3
1

S2
0
.

(54)

(e) If J = 4 then:
S0 = Y1,

S1 = X1Y1,

S2 = X2
1Y1,

S3 = X3
1Y1,

S4 = X4
1Y1 + Y2.

(55)
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Test if the following is true:

A1 = A2 ∧ A2 6= A3 ∧ A3 6= A4. (56)

From (55) follows that:
X1 = S1

S0
= αj,

X2 = α4,

Y1 = S0,

Y2 = S4 +
S4
1

S3
0
.

(57)

Correction of the received word:

ĉj = vj + Y1,

r̂J = rJ + Y2, J = 0, 1, . . . , 4.
(58)

(f) In this step an assumption is made that both errors are in the information
part. In this case the following is true:

A1 6= A2 ∧ A2 6= A3 ∧ A3 6= A4 (59)

and the following equations must be fulfilled:

S0 = Y1 + Y2, (60)

S1 = X1Y1 +X2Y2, (61)

S2 = X2
1Y1 +X2

2Y2, (62)

S3 = X3
1Y1 +X3

2Y2, (63)

S4 = X4
1Y1 +X4

2Y2. (64)

The unknown variables X1, X2, Y1, Y2 can be computed using a standard
method described in Section 3. The correction of the received word can be
done similarly as in case 4. But now, two positions in the information part
have to be corrected corresponding to the two locators X1 and X2 by adding
the calculated values Y1 and Y2 of the errors to the received symbols:

ĉi = vi + Y1,

ĉj = vj + Y2.
(65)

6. If none of the cases: 1.–6. is confirmed, then it has to be assumed that more
than two errors occurred and the decoding failure has to be declared.

In Figure 2 the proposed decoding algorithm is depicted in a compact way using
a flow chart.



1324 P. Farkaš, M. Rakús
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Figure 2. Flow chart of decoding algorithm

5 SOME REMARKS ON DECODING IMPLEMENTATION

In the previous section the basic principles of the decoding algorithm were presented
for error correction in five times extended Reed Solomon codes. In this section we
will explain some properties which were used in particular steps of the decoding
algorithm and describe in more detail how to solve the different, earlier mentioned
systems of equations. We will start with polynomial notation for (29) and (32):

c(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + (p0 + p1 + p2 + p3 + p4)x
0, (66)

v(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + (r0 + r1 + r2 + r3 + r4)x
0 (67)
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which will help to express the formulas needed to explain the proposed decoding
algorithm. Similarly the error vector could be expressed using a polynomial:

e(x) = ek−1e
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + (ε0 + ε1 + ε2 + ε3 + ε4)x
0. (68)

Note: This notation will also be useful later in the section dealing with the ana-
lysis of the decoding algorithm complexity. This is because the complexity could
be very often decreased by ideas inspired by hardware realizations of decoders. On
the other hand the hardware for cyclic codes is conveniently described by polyno-
mials.

By observing (66), (67) and the calculation of the syndromes together with
knowing the role of locators during decoding ordinary RS codes, it is obvious that
the description (66) and (67) is correct. However, it is not helpful since it does
not allow us to distinguish the positions of v0 and r0, r1, . . . , r4. It is because in
this polynomial description all these symbols appear in sum as a coefficient of x0.
Therefore, we will introduce the following new sets of polynomials which are better
adapted to the decoding of five times extended RS codes. This approach enables us
to solve the mentioned problem with location distinction.

c0(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + p0x
0,

c1(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + p1x
0,

c2(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + p2x
0,

c3(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + p3x
0,

c4(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + p4x
0,

(69)

v0(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + r0x
0,

v1(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + r1x
0,

v2(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + r2x
0,

v3(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + r3x
0,

v4(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + r4x
0,

(70)

e0(x) = ek−1x
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + ε0x
0,

e1(x) = ek−1x
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + ε1x
0,

e2(x) = ek−1x
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + ε2x
0,

e3(x) = ek−1x
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + ε3x
0,

e4(x) = ek−1x
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + ε4x
0.

(71)
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Using these polynomials we can express the syndromes as follows:

S0 = v0(α
0) = c0(α

0) + e0(α
0) = ek−1 + . . .+ e1 + e0 + ε0,

S1 = v1(α
1) = c1(α

1) + e1(α
1) = ek−1α

k−1 + . . .+ e1α
1 + e0α

0 + ε1α
0,

S2 = v2(α
2) = c2(α

2) + e2(α
2) = ek−1α

2(k−1) + . . .+ e1α
2 + e0α

0 + ε2α
0,

S3 = v3(α
3) = c3(α

3) + e3(α
3) = ek−1α

3(k−1) + . . .+ e1α
3 + e0α

0 + ε3α
0,

S4 = v4(α
4) = c4(α

4) + e4(α
4) = ek−1α

4(k−1) + . . .+ e1α
4 + e0α

0 + ε4α
0.

(72)

Now we can explain some properties on which the particular steps of the pro-
posed decoding algorithm are based depending on error location.

Case 1 is trivial and known for syndrome decoding of linear block codes.
In Case 2, the following property is used: assuming that the error occurs in one of

the parity symbols, or in other words, if one of the symbols from a set {ε0, ε1, ε2, ε3, ε4}
in the error polynomial is nonzero, it means that only one corresponding syndrome
is nonzero. It follows from (72).

Similarly in Case 3, the following property is used: assuming that only two
syndromes e.g. SI and SJ are nonzero and all others are zeros, then it is supposed
that exactly two errors occurred in the parity positions, which follows from (72).

In Case 4, it is supposed that:

ε0 = ε1 = ε2 = ε3 = ε4 = 0 (73)

and only one of the symbols from the set {ek−1, ek−2, . . . , e1, e0} is nonzero. From
these assumptions it follows that:

c0(x) = c1(x) = c2(x) = c3(x) = c4(x) = c(x). (74)

And therefore (40) follows from (17).
In Case 5, it is supposed that the first error ocured in the information part

of the codeword and the second one in the parity part. Therefore, for the first
error we can use error locator X1 as usually defined inside the information part
which is mapped on c(x) because in this case: ε0 = ε1 = ε2 = ε3 = ε4 = 0
and c0(x) = c1(x) = c2(x) = c3(x) = c4(x) = c(x). However, for the second
error the assumptions are different. Namely that one of the symbols from a set
{ek−1, ek−2, . . . , e1, e0} in the error polynomial is nonzero. On the other hand, the
location and value of the second error is not given by a standard locator in this case.
These are determined indirectly using tests: (44),(47),(50),(53),(56) and the system
of equations: (45),(48),(51),(54),(57). The reason is that the single nonzero element
from the set {ek−1, ek−2, . . . , e1, e0} will cause the second summand on the right side
to be equal to zero in only one of the above mentioned systems of equations.

In Case 6, the reasoning is similar, because it is assumed that (73) is valid
and two of the symbols from set {ek−1, ek−2, . . . , e1, e0} are nonzero. Therefore (73)
also holds. Consequently (60), (61), (62), (63) and (64) follow from (17) again.
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However, in this case it is worth giving more details of the method how to solve the
system of Equations (60), (61), (62), (63) and (64). In order to decode the received
word it is necessary to find two unknown locators X1, X2 and two unknown error
values Y1, Y2, together 4 unknowns. Therefore at least 4 equations are needed to be
calculated. However, the Equations (60), (61), (62), (63) and (64) are not linear.
Therefore a direct analytical solution is not easy or viable at all. The following
notification allows arguing that the standard approach as in decoding ordinary RS
codes is possible. Because in Case 5, it is supposed that two errors occurred, the
locator polynomial has degree two:

λ(x) = λ2x
2 + λ1x

1 + x0. (75)

Therefore:

λ2X
2
i + λ1X

1
i + 1 = 0; i = 1, 2. (76)

After multiplying (75) with YiX
z
i ; i = 1, 2; z ∈ Z we get:

λ2YiX
z+2
i + λ1YiX

z+1
i + YiX

z
i = 0; i = 1, 2 z ∈ Z. (77)

Now we can write (76) for a fixed value of z ∈ Z. For z = 0 we get:

λ2Y1X
2
1 + λ1Y1X

1
1 + Y1X

0
1 = 0,

λ2Y2X
2
2 + λ1Y2X

1
2 + Y2X

0
2 = 0.

(78)

Summation of (78) gives us:

λ2S2 + λ1S1 + S0 = 0. (79)

For z = 1, we get similarly:

λ2Y1X
3
1 + λ1Y1X

2
1 + Y1X

1
1 = 0,

λ2Y2X
3
2 + λ1Y2X

2
2 + Y2X

1
2 = 0.

(80)

Summation of (80) gives us:

λ2S3 + λ1S2 + S1 = 0. (81)

Now (79) and (81) form a system of linear equations with two unknowns: λ1
and λ2. Such a system is easily solvable by standard approaches. For example:

λ2 =
S1 + S0S2

S2
2 + S1S3

, (82)

λ1 =
S0 + λ2S2

S1

. (83)
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As a result we have a concrete error locator polynomial and therefore the Chien
algorithm could be used in order to get locators X1 and X2. Or (75) can be solved
directly [15, 16, 17, 18].

For example in [17] after substituting x = λ1
λ2
u into (75), the error locator poly-

nomial will be:

λ(x) =
λ21
λ2

(
u2 + u+

λ2
λ21

)
. (84)

In order to find its roots it is necessary to solve:

u2 + u+
λ2
λ21

= 0. (85)

Because GF (2m) is, by squaring, transformed linearly over GF (2), Equation (85)
could be reformulated as follows:

u (Θ + I) =
Λ2

Λ2
1

(86)

where u, Λ2

Λ2
1
, I and Θ are binary vectors, identity matrix and m×m square operator

matrix, respectively. After adding the two matrices in (86) the following equality is
obtained:

u×T =
Λ2

Λ2
1

(87)

where T = Θ + I. To make the computation fast the pseudo inverse of T could be
implemented via lookup table in advance for the specific finite field GF (2m). The
calculation of error locators then consists of the following steps:

• calculating Λ2

Λ2
1
;

• reading out the two roots: U1, U2 from the lookup table;

• transforming U1, U2 into locators X1, X2 by using:

X1 =
Λ1

Λ2

U1; (88)

• thanks to Vieta’s formulas we can use addition instead of multiplication for the
second locator transformation:

X2 = U1 +
Λ1

Λ2

. (89)

After calculating X1, X2 they could be inserted into (61). By using the resulting
equation and (60) the error values Y1 and Y2 could be calculated from this linear
system of equations:

Y2 =
S1 + S0X1

X1 +X2

, (90)

Y1 = S0 + Y2. (91)
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Case 7 is a consequence of the fact that all correctable configurations of errors
determined by the code distance of the codes are covered by previous cases: 1–6.
However, if non correctable configuration of errors occurs, for example containing
more than two errors, then the decoding can end in failure or incorrect decoding.
The failure can be detected in Case 7. After this detection some remedy mech-
anism can be started, for example the request for re-sending the codeword again
could be generated. Therefore this situation is better than the incorrect decoding
caused by more than two errors. This can happen if under the influence of more
than two errors the received combination is closer to some other codeword than
to one which was sent. Namely its Hamming distance is smaller than or equal to
two.

6 COMPLEXITY ESTIMATION OF THE ALGORITHM

In this section the complexity estimation of the proposed decoding algorithm is
presented. The number of operations needed for calculating syndromes will not be
counted, because these operations are necessary in any syndrome based decoding
and they are usually done by hardware. It is obvious that the number of operations
necessary for correct decoding is dependent on the number of errors which occur in
the transmission channel and on their positions in the received codeword. Therefore
an average number of operations per codeword was chosen for this estimation with
the assumption that the error occurrence mechanism is modeled as a q-ary symmetric
channel depicted in Figure 3.

α0 α0

α1 α1

αq−2 αq−2

1 - (q - 1)p

1 - (q - 1)p

1 - (q - 1)p

p

p

p

p

p

p

Figure 3. q-ary symmetric channel
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If we denote by Pe = (q − 1)p the probability of error in this channel model,
then:

P0 = (1− Pe)q+4, (92)

P1 =

(
q + 4

1

)
Pe(1− Pe)q+3, (93)

P2 =

(
q + 4

2

)
P 2
e (1− Pe)q+2 (94)

are the probabilities that 0, 1 and 2 errors occur in a received codeword, respectively.
However the complexity also depends on the constellation of the error or errors.
Therefore the following probabilities for the decoding complexity estimation will be
defined:

• probability of one error in parity symbol:

P1P = P1
5

q + 4
= 5Pe(1− Pe)q+3, (95)

• probability of one error in information symbol:

P1I = P1
q − 1

q + 4
= (q − 1)Pe(1− Pe)q+3, (96)

• probability of two errors in parity symbol:

P2P = P2

(
5
2

)
(
q + 4

2

) = 10P 2
e (1− Pe)q+2, (97)

• probability of two errors in information symbol:

P2I = P2

(
q − 1

2

)
(
q + 4

2

) =
(q − 1)(q − 2)

2
P 2
e (1− Pe)q+2, (98)

• probability of one error in parity symbol and one error in information symbol:

P1P1I = P2
5(q − 1)

(q + 4)2
=

5(q − 1)(q − 2)

2(q + 4)
P 2
e (1− Pe)q+2, (99)
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• probability of more than two errors in codeword:

P>2 =

q+4∑
j=3

(
q + 4
j

)
P j
e (1− Pe)q+4−j. (100)

After the algorithm gets as an input 5 syndromes, five comparisons of the calcu-
lated syndromes are done and depending on the results one of the following subrou-
tines are performed. The complexity for each case can be given by the number of
operations. Next, the average number of operations could be calculated using the cu-
mulative probability theorem. We will introduce the vector Υ = (υ1, υ2, υ3, υ4, υ5)
in which the particular non-negative integer coordinates: υ1, υ2, υ3, υ4, υ5 denote
the number of additions, multiplications, divisions, comparisons and look up table
accesses, respectively, which are needed in order to perform the particular subrou-
tines. The detailed estimation of the necessary operations (except calculation of
syndromes) follows:

• one error in parity symbol: 1 addition:

Υ1P = (1, 0, 0, 0, 0), (101)

• two errors in parity symbol: 2 additions:

Υ2P = (2, 0, 0, 0, 0), (102)

• one error in information symbol: 1 addition, 4 divisions and 3 comparisons:

Υ1I = (1, 0, 4, 3, 0), (103)

• one error in parity symbol and one error in information symbol. Now the cal-
culations and mutual comparison of auxiliary variables: A1, A2, A3, A4 was done
in the previous case. In the worst case 3. additional additions, one additional
multiplication and 3 additional divisions have to be performed. Therefore:

Υ1P1I = (4, 1, 7, 3, 0), (104)

• two errors in information symbols: For the calculations and mutual compar-
ison of auxiliary variables: A1, A2, A3, A4 holds the same as in the previous
case. Then the correction of two errors will need for solutions of (88), (89),(90)
and (91): 4 additions, 8 divisions, 5 multiplications and 2 readouts from the
look up table:

Υ2I = (4, 5, 12, 3, 2), (105)

• more than two errors in information symbol: In this case the complexity of
procedures quantified by Υ1I ,Υ2I ,Υ1P1I can be added as the worst case:

Υ>2I = (16, 6, 23, 9, 2). (106)
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We will characterize the overall complexity using a vector: Γ = (γ1, γ2, γ3, γ4, γ5)
in which the particular coordinates: γ1, γ2, γ3, γ4, γ5 denote average numbers of: ad-
ditions, multiplications, divisions, comparisons and look up table accesses, respec-
tively, which are needed in order to perform the particular subroutines. The value
of Γ can be evaluated from (101), (102), (103), (104), (105) and (106) using the
cumulative probability formula:

Γ = Υ1P × 5Pe(1− Pe)q+3

+ Υ2P × 10P 2
e (1− Pe)q+2

+ Υ1I × (q − 1)Pe(1− Pe)q+3

+ Υ2I ×
(q − 1)(q − 2)

2
P 2
e (1− Pe)q+2

+ Υ1P1I ×
5(q − 1)(q − 2)

2(q + 4)
P 2
e (1− Pe)q+2

+ Υ>2I ×
q+4∑
j=3

(
q + 4
j

)
P j
e (1− Pe)q+4−j. (107)

After evaluation using (107) it is possible to get information about the average
number of particular operations: additions, multiplications, divisions, comparisons
and accessing the look up table, necessary for decoding the received codewords. By
observing (107) it is also obvious that these average numbers of operations depend
on the error probability Pe of the q-ary symmetric channel and on q – the number
of elements in the finite field.

The total average number of operations per codeword is given by the sum of all
coordinates of (107):

Γ̄ =
5∑
i=1

γi. (108)

A tabular representation of (108) for selected values of Pe for GF (64) and
GF (256) is shown in Table 1.

GF(64) GF(256)

Pe Γ Γ

10−2 7.058 34.89

10−3 5.280× 10−1 2.370

10−4 5.109× 10−2 2.077× 10−1

10−5 5.092× 10−3 2.048× 10−2

Table 1. The average number of operations

It has to be stressed out that the complexity estimations in Table 1 do not
include the complexities of syndrome calculations. These complexities are constant
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for particular finite fields. In GF (q) if we use the Horner scheme for syndrome
calculations we will need 5× (q − 2) additions and 5× (q − 2) multiplications. E.g.
in GF (64) and in GF (256) the overall number of operations needed for calculation
of syndromes will be 640 and 2 560, respectively. As was already mentioned, the
syndromes always have to be calculated in any syndrome decoding algorithm and
usually this is done via hardware. The average number of operations needed in the
proposed algorithm for example where Pe = 10−3 is less than 1 and less than 3 in
GF (64) and GF (256), respectively.

7 CONCLUSIONS

In this paper a new decoding algorithm was proposed for the five times extended
Reed Solomon codes proposed in [1], which allows correcting up to two errors in
a codeword. In contrast to known error correcting syndrome decoding algorithms,
the method proposed in this paper has to deal with the problem that the control
matrix is not a pure Vandermonde matrix, but it is a juxtaposition of a Vandermonde
and an identity matrix. Therefore, the proposed algorithm had to (to some extent)
use strategy somewhat like a set of sieves in order to separate different possible error
patterns. This strategy is explained in detail using specially created polynomial and
matrix analytical descriptions. This algorithm was also verified using Mathematica
software for all distinct cases and all typical combinations of error patterns.
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