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Abstract. During the past decades, numerous memory models have been proposed,
which focused mainly on how spoken words are studied, whereas models on how
visual images are studied are still limited. In this study, we propose a probabilistic
memory model (PMM) for visual images categorization which is able to mimic the
workings of the human brain during the image storage and retrieval. First, in the
learning phase, the visual images are represented by the feature vectors extracted
with convolutional neural network (CNN) and each feature component is assumed to
conform to a Gaussian distribution and may be incompletely copied with a certain
probability or randomly produced in accordance to an exponential distribution.
Then, in the test phase, the likelihood ratio between the test image and each studied
image is calculated based on the probabilistic inference theory, and an odd value
in favor of an old item over a new one is obtained based on all likelihood values.
Finally, if the odd value is above a certain threshold, the Bayesian decision rule
is applied for image classification. Experimental results on two benchmark image
datasets demonstrate that the proposed PMM can perform well on categorization
tasks for both studied and non-studied images.
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1 INTRODUCTION

As was known to all, computer vision research aims to make the computers easily
perceive, understand, and remember the visual images effortlessly as humans do.
With the rapid development of cognitive neuroscience and cognitive psychology,
numerous new theories and methods have emerged [I], which constantly deepen the
study of the complex mechanisms of the human brain and promote the progress of
computer vision and artificial intelligence. The fact that the human may retrieve
objects from their cluttered surroundings without any difficulties is closely related to
the human memory mechanism. Since the time when the first psychology memory
model put forward by Atkinson and Shiffrin [2], many memory models have been
proposed to date, such as SAM (Search of Associative Memory) [3], BCDMEM (Bind
Cue Decide Model of Episodic Memory) [4], TCM (Temporal Context Model) [5],
and REM (Retrieving Effective from Memory) [6], etc. However, the majority of
these memory models merely focus on the words list study, seldom, if ever, the
research is conducted on the representation, storage, and retrieval of visual images.

Recently, machine learning algorithms have been found to be able to categorize
visual images with high accuracy and the performances can be even, to some ex-
tent, comparable to human beings [7, ®, Q). However, the key distinction between
machine learning based image classification algorithms and human decision is that
the machine learning based algorithms will classify an image from a new category
into a studied category rather than report unknown like a human. In other words,
machine learning based classification methods can distinguish one object from some
limited studied objects, while humans can distinguish a certain category of objects
from some infinite unknown categories. When one perceives an object never seen
before, he will respond ‘unknown’ to it immediately instead of checking it against all
the studied objects in his memory, indicating that the human brain memory works
in a different way during performing classification tasks. Therefore, in this paper,
we will shed light on how visual images are represented and stored as well as how
the stored images are retrieved when performing categorization tasks.

Murdock et al. [I0] strengthened that a reasonable memory model should address
the following issues, i.e., how the information is organized, encoded and stored during
learning and how the information could be retrieved or recalled when needed. These
topics have gained strong concerns in research areas such as computer vision and
image processing and have come a long way. However, the performances yielded
are still far from human beings who can make decisions based on the experience
and the knowledge learned in the past. Therefore, we can glean some insights from
the human brain, especially the mechanism for making an inference and decision to
enhance the robustness of the computer vision algorithms. In fact, in the early 1980s,
Hinton and Sejnowski showed in their study that the human brain can be regarded as
a machine which could infer and make decisions based on external uncertainties [I1],
suggesting that the brain represents knowledge and makes decisions in the form of
probability distributions. Knill and Pouget [12] further developed the idea based on
psychophysical evidence and proposed the concept of Bayesian brain which works on
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Bayesian probability. In their research, they also described the neural representation
mechanism of uncertainty in the human brain. Meanwhile, Lee and Mumford [I3]
also suggested that the hierarchical Bayesian inference might model the interactive
computations in visual cortex and provided some neurophysiological evidences that
support the plausibility of their study. Since then, Bayesian models were widely
applied in inductive learning and reasoning [14], free recall of memory [15], visual
search and recognition [I6] as well as visual attention [I7].

In this paper, in order to imitate the memory function of the human brain, we
apply the probabilistic inference and Bayesian decision theories to the modeling of
visual images storage and retrieval and put forward a probabilistic memory model
(PMM) for visual images categorization. First, regarding the image representation
and storage, we apply the deep convolutional neural network (CNN) to extract the
image features, and each feature component is supposed to conform to a Gaussian
distribution and may be incompletely copied with a certain probability or randomly
produced according to an exponential distribution. The probability representation
aims to mimic the sensory error as well as the memory noise of the human brain
in the study phase. Then the likelihood ratio between the test image and all the
studied images can be obtained, and an odd value can be computed based on all the
likelihood values, which is regarded as a criterion for deciding whether the image
is studied or not. For image retrieval, the Bayesian decision rule is performed. We
evaluate the performance of the proposed PMM by applying it on image categoriza-
tion tasks in which experiments are conducted on two benchmark image databases
and the results are compared with the state-of-the-art image classification methods.

The structure of the paper is organized as follows. Section [2] elaborates the
related work. Section [ introduces the proposed PMM model using probabilistic
inference and Bayesian decision. Section [] provides the experiments and perfor-
mances of PMM on visual image classification tasks. Finally, some conclusions are
summarized in Section

2 RELATED WORK

In this section, we will retrospect some relevant work about visual image represen-
tation, storage and recall, i.e., feature representation and the traditional memory
model - REM model [6].

As for feature representation, currently a mass of methods for images feature ex-
traction have been put forward, such as histogram of oriented gradient (HOG) [1§],
local binary patterns (LBP) [19], Haar-like [20] and gradient location-orientation
histogram (GLOH) [21]], etc. These methods can achieve good results when applied
to simple images, but the effects will get worse when dealing with complex natural
images. Recently, deep learning based feature extraction methods exhibit better
performance when handling images with noise or cluttered background in compari-
son to the traditional approaches, such as autoencoder neural networks (ANN) [22],
restricted Boltzmann machine (RBM) [23], recurrent neural network (RNN) [24] and
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convolutional neural networks (CNN) [25], etc. Notably, the hierarchical convolu-
tional neural network (HCNN) [26] can model the neural single-unit and population
responses in the visual cortical areas of the human brain, especially, the VGG-19
model [25] is known for its deep representation of visual images.

As for the traditional memory models, the REM model is the most typical
memory model for words list study. The REM model supposed that human memory
consisted of a series of separate images, with each one being a vector of feature values,
which are stored randomly or incompletely copied from the studied vector with error.
When a word was studied, the storage probability of each feature was u*. It was
worth noting that when any feature value was stored, it did not change any longer.
When some information was stored in the feature vector, the probability of stored
value consisted of two parts: the rightly copied probability was ¢ and the randomly
chosen probability was 1 — ¢ which satisfied a geometric probability distribution
PV =j)=(1-g)V"'g, j=12,...,00. Given the test vector either studied
or unstudied, it was matched against the studied feature vectors. The matching
result D = {D;},_,, y was then computed to find the matched and non-matched
locations, and neglected the locations where the feature value was zero, where D;
denoted the aligning result between the test and the j** word feature vector.

Next, calculated the likelihood ratio A; based on the matching result D;:

P (D;|S;)
=B DN, )
(D;|N;)
where S; and N; standed for the events that the j™ image was an s-image and
a d-image, respectively. Finally, calculated the odds in favor of an old over a new
item based on the likelihood values:

1
@:NZAJ. (2)

If ® > 1, the test word was judged as an old one; or else, the test word was identified
as new.

REM model offers a memory mechanism to elucidate a series of episodic mem-
ory phenomena, such as the list-length, list-strength, word-frequency and mirror
effects, etc. However, it can only provide some accounts for word list study. Due to
the complex characteristics of visual images, the research about the representation,
storage, and retrieval of visual images is still a challenging task.

3 THE PROPOSED PMM MODEL

In what follows, we will elaborate the proposed PMM modeling process, including
image representation and storage with probability, memory recall by probability
reference, and memory retrieval with Bayesian decision.



Probabilistic Memory Model for Visual Images Categorization 1233
3.1 Visual Image Representation and Storage with Probability

The primary part of the memory modeling process is feature representation for the
information to be stored, which is essential for the performance of the model. In
words list study, the feature of a word is expressed by integers, which is very simple
and easy to handle, whereas the feature of an image is much more complicated.
Neural evidence shows that the visual information in human brain is processed
hierarchically [27, 28]. Thus a pre-trained convolutional neural network model with
19 layers, named VGG-19 [25], is adopted to extract the primitive image features.

More specifically, given a visual image set X = {X11, X12,..., X1, Xo1, Xo2,
oy Xong, oo Xen, Xeay -y Xone b, where X denotes the j™ image coming from
the i*" category, C' represents the number of categories in the image set and is
signified by Z = 71, Z,,..., Zc, and the number of images in the i category Z;
is n;. We first employ the VGG-19 model to extract the feature values of images
during the study phase, which are represented as F = {Fi1, Fia, ..., Fin,, Fo1, Foo,
coisFongy oo For, Foa, ... Fone b, where Fy; € RYP indicates the feature vector of
image X,;, D implies the dimension of the feature vector.

To simulate the visual sensor error, for computational simplicity and conve-
nience, each extracted image feature is modeled using a Gaussian distribution:

q (Fylps) ~ N (fij : pi,0?) i€ [1,C] (3)

where f;; represents the observed feature values of the ' image from the i*" category,
J; is the mean value of the i'" category, and o is the precision parameter. Suppose
each feature value of images of each category is independent for each other, then
the probability distribution of the image features of each category takes the form:

C

q(Flp) = [T a(Fislm)- (4)

i=1

To imitate the storage process of the human brain, we hypothesize that the
feature vector of each studied image is stored either correctly copied or an incom-
plete and error prone copy, suggesting the image features extracted by CNN are
incomplete, with some feature components produced randomly. Here, we assume
that each stored feature value may be either correctly copied with probability p,
satisfying a Gaussian distribution, or randomly produced with probability 1 — p,
conforming to an exponential distribution (allowing the probability of accidentally
selecting the correct value):

ge 9% x>0,

g(F = z) = { (5)

0, otherwise,

where g is the exponential distribution parameter. The reason for choosing exponen-
tial distribution is that exponential distribution can describe the time probability
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distribution between the events in the Poisson process, which is broadly consistent
with the neurons encoding process in the human brain [29].

In summary, the probabilistic storage process of the PMM can be described by
a 4-tuple, i.e., the three parameters of the two probability distributions and one
correctly copied probability p:

F~Ap,0.9,p}. (6)
3.2 Visual Images Recall

Given a test image X;, memory recall means determining whether it is studied or
not. The feature vector F;, € R'™P of the test image X, is extracted by deep CNN
first and then matched with the studied feature set F' = {Fiy,..., Fon.}. The
matching rule between the test feature vector F; and the learned feature vector Fj;
is set as follows:

1, if Fy(d) # 0 and Fy;(d) # 0,
sz(d) = —1, if Ft( ) 7& 0 and Ej(d) = 0

0, otherwise,

(7)

where 1 < d < D, in what follows, F(d) and F;;(d) are abbreviated as Fy and Fy;;
respectively. The matched result R;; is used to find those positions whose values
match or mismatch. When F; and Fj; are matched, R;; = 1, when F; and Fj; are
not matched, R;; = —1, the other cases are ignored. The whole matching result is
expressed by R = {Ry1, Ri2, ..., Rone }-

Then the likelihood ratio L;; is calculated based on each matching result R;;
and equals the probability that image X;; is an s-image (same as the test image)
over the probability being a d-image (different from the test image). Suppose the
prior probability of s-image and d-image is identical, then we have:

P(Yi;)P(Rij|Yij)

po- POGIRy)  — Py P(RylYy) (8)
T P(NylRy) PR P(RyINy)

where Y;; and N;; represent the events that image X;; is an s-image and a d-image,
respectively. Then,

Fd Xy | K )
(9)

” H P Fd z]| iJs )
where F; denotes the d™ feature value coming from the test image, F,;; is the d™
feature value of image X;;. P(Fy;;|Yi;, Fu) is the probability when X;; is an s-image,
the d™ feature value in the test image is Fy;, and the d*® feature value in the feature

vector of the image X; is Fyj. P(F445|Nij, Fu) is the probability when X;; is an
d-image, the d'" feature value in the test image is Fy, and the d™ feature value in
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Step 1. Studied features
0 21792 0 0 0 0 0 0 8.8967 0 0 0 0 2.4122 0 0 0.0617 0

0 0 2.2379 0 0 0 0 12,0695 0 0.0218 0 0 0 9.6202 0 0 0 3.9504

Step 2. Mean p and variance ¢ of studied features

n 0 1.0896 1.1190 0 0 0 0  6.0348 4.4484 0.0109 0 0 0 6.0162 0 0 0.0309 1.9752

o’ 0 11190 1.2522 0 0 0 0 364182 19.7883 0.0001 0 0 0 36.1947 0 0 0.0010  3.9014

Step 3. the probe feature

0 06078  0.6281 0 0o 0
Step 4. Matched and non-matched location
0 1 El 0 0 0 0 El 1 0 0 0 0 1 El 0 [
0 A 1 0 0 0 0 1 El 0 0 0 0 1 E 0 o 0
Step 5. Matching result
\ 10225 07 \ [ \ 0.7 0.7849 \ \ \ \ 07627 07 \ \ \
\ 07 10183 \ \ \ \ 07625 0.7 \ \ \ \ 07627 07 \ \ \
Step 6. The likelihood rati
€p o The ieioodralio 1 —0.7158 1,=0.5494 L,=0.5339
L,=0.7128 L,70.5338 Ly,=0.5339
Step 7. The class likelihood ratio
L=>, L =1.4286 L=Y L =1.0832 L=Y1=1.0678
1 7 1j 2 7 Y 3 7 3
Step 8. @ (odds) & =(L+L,tL)=1.1932

Step 9. Decision

®>1, so the probe image is old L =max(L,,L,,L,) , so the probe image is classified as the first class.

Figure 1. An illustration of the storage and retrieval process for PMM

the feature vector of image X;; is Fy;;. According to the matching results in R,
Equation @D can be decomposed into

Fd1]| R ) (Fd1]| R )
L; (10)
a dle_!?PFle| 1]7 ) H (Fd1]| ijs )

where M and @ are the sets of exponents for the matched and nonmatched non-zero
features, respectively. When d € Q, for s-images, the d' feature of X;; does not
match with the test image, meaning the feature is wrongly copied, i.e.,

(Fdw| s ):(1_ ) (Fdw| i ) (11)

Let n;; ¢ be the number of all mismatched non-zero feature values in image X;;,
then by substituting Equation into Equation , we obtain:

Fdz|1 )
Lij = (1—p)rue gl (12)
dl;\[{P Fdl]|Nz_77Vvd)

When d € M, the d' feature of X;; matches with the test image, for d-images,
the probability of storing value Fy;; satisfies an exponential distribution g(F), as
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shown in Equation . Whereas for s-images, the probability of storing value Fy;;
consists of two parts: the correctly copied probability which satisfies the Gaussian
distribution and the randomly chosen probability which is distributed exponentially,
ie.,

P(Fui|Yij, Fa) = pa(Faij) + (1= p)g(Faiz), (13)
P (FailYis Fa) — pa(Fa) + (1 = p)g(Fuij)
(Fd 2J| 5 ) B g(Fd,ij) (14)

where q(Fy;;) = ﬁezp[ ois (Fuij — 1:)?] and g(Fy,;) = geap(—gFy ;). Then, we
have

Ly =(1-pyrae [T X (Faij) + (1 = p)g(Fais)

deM (Fd ”)
Pa(Fazg) + (1 — p)ge 9Fta
= (1 B e H : ge ng,J (15)
deM

In summary, the likelihood ratio set symbolized as L = {L;;}ic1...cj=1.. ne Can

be obtained by checking against the given test image X; with all studled images
X = {Xij}izl LC=1,...n¢c-

With the above likelihood ratios, whether the test image X; is studied (old) or
not (new) during the learning phase can be determined.

Let ® denote the odds, which equals the probability that the test image X, is
old over the probability being new. Then we have,

P(O)P(R|O)

o POB) _ —m — _ P(RO) 16)
"~ P(N|R) EWPREIN) — P(R|N)
P(R)

where P(R|O) = E; >y P(R[Y;;)P(Yi;)), C' is the number of image categories,
n; is the number of images of the i*" category Z;.

Assume the probability of being an s-image for each class is identical and the

probability of being an s-image for each test image is identical too, i.e. P(Y;;) = é;

Then,
. 11P(R 1
W ZEZ ()

When the studied X;; is an s-image, i.e., event Y;; happens, the other images are
d-image, i.e., N event happens, then

P(R|Y;j) - R1]|Y:L7 H P i'j! |N1]) (18)
i j#g
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Figure 2. Exemplars in Caltech-101 dataset

Finally, we have

o izc: 1 i P(Rij|Yij) i i j2yp P(Rojr| Nivyr)
C = ny \ 5 P(Rij|INij) [Ligir jozy0 P(Riryr | Niryr)
C n;
_ izi P(Ry;|Yy;)
C P T; = P(RUlNZ])
C ng
1 1 «
=o 2l
i=1 j=1
C ny
1 ~ 1
_ L. 19
C ; = ’ 1)

Given a threshold 6, if ® > 6, the test image is judged as ‘studied’ (old), otherwise
‘unstudied’ (new).

3.3 Memory Retrieval with Bayesian Decision

When the test image is studied, the Bayesian decision rule can be adopted to deter-
mine its category, i.e., memory retrieval.

Given a test image X, assume there are two different classes Z, and Z;, 1 < a
and b < C. Assume the posterior probability of being class Z, and Z, are P(Z,|X;)
and P(Zy|X;), 1 < a and b < C, respectively, then according to Bayesian decision
theory,

(20)

Za, if P(Z4X:) > P(Zy|Xy),
X; € )
Zy, otherwise.

Let {Xy;}j=1,. n. and {Xp;}j=1,. n, denote the studied images for the two classes Z,
and Z,, respectively. Hence, for two-category problem, the Bayesian decision rule

.....
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takes the form,

0 P(Za|Xt)
Ly, if P e > 1, 1)

Zy, otherwise.

P(Za|Xt) P
P

P(Z|x;)
S P(R|Yay) P(Yag)
> P(R[Yy;) P(Yy)

(22)

Applying the Bayesian decision rule, we have,

Za, if % 27; La]‘ > nlb Z;‘Lil Lbj7
X, €

. (23)
Zy, otherwise.

Similarly, for multi-category classification problem, given the studied class set Z =
Zy,Zs, ..., Zc, then the final Bayesian decision rule can be defined as

Ll 1 &
X, € Z,, 1fn—a;Laj > n—b;Lbj (24)
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for all b # a, 1 < a, b < C. The storage and retrieval process for PMM is illustrated
in Figure [, where the parameters p, g and 6 are assumed to be 0.1, 0.01 and 1,
respectively. The process includes nine steps:

The storage and retrieval process for PMM
Step 1: Given the studied feature vectors coming from three different classes with
each consisting of two images.

Step 2: Estimate the corresponding means p and variance o2 of the two studied
feature values in each class, respectively.

Step 3: Present the feature vector of the test image whose category needs to be
judged.

Step 4: Find the matched and nonmatched locations between the feature values of
the studied images and the test image according to Equation @, where 1 represents
the matched features, -1 stands for the nonmatched features.

Step §: Given the matching results. For the positions where the value is 0, the

matching result is ignored. For nonmatched positions where the value is -1, the
matching result is set as 1-p, whereas for the matched positions where the value is
1, the matching result is computed according to Equation .

Step 6: Calculate the likelihood ratio L;; by multiplying all the matching results for
each image according to Equation .

Step 7: Calculate the class likelihood ratio based on the summation of all the
ratios of the two studied images from the same category.

Step 8: Compute the odd value ® based on all likelihood values according to
Equation (|19).

Step 9: Make the decision. If the odd value is larger than a certain threshold, the
test image is decided as old, and the Bayesian decision rule is applied to the image
classification, otherwise decided as new.

4 EXPERIMENTS

For the purpose of performance evaluation of the proposed PMM, we conduct the ex-
periments on two benchmark image databases, Caltech-101 [30] and Caltech-256 [31].
The experiments are implemented on MATLAB R2017b. The test environment is a
laptop computer with Intel (R) Core (TM) i7-4770 CPU @3.40 GHz, 16 GB mem-
ory, and Windows10 operating system. First, the parameters of the PMM are tuned
to reach the optimal performance, and then the effects on image classification by
PMM are compared with several image classification methods, including the tradi-
tional support vector machine (SVM) [32] and some state-of-the-art methods such
as VGG-19 [33], ResNet-50 [34], SLRC [35], ICS-DLSR [36], WKRBM [37], Euler-
SRC [38] and NRC [39]. Finally, the memory recognition performance of PMM is
evaluated. All the experimental results are averaged by 10 runs.



1240 L. Xiao, Y. Wang, B. Liu, W. Liu
4.1 Datasets

4.1.1 Caltech-101 Dataset

The Caltech-101 dataset contains a total of 9144 images from 102 classes, one of

which is the background, the number of images for each class ranges from 31 to 800.
Figure [2 shows some exemplars in Caltech-101 dataset.

b) Exemplars of studied images for testing ¢) Exemplars of unstudied images for testing

Figure 4. Exemplars of training images and test images on Caltech-101 dataset

4.1.2 Caltech-256 Dataset

The Caltech-256 dataset contains 257 categories with a total of 30 607 images with
each category more than 80 different images. Figure [3] shows some exemplars in
Caltech-256 dataset.

4.2 Parameters Optimization

As mentioned above, the probabilistic storage process of the PMM can be described
by 4 parameters, two Gaussian distribution parameters g and o, and two other
probability parameters p and g. For the Gaussian distribution parameters p and
o, they can be estimated by the images of each category after feature extraction.
While only the parameters u and g need to be optimized. In the experiment, for each
dataset, we randomly choose 20 categories and 20 images per category for training,
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b) Exemplars of studied images for testing ¢) Exemplars of unstudied images for testing

Figure 5. Exemplars of training images and test images on Caltech-256 dataset

then randomly choose 10 images of each category for hit rate evaluation, meanwhile
randomly choose 20 new categories (10 images of each category) for false alarm
evaluation, that is, the test images include 200 studied images and 200 new categories
images. Some image exemplars are shown in Figure [ and Figure [f} Figure [f] and
Figure [7] demonstrate the comparison results of the recognition performance under
varying parameters g and p. As shown in Figure [f] and Figure [7] for both datasets,
when ¢ = 0.01 and g = 0.02, the hit rates are higher than other g, while when
g = 0.02, the false alarm rates are obviously lower than g = 0.01. When p = 0.1,
the hit rates are higher and the false alarm rates are lower than other p. Accordingly,
the optimal parameters are set as g = 0.02 and p = 0.1 for both datasets.

4.3 Image Classification with PMM

For further validation of the pure classification performance, we compare the PMM
model with SVM [32] and some state-of-the-art methods such as VGG-19 [33],
ResNet-50 [34], SLRC [35], ICS-DLSR [36], WKRBM [37], Euler-SRC [38] and
NRC [39] on both datasets. In the experiment, for each dataset, we randomly
select 20, 40, 80 categories and 30 images per category, including 10 images as train-
ing set and 20 images as test set or 25 images as training set and 5 images as test
set, respectively. The image features are extracted with the trained convolutional
neural network VGG-19 model except the ResNet-50 method, in which the image
features are extracted with the trained residual neural network model. In SVM, the
extracted features are fed into a linear support vector machine (LIB-SVM [32]). As
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shown in Tables [I] and ] the classification performance of PMM has the highest
classification rate in comparison to all the other eight models with both datasets.

The Hit Rate (%)

The Hit Rate Curve

S, ~
G-_0 s
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The False Alarm Rate Curve
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Figure 6. Comparison results of the memory recognition performance under varying pa-
rameters p and g on Caltech-101 dataset
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Figure 7. Comparison results of the memory recognition performance under varying pa-
rameters p and g on Caltech-256 dataset

4.4 Recognition Performance Evaluation

Memory recognition performance means the rate of responding ‘old’ or ‘new’ to
a probe image. To evaluate the effects of recognition, we compare the PMM model
with some machine learning based approaches including VGG-19 [33], ResNet-50 [34]
and NRC [39] on both datasets, which also show good classification performance. In
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Images Methods 20 categories 40 categories 80 categories
10 train/20 test PMM 95.80 94.55 91.65
SVM 91.73 87.94 83.96
VGG-19 92.72 91.34 91.31
ResNet-50 95.10 91.63 91.35
SLRC 90.24 88.97 87.60
ICS-DLSR 89.61 87.82 86.80
WKRBM 88.51 87.31 85.22
Euler-SRC 88.11 87.16 86.77
NRC 93.55 91.47 90.32
25train/btest PMM 97.80 96.40 92.85
SVM 92.80 91.85 88.95
VGG-19 96.52 94.62 92.75
ResNet-50 96.60 94.70 92.92
SLRC 92.81 90.61 88.53
ICS-DLSR 89.91 88.32 87.34
WKRBM 92.51 90.43 89.53
Euler-SRC 91.89 90.13 88.64
NRC 94.11 93.72 91.96

Table 1. Comparison classification performance of PMM with the other eight methods on

Caltech-101 dataset (%)

Images Methods 20 categories 40 categories 80 categories

10 train/20 test PMM 91.83 87.31 84.89
SVM 85.72 80.45 76.65
VGG-19 88.22 87.09 83.56
ResNet-50  91.05 87.23 83.96
SLRC 88.69 86.25 81.81
ICS-DLSR  87.95 85.83 80.62
WKRBM 88.53 84.41 81.38
Euler-SRC  88.43 85.75 82.12
NRC 89.25 86.33 83.31

25 train/5 test PMM 93.78 90.44 86.44
SVM 89.56 88.61 82.81
VGG-19 90.01 89.72 86.15
ResNet-50  92.40 89.95 86.50
SLRC 90.86 87.50 84.50
ICS-DLSR  91.31 88.83 84.08
WKRBM 91.38 87.13 83.66
Euler-SRC  91.85 87.65 84.25
NRC 91.80 88.75 85.75

Table 2. Comparison classification performance of PMM with the other eight methods on

Caltech-256 dataset (%)
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the experiment, for each dataset, we randomly choose 20 categories and 20 images
per category for training, then randomly choose 10 images of each category for
testing, meanwhile randomly choose 20 new categories (10 images of each category)
for testing, that is, the test images include 200 studied images and 200 new category
images. Tables[Bland []list the hit rates and false alarm rates for each of the methods
for both datasets. It can be seen that these machine learning based methods fail to
decide whether a test image is studied or not, whereas the proposed PMM is able
to recognize most of the unstudied images.

Methods PH) P(F)
PMM 96.07 29.28
VGG-19 91.85 100
ResNet-50 93.33 100
NRC 92.25 100

Table 3. Comparison recognition results of the hit rates P(H) (%) and the false alarm
rates P(F) (%) of PMM, VGG-19, ResNet-50 and NRC methods on Caltech-101 dataset

Methods PH) P(F)
PMM 91.67 29.98
VGG-19 87.37 100
ResNet-50 90.33 100
NRC 88.78 100

Table 4. Comparison recognition results of the hit rates P(H) (%) and the false alarm
rates P(F) (%) of PMM, VGG-19, ResNet-50 and NRC methods on Caltech-256 dataset

5 CONCLUSIONS

In this paper, we have presented a probabilistic memory model (PMM) for visual
image storage and recall based on probabilistic inference and Bayesian decision.
We assume that the original visual image feature values extracted by deep CNN are
stored stochastically, with being correctly copied with some probability or randomly
produced conforming to an exponential distribution. The probabilistic generative
model can facilitate the matching process between the test image and the studied
images during learning. Thus, when a new object of a new category is presented,
PMM can judge it as an unknown object instead of identifying it from a studied
category. Additionally, the proposed PMM can also be applied to the classification of
natural multi-category images. We have conducted experiments on Caltech-101 and
Caltech-256 databases to validate the effectiveness of PMM. The results manifest
that PMM achieves better classification performance in image classification tasks
than most state-of-the-art image classification methods. It is worth highlighting
that PMM can also determine the images from an unstudied category, whereas the
other methods fail.
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The current PMM can imitate the human brain memory for visual images learn-
ing to some extent and offer a new way for visual images categorization, however,
there are also some limitations to PMM. First, the probabilistic model parameters
are chosen experimentally and might be influenced by the image datasets used. Sec-
ondly, the matching rule between the test feature vector and the learned feature
vectors seems simple and might not be consistent with the way of humans memo-
rizing visual images. These two issues will remain for further investigation in our
future work.
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