
Computing and Informatics, Vol. 39, 2020, 1172–1202, doi: 10.31577/cai 2020 6 1172

EXPLANATION OF SIAMESE NEURAL NETWORKS
FOR WEAKLY SUPERVISED LEARNING

Lev Utkin, Maxim Kovalev, Ernest Kasimov

Peter the Great Saint Petersburg Polytechnic University (SPbPU)
Saint Petersburg, Russia
e-mail: {lev.utkin, maxkovalev03, kasimov.ernest}@gmail.com

Abstract. A new method for explaining the Siamese neural network (SNN) as
a black-box model for weakly supervised learning is proposed under condition that
the output of every subnetwork of the SNN is a vector which is accessible. The
main problem of the explanation is that the perturbation technique cannot be used
directly for input instances because only their semantic similarity or dissimilarity
is known. Moreover, there is no an “inverse” map between the SNN output vector
and the corresponding input instance. Therefore, a special autoencoder is proposed,
which takes into account the proximity of its hidden representation and the SNN
outputs. Its pre-trained decoder part as well as the encoder are used to reconstruct
original instances from the SNN perturbed output vectors. The important features
of the explained instances are determined by averaging the corresponding changes
of the reconstructed instances. Numerical experiments with synthetic data and with
the well-known dataset MNIST illustrate the proposed method.

Keywords: Interpretable model, explainable AI, Siamese neural network, embed-
ding, autoencoder, perturbation technique

Mathematics Subject Classification 2010: 68T10

1 INTRODUCTION

Machine learning models, especially, deep models play an important role in making
prediction and decision for many applications. For example, computer-aided diag-
nosis systems using machine learning models for the diagnosis of various diseases
have become a key element in medical imaging and personalized medicine over the

Explanation of Siamese Neural Networks 1173

past few years. However, many modern efficient machine learning techniques are not
easily explainable, they are black boxes, i.e., they do not explain their predictions in
a way that humans could understand. This may be an obstacle for incorporating the
machine learning models into applied areas like medicine. Often, humans are unable
to effectively use predictions provided by the machine learning models without their
interpretation and explanation. As a result, a lot of models have been developed to
explain predictions of the deep classification and regression algorithms, for example,
deep neural network predictions [1].

A clear taxonomy for understanding the diverse forms of explanations is pro-
vided by Arya et al. [2]. Since a lot of machine learning models are black boxes,
then we mainly consider the so-called post-hoc explanations which involve auxiliary
models to explain the black-box models after it has been trained. These auxil-
iary or explanation models can also be divided into three types: example-based,
local and global models. According to the example-based approach, an instance
from the training set is selected, which could explain the behavior of a black-box
model. One of the methods implementing the example-based explanations is near-
est neighbors [3]. Local or prediction-level models focus on explaining how they
make individual predictions, namely, what features lead to the individual prediction
(see [4] for a definition). Explanations are derived by fitting an interpretable model
locally around the considered instance. Global or dataset-level models explain im-
portance of features across a dataset or a population [5]. They explain the global
relationships between features and the model predictions.

A key component of general explanations for the local models as well as for
the global models is the contribution of individual input features. A prediction is
computationally explained by assigning to each feature a number which denotes its
impact on the prediction.

One of the important machine learning tasks is to compare pairs of objects,
for example, pairs of images, pairs of data vectors, etc. The task can be solved
in the framework of the distance metric learning approach [6, 7, 8], which is based
on computing a corresponding pairwise metric function that measures a distance
between data vectors or a similarity between the vectors. The basic idea behind
the metric learning solution is that the distance between similar objects should be
smaller than the distance between different objects.

A powerful implementation of the metric learning dealing with non-linear data
structures is the so-called Siamese neural network (SNN) [9, 10]. The SNN con-
sists of two identical neural subnets sharing the same set of weights. The basic
idea behind the SNN is to train the subnets to compare a pair of feature vectors
in terms of their semantic similarity or dissimilarity. The SNN realizes a non-linear
embedding of data with the objective to bring together similar instances and to
move apart dissimilar instances. In a simplest case, when the training set is la-
belled, i.e., every instance belongs to a class, then two instances are similar if they
belong to the same class. Two instances are dissimilar if they belong to differ-
ent classes. At the same time, the SNN can be applied to the weakly supervised
case when there are no labels of training instances, but there is only a side infor-

1174 L. Utkin, M. Kovalev, E. Kasimov

mation of relationship of instances, i.e., of semantic similarity or dissimilarity of
instances.

An approach to explain the Siamese neural network (SNN) as a black-box model
is proposed. The approach is agnostic to the black-box model. This means that we
do not know or do not use any details of the black-box model. Only its input and the
corresponding output are used for training the explanation model. We also assume
that the explained SNN is regarded as the black-box model in the sense that we
know input feature vectors and embedded vectors, but we do not know peculiarities
and tuning parameters of the SNN.

At the same time, to the best of our knowledge, there are no appropriate algo-
rithms for explaining the SNN which is used as a weakly supervised learning model.
Therefore, we aim to solve this explanation problem and to propose the correspond-
ing approach which allows us to get subsets of features explaining similarity and
dissimilarity of certain instances.

First of all, let us consider main difficulties of explaining the SNN. They are the
following:

1. The input vectors (instances) are semantically similar or dissimilar. Therefore,
direct distances between the input feature vectors do not have a sense. Seman-
tically dissimilar vectors may be closer to each other than semantically similar
vectors.

2. The perturbation technique cannot be used directly for input instances of the
SNN due to the possible large dimensionality of input data.

3. Prototypes cannot be defined in case of weakly supervised data. Moreover,
prototypes defined as mean values of the input vectors also do not have a sense
because the input vectors may be too different. They can be defined only by
using the output vectors (embeddings).

4. There is no an “inverse” map between the embedded vectors and the correspond-
ing input feature vectors, i.e., we do not know subsets of features in the input
vector corresponding to some features of the embedded vector.

Taking into account the fact that the distance measurement has a sense only for
the SNN output vectors, direct ideas for explaining the SNN are the following:

1. to select a predefined number of features from a pair of embeddings of semanti-
cally similar instances, which have the smallest distance between each other;

2. to select a predefined number of features from a pair of embeddings of seman-
tically dissimilar instances, which have the largest Euclidean distance between
each other;

3. to perturb the selected features in a specific way;

4. to reconstruct the obtained perturbation in order to find which features of re-
constructed instances are changed in accordance with the perturbation of em-
beddings;

Explanation of Siamese Neural Networks 1175

5. maximally changed features of reconstructed instances explain similarity or dis-
similarity of the considered original instances.

These ideas could be viewed as an approach for developing a SNN explanation
method, but a bottleneck of the approach is the reconstruction of instances from
the corresponding embeddings. Our experiments have shown that it is very difficult
to train a reconstruction neural network, having the embedded vectors as its input
and the original instances as its output, due to a large difference between the in-
stance dimensionality and the embedded vector size. Therefore, we propose to apply
an autoencoder (AE) of a special type in order to overcome the above difficulty and
to help for reconstructing the instances from their embeddings. The proposed AE is
trained in a way different from the standard AE. In contrast to the standard AE, it
takes into account the proximity of its hidden representation and the SNN outputs
by means of extending the corresponding loss function. The decoder part of the pre-
trained AE can be regarded as the reconstruction neural network after its additional
training by using the SNN outputs. Our numerical experiments have demonstrated
that this scheme allows us to reconstruct images (instances) with a high accuracy.
By perturbing the SNN outputs in a special way and using the trained decoder of the
AE, we can consider how these perturbations impact on the reconstructed instances.

The paper is organized as follows. Related work concerning with available ex-
planation models and the SNN applications is considered in Section 2. A detailed
description of the SNN architecture is given in Section 3. Main ideas of the proposed
SNN explanation method are discussed in Section 4. Details of the AE implemen-
tation for improving the reconstruction of original images from the corresponding
embeddings are given in Section 5. A scheme of the used perturbation technique
and the instance reconstruction is studied in Section 6. Numerical experiments
illustrating the proposed method on the basis of the synthetic dataset and the well-
known MNIST dataset are given in Section 7. Concluding remarks are provided in
Section 8.

2 RELATED WORK

2.1 Explanation Models

There are a lot of approaches to locally explain black-box models. One of the very
popular methods is the Local Interpretable Model-agnostic Explanations
(LIME) [11]. The main intuition of LIME is that the explanation may be derived
locally from a set of synthetic instances generated randomly in the neighborhood of
the instance to be explained such that every synthetic instance has a weight accord-
ing to its proximity to the explained instance. Several modifications of LIME have
been proposed due to success and simplicity of the method, for example, ALIME [12],
NormLIME [13], DLIME [14], Anchor LIME [15], LIME-SUP [16], LIME-Aleph [17],
SurvLIME [18]. Garreau and Luxburg [19] proposed a thorough theoretical analysis
of LIME.

1176 L. Utkin, M. Kovalev, E. Kasimov

Another very popular method is the SHAP [20] and its modifications which take
a game-theoretic approach by optimizing a regression loss function based on Shapley
values [21, 22, 23, 24]. Alternative methods are influence functions [25], a multiple
hypothesis testing framework [26], and many other methods.

A large part of methods can be united as counterfactual explanations [27]. They
try to answer the question: “Why is the outcome Y obtained instead of Z?”. A sim-
plest approach to answer the question is to find the nearest training instance be-
longing to another class. As shown by Moore et al. [28], this approach strongly
depends on the size and quality of the considered training set, and it cannot find
a counterfactual that is not explicitly in the set. Therefore, a lot of new methods of
the counterfactual explanation have been developed [29, 30, 31, 32, 33, 34, 35].

Dhurandhar et al. [36, 37] extended the counterfactual explanation by introduc-
ing the so-called contrastive explanation methods which produce explanations of the
form [36]: “An input feature vector is classified in class y because features fi1 , . . . ,
fik are present and because features fj1 , . . . , fjl are absent”.

A large part of explanation methods uses a prototype technique which selects
representative instances from training data, for instance, from instances belonging
to the same class. These instances are called prototypes [38, 39]. The explanation
methods using this technique determine how an explained instance is similar to
a prototype.

It is important to point out also that most aforementioned explanation methods
starting from LIME [11] are based on perturbation technique [40, 41, 42, 43, 44,
45]. These methods assume that contribution of a feature can be determined by
measuring how prediction score changes when the feature is altered [46]. Strumbel
and Kononenko [20] propose to perturb the input feature vectors and to observe
how changes of the input features correspond to changes of the outcome. They rely
on an assumption that a feature is important and strongly impacts the outcome
if its change sufficiently changes the outcome. Perturbation techniques are model-
agnostic, i.e., perturbations can be applied to a black-box model without any need
to access the internal structure of the model. However, the perturbation technique
may meet computational difficulties when perturbed input instances have a lot of
features.

Several comprehensive surveys devoted to various explainable methods can be
found in literature [47, 48, 49, 1, 50]. A very interesting critical review of main
assumptions and statements accepted in explaining the black-box machine learning
models is provided by Rudin [51]. The review [51] considers in detail how to avoid
mistakes and incorrect assumptions in explanation models. The corresponding soft-
ware packages [52] are developed in order to simplify the explanation process for
various machine learning models.

2.2 Metric Learning and Siamese Neural Networks

A detailed description of the metric learning approaches is represented by Le Ca-
pitaine [53] and by Kulis [7]. One of the most important and popular approaches

Explanation of Siamese Neural Networks 1177

is to use the Mahalanobis distance as a distance metric which assumes some linear
structure of data. However, this assumption significantly restricts the applicability
of the Mahalanobis distance for comparing pairs of objects. Therefore, in order to
overcome this restriction, the kernelization of linear methods is one of the possi-
ble ways for solving the metric learning problem. Bellet et al. [6] review several
approaches and algorithms to deal with nonlinear forms of metrics. In particular,
these are the support vector metric learning algorithm provided by Xu et al. [54],
the gradient-boosted large margin nearest neighbors method proposed by Kedem
et al. [55], the Hamming distance metric learning algorithm provided by Norouzi
et al. [56]. Various methods and applications of the metric learning can be found
in [57, 58, 59, 60, 61, 62, 54, 63].

SNNs realize a non-linear embedding of data [64] and were introduced in 90s by
Bromley and LeCun to solve signature verification as an image matching problem [9].
SNNs have been widely spread in solving many application problems. In particular,
they are applied to problems of image recognition and verification [10, 65, 66, 67, 68,
69], of speaker verification [70], of visual tracking [71, 72], of novelty and anomaly
detection [73, 74], and to many different theoretical and practical problems [75, 76,
77, 78]. An important application of the SNN is one-shot learning [79] or few-shot
learning [80, 81, 82, 83], when it is supposed that there are only a few training
instances in some classes for training. A more detailed and general definition of the
one-shot and few-shot learning is given in [84].

It should be noted that the above applications present only a small part of all
applications of the SNNs. Many modifications of SNNs have been also developed,
including fully-convolutional SNNs [85], SNNs combined with a gradient boosting
classifier [86], SNNs with the triangular similarity metric [8].

3 SIAMESE NEURAL NETWORKS

Let S = {(xi,xj, zij), (i, j) ∈ K} be a dataset consisting of N pairs of feature
vectors xi ∈ Rm and xj ∈ Rm such that a binary label zij ∈ {0, 1} is assigned
to every pair (xi,xj). If both feature vectors xi and xj are semantically similar,
then zij takes value 0. If the vectors are semantically dissimilar, i.e., they corre-
spond to different classes, then zij takes value 1. This implies that the training
set S can be divided into two subsets: a similar or positive set with zij = 0 and
a dissimilar or negative set with zij = 1. It should be noted that knowledge of
classes is not necessary if we have only weak information about similarity of pairs
of instances.

The main idea of using the SNN can be formulated as follows. If there are two
feature vectors xi and xj being dissimilar, then the Euclidean distance d(xi,xj) be-
tween these feature vectors should be as large as possible. However, this may be
not a case in practice. For instance, if to consider the medicine application, then
tuberculosis and adenocarcinoma in the lung cancer diagnosis may have similar com-
puted tomography patterns, but these are quite different diseases. Adenocarcinoma

1178 L. Utkin, M. Kovalev, E. Kasimov

is cancer, but tuberculosis is not. At the same time, different forms of lung cancer
may look quite differently, for instance, lepidic and squamous cell carcinoma. In
this case, the Euclidean distance d(xi,xj) may be rather large, but it should be
as small as possible. In other words, the Euclidean distance d(xi,xj) often does
not correspond to semantic similarity of objects. Therefore, we have to consider
not the distance between feature vectors themselves, but the distance between new

feature representations or embeddings denoted as hi = (h
(i)
1 , . . . , h

(i)
D) ∈ RD and

hj = (h
(j)
1 , . . . , h

(j)
D) ∈ RD, which fulfil the conditions of distances and similar-

ity, i.e., the Euclidean distance d(hi,hj) between vectors hi and hj should be as
small (large) as possible for a pair of objects with zij = 0 (zij = 1). At that,
every vector hi is a map f of xi to a low-dimensional space, i.e., hi = f(xi)
and hj = f(xj). The function f is implemented by every subnetwork in the
SNN.

A standard architecture of the SNN given in the literature (see, for example, [10])
is shown in Figure 1. It consists of two identical neural subnets which are trained
to compare a pair of feature vectors in terms of their semantic similarity or dissim-
ilarity.

Figure 1. The architecture of the SNN

It should be noted that there are many specific loss function for training the
SNN [6, 53, 8], which solve the problem of the object comparison. One of the
functions is the contrastive loss function defined as

l(xi,xj, zij) =

{
‖hi − hj‖22 , zij = 0,

max(0, τ − ‖hi − hj‖22), zij = 1,
(1)

where τ is a predefined threshold.

Hence, the total error function for minimizing is defined as

LSiam(W) =
∑

(i,j)∈K

l(xi,xj, zij) + µR(W). (2)

Explanation of Siamese Neural Networks 1179

Here R(W) is a regularization term added to improve generalization of the neural
network; W is the matrix of the neural subnet parameters; µ is a hyper-parameter
which controls the strength of the regularization.

It is assumed below that the outputs hi and hj are known for every pair (xi,xj).

4 A GENERAL IDEA FOR EXPLAINING THE SNN

First of all, we have to define what is the meaning of the semantically similar and
dissimilar instances from the interpretation point of view. In other words, we have
to explain why two instances xi and xj are semantically similar or dissimilar, i.e.,
which features of the instances make them similar or dissimilar. This is not a trivial
question because the similarity of two instances and the distance between them in
the input space may be not correlated. Therefore, it is difficult to apply various
techniques, for example perturbation schemes, to the input examples. However,
the similarity and the distance can be considered in the output space, where the
distance between embeddings hi and hj corresponding to similar examples is sup-
posed to be rather small, and the distance between embeddings corresponding to
dissimilar examples is large. This implies that there are features of the vectors hi

and hj, which determine the similarity of input instances by comparing the corre-
sponding distances between these features. These features can be called important
features.

In order to explain the important features defining the semantic similarity and
dissimilarity, we consider a simple example. Suppose that embeddings consist of two
features h1 and h2, i.e., D = 2. Three 2-dimensional vectors are shown in Figure 2
in the form of small circles and a triangle. It can be seen from Figure 2 that the first
and the second points correspond to semantically similar instances because they are
close to each other. It is obvious that the first and the third points are semantically
dissimilar because they are far from each other. The semantic similarity of points 1
and 2 is defined by feature h2 because distance dsimilar is smallest. This implies
that the second feature can be viewed as important for semantic similarity of two
instances. It should be noted that points 1 and 2 are close to each other also due
to feature h1. However, its impact is smaller in comparison with the impact of
feature h2. We can say the same about the first and the third points. They are
dissimilar due to feature h1 because the large distance ddissimilar defines the semantic
dissimilarity of the instances. This implies that the first feature can be viewed as
important for semantic dissimilarity of instances 1 and 3.

In sum, we have a rule for determining important features of embeddings, which
define semantic similarity and dissimilarity of input examples. The main problem is
that we do not know how these important features of embeddings are connected with
the corresponding original instances because there is no an “inverse” map from em-
beddings to input instances. Therefore, in order to solve the interpretation problem,
we have to construct this “inverse” map and to find features of the input instances
which correspond to important features of embeddings. If we had such the “in-

1180 L. Utkin, M. Kovalev, E. Kasimov

Figure 2. Pairs of semantically similar (1 and 2) and dissimilar (1 and 3) instances whose
embeddings consist of two features (h1 and h2)

verse” map, then the problem would be solved by perturbing the important features
of embeddings and analyzing the corresponding changes of the input instances.

One of the ways for implementing the “inverse” map is to train a reconstruc-
tion neural network with embeddings h as inputs and the corresponding input in-
stances x as outputs. However, our experiments have shown that this reconstruc-
tion network is overfitted and does not allow to correctly reconstruct the input
instances especially when the number of training instances is not large and the in-
stances x are images of a high dimensionality. It turns out that it is simpler to
train an AE and then to use its pre-trained decoder part for additional training
and for reconstruction. Therefore, our idea is to train the AE whose inputs are
instances x, its code (the hidden representation) is close to the embedding vector h.
The trained decoder part of the AE can be used as a pre-trained reconstruction
neural network which transforms embeddings h into instances x. Moreover, this
reconstruction neural network can be additionally trained by using embeddings h
and instances x.

Having important features of vectors hi and hj and the trained reconstruction
neural network, we perturb the features in accordance with the following rules. If the
pair of similar instances is analyzed, then the features are perturbed to reduce the
distance between these important features. The perturbation of important features
of dissimilar instances is carried out to increase the distance between them. Changes
of the reconstructed instances produce the corresponding heatmaps explaining sim-
ilarity or dissimilarity of two input instances.

Perturbations aim at describing how the output of the explained model changes
when one or more input features are perturbed. The intuition of the technique
is that the more a model’s response depend on a feature, the more predictions or
some output score change with the corresponding feature changes. The perturbation
scheme can be regarded as one of the interesting approaches to the model interpre-

Explanation of Siamese Neural Networks 1181

tation development and to the explainer evaluation [44]. Suppose there is a feature
vector x ∈ Rm that is slightly perturbed to a new vector x + δ, where δ is a small
perturbation that does not alter the meaning of the data point, i.e., the vector x + δ
remains the similarity relationship with other vectors from the training set without
changes. The perturbation scheme can be also viewed in the framework of a sensitiv-
ity analysis method which aims to consider how the output of the explainable model
changes when one or more input features are perturbed. Perturbation methods have
the advantages of a straightforward interpretation, as they are a direct measure of
the marginal effect of some input features to the output [40]. Moreover, pertur-
bation schemes can be simply implemented, and they can be applied to post-hoc
models.

Finally, the proposed method for explaining the SNN can be represented by
means of an algorithm consisting of two parts. The first part aims to train the
additional AE with a special loss function, which plays a partial role of the ex-
plainer. It aims to reconstruct the input instances from the training set and to
take into account the SNN output. The second part is to train the decoder of the
pre-trained AE, to perturb the embedding vectors at the SNN output, to use the
decoder in order to reconstruct the perturbed embeddings and to observe the fea-
tures of the reconstructed vectors which are changed due to the perturbation of
embeddings.

Let us consider every part of the above algorithm in detail. Suppose that we
have a trained SNN as a black-box model. For every input instance xi, we have
the corresponding embedding vector hi ∈ RD such that hi = f(xi). For the sake of
clarity, we will call instances xi as images whereas the embeddings will be called as
vectors.

5 PRE-TRAINING OF THE AE

Suppose that inputs of the proposed AE are images xi. Then we expect to get
reconstructed images x∗i as its outputs. The corresponding loss function Lrecon AE

for training the AE is defined, for example, as follows:

Lrecon AE(W,xi,x
∗
i) =

n∑
i=1

‖xi − x∗i ‖
2
2 . (3)

A regularization term is not written here because it will be used later. In order
to use the pre-trained decoder for reconstruction of vector hi ∈ RD, the AE has to be
trained in a special way. First of all, the length of a part of its hidden representation
has to coincide with the length of vector h, which is equal to D. Second, the loss
function should take into account proximity of vectors hi and the corresponding
vectors of the AE hidden representation denoted as bi ∈ RD, i.e., we need to have
the vectors bi in the hidden layer coinciding with the vectors hi obtained by means
of the SNN. Therefore, we propose to change the loss function for training the AE
by adding the loss function Lclose in the following way:

1182 L. Utkin, M. Kovalev, E. Kasimov

Lautoen(W) = γLrecon AE(W,xi,x
∗
i) + µLclose(W,hi,bi) + λR(W)

= γ

n∑
i=1

‖xi − x∗i ‖
2
2 + µ

n∑
i=1

‖hi − bi‖22 + λR(W). (4)

Here R(W) is a regularization term, λ is a hyper-parameter which controls the
strength of the regularization; W is the set of the neural network weights; γ and µ
are parameters that control the interaction of the loss function terms.

Figure 3. The autoencoder training scheme

One of the problems here is a case when D is small. Hence, the AE may
provide the unsatisfactory reconstruction if the hidden representation is of a too
small size. Therefore, for improving the presented architecture, it is proposed to
enlarge the hidden representation of the AE, i.e., the vector bi by means of its
concatenation with a vector ai ∈ RA. As a result, we get the vector ci = (bi||ai) ∈
RD+A, where (bi||ai) denotes the concatenation operation of vectors bi and ai. The
enlarged embedding allows us to improve the decoder training. In the same way,
we later enlarge the outputs of the SNN, which contain vectors (hi||ai) ∈ RD+A

of the same dimensionality. Before training the AE, we assume that the vector
ai concatenated with the SNN output is arbitrary, for example, with zero-valued
elements.

A scheme of the first part of the explanation algorithm is shown in Figure 3. It
can be seen from the scheme that the AE is trained by using embedding vectors hi

from subnetworks of the SNN and the input images xi.

Explanation of Siamese Neural Networks 1183

The pre-trained decoder part as well as the trained encoder part of the AE can
be used for additional training and for reconstruction of the perturbed embeddings
that is for implementing the second part of the algorithm. The use of the AE
allows us to significantly simplify the training process and to get acceptable vector
reconstructions. It should be noted that an architecture of the encoder differs from
the architecture of a subnetwork of the SNN because we consider the SNN as a black
box whose architecture is unknown.

6 PERTURBATION OF EMBEDDINGS
AND THE INSTANCE RECONSTRUCTION

The second part of the explanation algorithm, including the perturbation and the
image reconstruction is shown in Figure 4.

Figure 4. A scheme of the second part of the explanation algorithm

The pre-trained decoder can be again trained by using only vectors hi from the
SNN output and vectors ai from the AE encoder output. The concatenated vector
(hi||ai) is the decoder input, the reconstructed image x#

i is the decoder output. The
loss function is the standard Euclidean distance between images x#

i and xi. It is
important to note that the vector ai is computed by means of the encoder part of
the AE. The set of all vectors ai corresponding to all training instances could be
separately stored in order to avoid the repeated use of the encoder. However, this
can be done only for training. When we have new instances, the encoder has to
be used. If the SNN outputs are not so small, then the AE hidden representation

1184 L. Utkin, M. Kovalev, E. Kasimov

can have the same size as vectors hi. In this case, A = 0 and vectors ai as well as
the encoder are not needed, and the scheme of the second part of the explanation
algorithm is simplified.

For a new pair of images xi and xj, we find vectors hi and hj as outputs of
the SNN. If the images are semantically similar, then we find a predefined number
of important features in hi and hj with smallest distances. There are different
ways for choosing important features. The first way is just to define the number of
important features s < D such that the index set J ⊆ {1, . . . , D} consists of s indices

corresponding to smallest distances between features h
(i)
k and h

(j)
k , k = 1, .., D. In

this case, the value of s can be regarded as a tuning parameter. The second way is to
define a threshold α of the relative Euclidean distances rk ∈ [0, 1] between important
features of two vectors hi and hj. It is supposed that features are important if there
holds

rk =

∣∣∣h(i)k − h
(j)
k

∣∣∣
maxl=1,...,D

∣∣∣h(i)l − h
(j)
l

∣∣∣ ≤ α, k = 1, . . . , D. (5)

Then the index set J of important features is defined as

J = {k : rk ≤ α}. (6)

In the same way, we define the rule for important features of the semantically
dissimilar images. In particular, features in hi and hj with largest distances can be
viewed ad important features.

By having a set of important features, we can perturb them to study how the
important features of the SNN outputs impact on the original images xi and xj.
The trained decoder is used to reconstruct images from hi + δi and hj + δj and to

investigate how features of the reconstructed images x#
i and x#

j are changed. Here
δi and δj are the perturbation vectors such that indices of their non-zero elements
are from the index set J , other elements are equal to zero. In sum, we have the
embeddings hi and hj, the reconstructed images x#

i and x#
j , the index set J of

important features of embeddings. Important features as an example (two features)
in hi and hj are shown by dashed cells in Figure 4. The perturbed vectors hi and
hj are fed to the corresponding decoders in order to get the reconstructed images

x#
i and x#

j which depends on perturbations.

Suppose that the perturbation δ of an embedding leads to the changed ith feature
x#i (δ) of the reconstructed image x#. After generating the random vector δ many
times, say N times, the mean value of the ith feature changes is defined as

Ti = N−1
N∑
j=1

(
x#i (δj)− x#i

)
. (7)

It should be noted that Ti may be positive as well as negative. If we consider
the visual interpretation, then all values of Ti are scaled to be in interval [−1, 1].

Explanation of Siamese Neural Networks 1185

Finally, we compute absolute values T ∗i of Ti in order to visualize the largest changes.
The heatmaps explaining the considered instances are determined from condition
T ∗i ≥ β, i.e., they have largest changes of the reconstructed instance. Here β is
a threshold of relative changes of features, which can be regarded as another tuning
parameter.

The perturbation vectors are randomly generated in the following way. Suppose
that the index set J consists of s elements. First, we generate the vector δ in the
s-sphere defined as B = {δ ∈ Rs : |δ| = R} with some predefined radius R. There
are several methods for the uniform sampling of points δ in the s-sphere with the
unit radius R = 1, for example, [87, 88]. Then every generated point is multiplied by
R. Moreover, we take vectors δ only from a part of the s-sphere. This part is defined
by a hyper-quadrant, which the second embedding hj is located in, under condition
that the vector hi is in the origin of coordinates. The radius is defined as a portion
of the Euclidean distance d(hj,hi) between hj and hi, i.e., R = q · d(hj,hi), where
q is also a tuning parameter.

7 NUMERICAL EXPERIMENTS

7.1 A Synthetic Example

One of the questions of the SNN explanation is to understand how the instances may
be semantically similar or dissimilar and how to explain the important features of
the instances, which are responsible for the semantics. This question is not trivial.
Indeed, we simply and logically understand the similarity or dissimilarity at the
embedding level because they depend on the distance between vectors. However,
the similarity or dissimilarity of images are semantic and, therefore, not obvious.
In order to see what the similarity and dissimilarity mean for images, we consider
a synthetic example. We consider two types of randomly generated images: triangles
and circles. Sizes of triangles and circles may be different and random. All images
are of 28× 28 pixels.

The SNN as well as the AE are implemented in Python by using the Keras
package with Tensorflow. They are trained on the generated set of images with
circles and triangles. The length of the hidden representation layer of the AE is 41,
i.e., vector h consists of 32 features (D = 32), and vector a is of the length 9. The
hyper-parameter µ, which controls the strength of the regularization is 0.02. The
loss function for training the SNN is of the form:

l(xi,xj, zij) =

{ (
‖hi − hj‖22 − ω

)2
, zij = 0,(

max(0, τ − ‖hi − hj‖22)
)2
, zij = 1.

(8)

Here ω is an intraclass margin which is introduced to diverse instances of the
same class. It can be seen from (8) that the loss function differs from (1). The
function (8) is used because embeddings of similar instances are too close to each

1186 L. Utkin, M. Kovalev, E. Kasimov

other. A simple way to make them different is to introduce the margin ω which sets
the minimal distance between embeddings equal to ω.

Numerical results are shown in Figures 5, 6, 7, 8 such that every figure contains
numerical results of 6 experiments depending on the value of important features s for
perturbation. Every experiment is represented by means of four pictures or two pairs
of pictures. The first pair (vertically) consists of original images, whose similarity
or dissimilarity has to be explained, overlapped by the corresponding heatmaps.
The second pair of pictures is the heatmaps of features explaining the similarity or
dissimilarity. It is important to note that the heatmaps are obtained by using the
pre-trained autoencoder.

Figure 5. Examples of semantically similar images (triangles) and the explanation
heatmaps for s = 2, 4, 6, 8, 10, 12

It can be seen from Figure 5 that the semantic similarity of triangles is defined
starting from angles of the triangles (see the corresponding pictures of heatmaps by
s = 2). This is a very interesting result. Indeed, the triangles are intuitively similar
by angles. Sides of triangles also play some role in explanation, but they may be
like some parts of small circles due to the low resolution of images. It can be seen
from pictures by increasing the value of s = 4, 6, 8. We get sides of triangles as
important features. It is interesting to note that insides of the triangles almost do
not participate in the explanation though these are solid on the original images and
differ from the background color. It is also interesting to see that that increasing of
s does not necessarily leads to increasing the important features of the reconstructed
images. For example, the number of important features by s = 12 is less than by

Explanation of Siamese Neural Networks 1187

s = 10. This is due to the fact that some new perturbations mask changes the
previous perturbations.

Figure 6. Examples of semantically similar images (circles) and the explanation heatmaps
for s = 2, 4, 6, 8, 10, 12

When we look at Figure 6, it can be seen that the circles are like rectangles
with chamferings due to the low resolution. It is also an interesting case, because
the similarity is observed mainly in chamferings, and it covers sides only partially
by increasing s.

But the most interesting cases are shown in Figures 7 and 8, where the semantic
dissimilarity is studied. Two cases are studied:

1. The original triangle is small and the circle is large.

2. The original triangle is large and the circle is small.

It is clearly seen from the first pictures that the dissimilarity is explained by angles
of triangles and by chamferings of circles. Indeed, triangles as well as “rectangles-
circles” have sides as similar elements. They do not explain the semantic dissim-
ilarity. Only angles of triangles and chamferings are really different. The sides of
triangles and the whole circles become important only by large values of s. We
intentionally consider the images of the low resolution in order to see some pecu-
liarities of explaining the “wrong” rectangle and the “wrong” circle. It is again
important to point out that insides of the pictures do not participate in the expla-
nation.

1188 L. Utkin, M. Kovalev, E. Kasimov

Figure 7. Examples of semantically dissimilar images (large circles and small triangles)
and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

Figure 8. Examples of semantically dissimilar images (small circles and large triangles)
and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

Explanation of Siamese Neural Networks 1189

Architectures of the SNN and the AE are not provided for these numerical
examples because they are stated to understand the meaning of the similarity and
dissimilarity explanations. However, the corresponding architectures for explaining
results obtained on the MNIST dataset are given below.

7.2 MNIST

The proposed explanation method is studied by applying the MNIST dataset which
is a commonly used large dataset of 28x28 pixel handwritten digit images [89]. It
has a training set of 60 000 instances, and a test set of 10 000 instances. The digits
are size-normalized and centered in a fixed-size image. The dataset is available at
http://yann.lecun.com/exdb/mnist/. If two digits from the MNIST dataset are
identical, i.e., they belong to the same class, then they are semantically similar. If
two digits are different, then they are semantically dissimilar.

7.3 Architecture of Neural Networks

Layer Dimension Activation

Input 28× 28 –

Conv1 28× 28× 4 ReLU

Pooling1 14× 14× 4 –

Flatten 784 –

Dense1 128 ReLU

Output (Dense2) 20 Tanh

Table 1. An architecture of every subnetwork of the SNN for the MNIST dataset

Layer Dimension Activation

Input 28× 28 –

Conv1 28× 28× 8 ReLU

Pooling1 14× 14× 8 –

Conv2 14× 14× 16 ReLU

Pooling2 7× 7× 16 –

Flatten 784 –

Hidden 26 Tanh

Dense 784 ReLU

Reshape 7× 7× 16 –

Up-Sampling 14× 14× 16 –

Conv3 14× 14× 8 ReLU

Up-Sampling 28× 28× 8 –

Output (Conv4) 20 Sigmoid

Table 2. An architecture of the AE for the MNIST dataset

http://yann.lecun.com/exdb/mnist/

1190 L. Utkin, M. Kovalev, E. Kasimov

Figure 9. Examples of semantically similar images of digits 4 from the MNIST dataset
and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

Figure 10. Examples of semantically similar images of digits 5 from the MNIST dataset
and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

Explanation of Siamese Neural Networks 1191

Figure 11. Examples of semantically dissimilar images of digits 3 and 5 from the MNIST
dataset and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

Figure 12. Examples of semantically dissimilar images of digits 7 and 9 from the MNIST
dataset and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

1192 L. Utkin, M. Kovalev, E. Kasimov

An architecture of the SNN for experiments with the MNIST dataset is shown
in Table 1. Every subnetwork is implemented as a convolutional network having
a convolutional layer (Conv1), a max pooling layer (Pooling1), flatten layer (Flat-
ten), which transforms a two-dimensional matrix into a vector, two dense layers
(Dense1 and Dense2), which are represented by fully connected networks. Parame-
ters of the loss function (8) are µ = 0.0005, ω = 0.5, τ = 3.

An architecture of the AE is shown in Table 2. The encoder part consists
of two convolutional layers (Conv1 and Conv2), two max pooling layers (Pooling1
and Pooling2), flatten layer (Flatten). The decoder part consists of a dense layer
(Dense), a reshape layer to change dimensions (Reshape), two upsampling layers
and two convolutional layers (Conv3 and Conv4).

The length of the hidden representation layer is 26, i.e., vector h consists of 20
features (D = 20), and vector a is of the length 6.

7.4 Results

Numerical results illustrating the explanation method on the MNIST dataset are
shown in Figures 9, 10, 11, 12. The figures have the same structure as Figures 5, 6,
7, 8, i.e., every figure contains numerical results of 6 experiments depending on the
value of important features s for perturbation.

Figures 9 and 10 show semantically similar digits 4 and 5, respectively. It can
be seen from pictures in Figure 9 that the selected features indicate peculiarities
of the digit 4, which differ from other digits. In particular, the important features
are located at the upper part of the digit and its middle part. The same can be
said about the digit 5 shown in Figure 10. The important features are concen-
trated at the middle part of the digits and partially select their upper curve. We
again see from Figures 9 and 10 that the semantic similarity of pairs of original
images is clearly exhibited by means of important features which explain this sim-
ilarity.

Figures 11 and 12 show semantically dissimilar digits 3,5 and 7,9, respectively.
The explanation of the semantic dissimilarity is very explicit in Figure 11. Indeed,
the selected important features are inherent in the difference of two digits. Figure 12
is also very demonstrative. It can be seen from Figure 12 that only the parts of
digits 7 and 9 are selected for explanation that characterize differences between the
different digits. It is interesting to note that the slanting vertical slashes are not
selected for explanation because they are common for these two digits. They are
only partly selected when s = 12, i.e., features of embeddings responsible for the
semantic similarity begin to act.

It can be also concluded from all the considered examples that the choice of
a proper value of parameter s is not a trivial task. It can be solved by enumerating
several values s and depends on many factors: datasets, the length of embeddings,
the dimensionality of images, etc.

Explanation of Siamese Neural Networks 1193

8 CONCLUSION

A new method for explaining the SNN results under condition of the weakly super-
vised learning has been presented in this paper. Basic ideas behind the method are
comparisons of the explained instances at the embedding level and reconstruction
of the embedding feature vectors by means of the separately trained decoder and
the encoder of the AE in order to analyze the impact of the embedding vector per-
turbations on the reconstructed features of original instances. It should be noted
that the main elements of the proposed method such as the AE with the extended
loss function and the perturbation technique can be implemented independently of
a structure of the explained SNN. This implies that the proposed method can be ap-
plied to various applications using SNNs. The method can be also used when there
is information about classes of training data. This case can be viewed as a special
case of the considered explanation approach.

To the best of our knowledge, there are no explanation methods applied to
the SNN. Therefore, we do not compare the proposed method with the well-known
methods such as LIME, SHAP, etc.

One of the limitations of the proposed approach is a possible small amount of
training data in order to train the AE. The SNN is trained on pairs of instances
such that the number of pairs may be large even by a small number of original
instances. However, the AE has to be trained only by using the available data.
One of the ways to overcome this problem is to train the AE on concatenated
pairs of original instances. However, our experiments have shown that this obvious
way may lead to the unsatisfactory reconstruction. Therefore, a modification of
the method taking into account the lack of the sufficient amount of training data
is a direction for further research. Another limitation is a rather large number of
tuning parameters, including the number of important features, the length of the
AE hidden representation, etc. Some efficient rules for restricting their values can
be also regarded as a direction for further research.

It is important to note that the idea to reconstruct original instances from
embeddings by means of the AE with the modified loss function can be applied
not only to SNNs, but to different neural networks which implement the feature
extraction procedures. If we have information about output feature extracted vectors
of the neural networks, then the corresponding results can be explained in the same
way. The main difference is that prototypes of classes should be used in order to
select the important extracted features instead of output vectors of the SNN. In other
words, in order to explain an original instance, the corresponding feature extracted
vector is compared with the prototype of the class of this instance, and the nearest
features are selected for their perturbation. In the same way, the counterfactual
explanation technique can be applied by considering the prototypes of other classes.
A detailed study of these extensions of the proposed method is another direction for
further research.

1194 L. Utkin, M. Kovalev, E. Kasimov

Acknowledgement

The reported study was funded by RFBR, project No. 20-01-00154.

REFERENCES

[1] Guidotti, R.—Monreale, A.—Ruggieri, S.—Turini, F.—Giannotti, F.—
Pedreschi, D.: A Survey of Methods for Explaining Black Box Models. ACM Com-
puting Surveys, Vol. 51, 2019, No. 5, Art. No. 93, doi: 10.1145/3236009.

[2] Arya, V.—Bellamy, R. K. E.—Chen, P. Y.—Dhurandhar, A.—Hind, M.—
Hoffman, S. C.—Houde, S.—Liao, Q. V.—Luss, R.—Mojsilović, A.—
Mourad, S.—Pedemonte, P.—Raghavendra, R.—Richards, J.—
Sattigeri, P.—Shanmugam, K.—Singh, M.—Varshney, K. R.—Wei, D.—
Zhang, Y.: One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI
Explainability Techniques. arXiv:1909.03012, 2019.

[3] Molnar, C.: Interpretable Machine Learning: A Guide for Making Black
Box Models Explainable. Published online, https://christophm.github.io/

interpretable-ml-book/, 2019.

[4] Murdoch, W. J.—Singh, C.—Kumbier, K.—Abbasi-Asl, R.—Yu, B.: Inter-
pretable Machine Learning: Definitions, Methods, and Applications. PNAS, Vol. 116,
2019, No. 44, pp. 22071–22080, doi: 10.1073/pnas.1900654116.

[5] Ibrahim, M.—Louie, M.—Modarres, C.—Paisley, J. W.: Global Explana-
tions of Neural Networks: Mapping the Landscape of Predictions. Proceedings of
the 2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’19), 2019,
pp. 279–287, doi: 10.1145/3306618.3314230.

[6] Bellet, A.—Habrard, A.—Sebban, M.: A Survey on Metric Learning for Fea-
ture Vectors and Structured Data. arXiv:1306.6709, 2013.

[7] Kulis, B.: Metric Learning: A Survey. Foundations and Trends in Machine Learning,
Vol. 5, 2013, No. 4, pp. 287–364, doi: 10.1007/s11042-015-2847-3.

[8] Zheng, L.—Duffner, S.—Idrissi, K.—Garcia, C.—Baskurt, A.: Siamese
Multi-Layer Perceptrons for Dimensionality Reduction and Face Identification.
Multimedia Tools and Applications, Vol. 75, 2016, No. 9, pp. 5055–5073, doi:
10.1007/s11042-015-2847-3.

[9] Bromley, J.—Bentz, J.—Bottou, L.—Guyon, I.—LeCun, Y.—
Moore, C.—Sackinger, E.—Shah, R.: Signature Verification Using a “Siamese”
Time Delay Neural Network. International Journal of Pattern Recognition and Arti-
ficial Intelligence, Vol. 7, 1993, No. 4, pp. 669–688, doi: 10.1142/S0218001493000339.

[10] Chopra, S.—Hadsell, R.—LeCun, Y.: Learning a Similarity Metric Discrimina-
tively, with Application to Face Verification. 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1, 2005, pp. 539–546,
doi: 10.1109/CVPR.2005.202.

[11] Ribeiro, M.—Singh, S.—Guestrin, C.: “Why Should I Trust You?” Explaining
the Predictions of Any Classifier. arXiv:1602.04938v3, 2016.

https://doi.org/10.1145/3236009
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.1145/3306618.3314230
https://doi.org/10.1007/s11042-015-2847-3
https://doi.org/10.1007/s11042-015-2847-3
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1109/CVPR.2005.202

Explanation of Siamese Neural Networks 1195

[12] Shankaranarayana, S. M.—Runje, D.: ALIME: Autoencoder Based Approach
for Local Interpretability. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A.,
Menezes, R., Allmendinger, R. (Eds.): Intelligent Data Engineering and Automated
Learning – IDEAL 2019. Springer, Cham, Lecture Notes in Computer Science,
Vol. 11871, 2019, pp. 454–463, doi: 10.1007/978-3-030-33607-3 49.

[13] Ahern, I.—Noack, A.—Guzmán-Nateras, L.—Dou, D.—Li, B.—Huan, J.:
NormLime: A New Feature Importance Metric for Explaining Deep Neural Networks.
arXiv:1909.04200, 2019.

[14] Zafar, M. R.—Khan, N. M.: DLIME: A Deterministic Local Interpretable
Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems.
arXiv:1906.10263, 2019.

[15] Ribeiro, M. T.—Singh, S.—Guestrin, C.: Anchors: High-Precision Model-
Agnostic Explanations. AAAI Conference on Artificial Intelligence, 2018,
pp. 1527–1535.

[16] Hu, L.—Chen, J.—Nair, V. N.—Sudjianto, A.: Locally Interpretable Models
and Effects Based on Supervised Partitioning (LIME-SUP). arXiv:1806.00663, 2018.

[17] Rabold, J.—Deininger, H.—Siebers, M.—Schmid, U.: Enriching Visual with
Verbal Explanations for Relational Concepts – Combining LIME with Aleph. In:
Cellier, P., Driessens, K. (Eds.): Machine Learning and Knowledge Discovery in
Databases (ECML PKDD 2019). Springer, Cham, Communications in Computer
and Information Science, Vol. 1167, 2019, pp. 180–192, doi: 10.1007/978-3-030-43823-
4 16.

[18] Kovalev, M. S.—Utkin, L. V.—Kasimov, E. M.: SurvLIME: A Method for Ex-
plaining Machine Learning Survival Models. Knowledge-Based Systems, Vol. 203,
2020, Art. No. 106164, doi: 10.1016/j.knosys.2020.106164.

[19] Garreau, D.—von Luxburg, U.: Explaining the Explainer: A First Theoretical
Analysis of LIME. Proceedings of the Twenty Third International Conference on
Artificial Intelligence and Statistics, PMLR, Vol. 108, 2020, pp. 1287–1296.

[20] Štrumbelj, E.—Kononenko, I.: An Efficient Explanation of Individual Classifi-
cations Using Game Theory. Journal of Machine Learning Research, Vol. 11, 2010,
pp. 1–18.

[21] Aas, K.—Jullum, M.—Løland, A.: Explaining Individual Predictions When
Features Are Dependent: More Accurate Approximations to Shapley Values.
arXiv:1903.10464, 2019.

[22] Ancona, M.—Oztireli, C.—Gross, M.: Explaining Deep Neural Networks with
a Polynomial Time Algorithm for Shapley Values Approximation. Proceedings of the
36th International Conference on Machine Learning, PMLR, Vol. 97, 2019, pp. 272–
281.

[23] Lundberg, S. M.—Lee, S. I.: A Unified Approach to Interpreting Model Pre-
dictions. In: Guzon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., Garnett, R. (Eds.): Advances in Neural Information Processing Sys-
tems 30 (NIPS 2017), 2017, pp. 4765–4774.

https://doi.org/10.1007/978-3-030-33607-3_49
https://doi.org/10.1007/978-3-030-43823-4_16
https://doi.org/10.1007/978-3-030-43823-4_16
https://doi.org/10.1016/j.knosys.2020.106164

1196 L. Utkin, M. Kovalev, E. Kasimov

[24] Owen, A. B.—Prieur, C.: On Shapley Value for Measuring Importance of De-
pendent Inputs. SIAM/ASA Journal on Uncertainty Quantification, Vol. 5, 2017,
pp. 986–1002, doi: 10.1137/16M1097717.

[25] Koh, P. W.—Liang, P.: Understanding Black-Box Predictions via Influence Func-
tions. Proceedings of the 34th International Conference on Machine Learning, PMLR,
Vol. 70, 2017, pp. 1885–1894.

[26] Burns, C.—Thomason, J.—Tansey, W.: Interpreting Black Box Models with
Statistical Guarantees. arXiv:1904.00045, 2019.

[27] Wachter, S.—Mittelstadt, B.—Russell, C.: Counterfactual Explana-
tions Without Opening the Black Box: Automated Decisions and the GDPR.
Harvard Journal of Law and Technology, Vol. 31, 2018, pp. 841–887, doi:
10.2139/ssrn.3063289.

[28] Moore, J.—Hammerla, N.—Watkins, C.: Explaining Deep Learning Models
with Constrained Adversarial Examples. In: Nayak, A., Sharma, A. (Eds.): PRICAI
2019: Trends in Artificial Intelligence. Springer, Cham, Lecture Notes in Computer
Science, Vol. 11670, 2019, pp. 43–56, doi: 10.1007/978-3-030-29908-8 4.

[29] Goyal, Y.—Wu, Z.—Ernst, J.—Batra, D.—Parikh, D.—Lee, S.: Coun-
terfactual Visual Explanations. Proceedings of the 36th International Conference on
Machine Learning, PMLR, Vol. 97, 2019, pp. 2376–2384.

[30] Hendricks, L. A.—Hu, R.—Darrell, T.—Akata, Z.: Grounding Visual Ex-
planations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (Eds.): Com-
puter Vision – ECCV 2018. Springer, Cham, Lecture Notes in Computer Science,
Vol. 11206, 2018, pp. 269–286, doi: 10.1007/978-3-030-01216-8 17.

[31] Laugel, T.—Lesot, M.-J.—Marsala, C.—Renard, X.—Detyniecki, M.:
Comparison-Based Inverse Classification for Interpretability in Machine Learning. In:
Medina, J. et al. (Eds.): Information Processing and Management of Uncertainty in
Knowledge-Based Systems. Theory and Foundations (IPMU 2018). Springer, Cham,
Communications in Computer and Information Science, Vol. 853, 2018, pp. 100–111,
doi: 10.1007/978-3-319-91473-2 9.

[32] Liu, S.—Kailkhura, B.—Loveland, D.—Han, Y.: Generative Counterfac-
tual Introspection for Explainable Deep Learning. 2019 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), 2019, doi: 10.1109/global-
sip45357.2019.8969491.

[33] Van Looveren, A.—Klaise, J.: Interpretable Counterfactual Explanations
Guided by Prototypes. arXiv:1907.02584, 2019.

[34] Poyiadzi, R.—Sokol, K.—Santos-Rodŕıguez, R.—De Bie, T.—
Flach, P. A.: FACE: Feasible and Actionable Counterfactual Explanations.
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES ’20),
2020, pp. 344–350, doi: 10.1145/3375627.3375850.

[35] van der Waa, J.—Robeer, M.—van Diggelen, J.—Brinkhuis, M.—
Neerincx, M.: Contrastive Explanations with Local Foil Trees. arXiv:1806.07470,
2018.

https://doi.org/10.1137/16M1097717
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.1007/978-3-030-29908-8_4
https://doi.org/10.1007/978-3-030-01216-8_17
https://doi.org/10.1007/978-3-319-91473-2_9
https://doi.org/10.1109/globalsip45357.2019.8969491
https://doi.org/10.1109/globalsip45357.2019.8969491
https://doi.org/10.1145/3375627.3375850

Explanation of Siamese Neural Networks 1197

[36] Dhurandhar, A.—Chen, P. Y.—Luss, R.—Tu, C. C.—Ting, P.—
Shanmugam, K.—Das, P.: Explanations Based on the Missing: Towards
Contrastive Explanations with Pertinent Negatives. arXiv:1802.07623v2, 2018.

[37] Dhurandhar, A.—Pedapati, T.—Balakrishnan, A.—Chen, P. Y.—
Shanmugam, K.—Puri, R.: Model Agnostic Contrastive Explanations for Struc-
tured Data. arXiv:1906.00117, 2019.

[38] Bien, J.—Tibshirani, R.: Prototype Selection for Interpretable Classification. The
Annals of Applied Statistics, Vol. 5, 2011, No. 4, pp. 2403–2424, doi: 10.1214/11-
AOAS495.

[39] Kim, B.—Rudin, C.—Shah, J.: The Bayesian Case Model: A Generative Ap-
proach for Case-Based Reasoning and Prototype Classification. In: Ghahramani, Y.,
Welling, M., Cortes, C., Lawrence, N., Weinberger, K. Q. (Eds.): Advances in Neural
Information Processing Systems 27 (NIPS 2014), 2014, pp. 1952–1960.

[40] Ancona, M.—Ceolini, E.—Öztireli, C.—Gross, M.: Gradient-Based Attribu-
tion Methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, K. R.
(Eds.): Explainable AI: Interpreting, Explaining and Visualizing Deep Learning.
Springer, Cham, Lecture Notes in Computer Science, Vol. 11700, 2019, pp. 169–191,
doi: 10.1007/978-3-030-28954-6 9.

[41] Fong, R.—Vedaldi, A.: Explanations for Attributing Deep Neural Network Pre-
dictions. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, K. R. (Eds.):
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer,
Cham, Lecture Notes in Computer Science, Vol. 11700, 2019, pp. 149–167, doi:
10.1007/978-3-030-28954-6 8.

[42] Fong, R.—Vedaldi, A.: Interpretable Explanations of Black Boxes by Meaningful
Perturbation. Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 3449–3457, doi: 10.1109/ICCV.2017.371.

[43] Petsiuk, V.—Das, A.—Saenko, K.: RISE: Randomized Input Sampling for Ex-
planation of Black-Box Models. arXiv:1806.07421, 2018.

[44] Vu, M. N.—Nguyen, T. D.—Phan, N.—Gera, R.—Thai, M. T.: Evaluating
Explainers via Perturbation. arXiv:1906.02032v1, 2019.

[45] Zeiler, M. D.—Fergus, R.: Visualizing and Understanding Convolutional Net-
works. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.): Computer Vision –
ECCV 2014. Springer, Cham, Lecture Notes in Computer Science, Vol. 8689, 2014,
pp. 818–833, doi: 10.1007/978-3-319-10590-1 53.

[46] Du, M.—Liu, N.—Hu, X.: Techniques for Interpretable Machine Learning. Com-
munications of the ACM, Vol. 63, 2019, No. 1, pp. 68–77, doi: 10.1145/3359786.

[47] Adadi, A.—Berrada, M.: Peeking Inside the Black-Box: A Survey on Explain-
able Artificial Intelligence (XAI). IEEE Access, Vol. 6, 2018, pp. 52138–52160, doi:
10.1109/ACCESS.2018.2870052.

[48] Arrieta, A. B.—D́ıaz-Rodŕıguez, N.—Del Ser, J.—Bennetot, A.—
Tabik, S.—Barbado, A.—Garcia, S.—Gil-Lopez, S.—Molina, D.—
Benjamins, R.—Chatila, R.—Herrera, F.: Explainable Artificial Intelligence
(XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI.
Information Fusion, Vol. 58, 2020, pp. 82–115, doi: 10.1016/j.inffus.2019.12.012.

https://doi.org/10.1214/11-AOAS495
https://doi.org/10.1214/11-AOAS495
https://doi.org/10.1007/978-3-030-28954-6_9
https://doi.org/10.1007/978-3-030-28954-6_8
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1145/3359786
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1016/j.inffus.2019.12.012

1198 L. Utkin, M. Kovalev, E. Kasimov

[49] Gilpin, L. H.—Bau, D.—Yuan, B. Z.—Bajwa, A.—Specter, M.—Kagal, L.:
Explaining Explanations: An Overview of Interpretability of Machine Learning. 2018
IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA),
2018, pp. 80–89, doi: 10.1109/DSAA.2018.00018.

[50] Mohseni, S.—Zarei, N.—Ragan, E. D.: A Survey of Evaluation Methods and
Measures for Interpretable Machine Learning. arXiv:1811.11839v1, 2018.

[51] Rudin, C.: Stop Explaining Black Box Machine Learning Models for High Stakes
Decisions and Use Interpretable Models Instead. Nature Machine Intelligence, Vol. 1,
2019, pp. 206–215, doi: 10.1038/s42256-019-0048-x.

[52] Nori, H.—Jenkins, S.—Koch, P.—Caruana, R.: InterpretML: A Unified
Framework for Machine Learning Interpretability. arXiv:1909.09223, 2019.

[53] Le Capitaine, H.: Constraint Selection in Metric Learning. arXiv:1612.04853v1,
2016.

[54] Xu, Z.—Weinberger, K. Q.—Chapelle, O.: Distance Metric Learning for Ker-
nel Machines. arXiv:1208.3422, 2012.

[55] Kedem, D.—Tyree, S.—Sha, F.—Lanckriet, G.—Weinberger, K.: Non-
Linear Metric Learning. In: Pereira, F., Burges, C. J. C., Bottou, L., Weinberger,
K. Q. (Eds.): Advances in Neural Information Processing Systems 25 (NIPS 2012),
2012, pp. 2582–2590.

[56] Norouzi, M.—Fleet, D. J.—Salakhutdinov, R. R.: Hamming Distance Met-
ric Learning. In: Pereira, F., Burges, C. J. C., Bottou, L., Weinberger, K. Q.
(Eds.): Advances in Neural Information Processing Systems 25 (NIPS 2012), 2012,
pp. 1070–1078.

[57] Hoffer, E.—Ailon, N.: Deep Metric Learning Using Triplet Network. In: Fera-
gen, A., Pelillo, M., Loog, M. (Eds.): Similarity-Based Pattern Recognition (SIM-
BAD 2015). Springer, Cham, Lecture Notes in Computer Science, Vol. 9370, 2015,
pp. 84–92, doi: 10.1007/978-3-319-24261-3 7.

[58] Huang, K.—Jin, R.—Xu, Z.—Liu, C. L.: Robust Metric Learning by Smooth
Optimization. Proceedings of the 26th Conference on Uncertainty in Artificial Intel-
ligence (UAI 2010), 2010, pp. 244–251.

[59] Li, C.—Georgiopoulos, M.—Anagnostopoulos, G. C.: Kernel-Based
Distance Metric Learning in the Output Space. The 2013 International
Joint Conference on Neural Networks (IJCNN), IEEE, 2013, pp. 1–8, doi:
10.1109/IJCNN.2013.6706862.

[60] Schultz, M.—Joachims, T.: Learning a Distance Metric from Relative Compar-
isons. In: Thrun, S., Saul, L., Schölkopf, B. (Eds.): Advances in Neural Information
Processing Systems 16 (NIPS 2003), 2003, pp. 41–48.

[61] Weinberger, K. Q.—Saul, L. K.: Distance Metric Learning for Large Margin
Nearest Neighbor Classification. Journal of Machine Learning Research, Vol. 10, 2009,
pp. 207–244.

[62] Xing, E.—Jordan, M.—Russell, S.—Ng, A.: Distance Metric Learning with
Application to Clustering with Side-Information. In: Becker, S., Thrun, S., Ober-
mayer, K. (Eds.): Advances in Neural Information Processing Systems 15 (NIPS
2002), 2002, pp. 505–512.

https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1007/978-3-319-24261-3_7
https://doi.org/10.1109/IJCNN.2013.6706862

Explanation of Siamese Neural Networks 1199

[63] Yin, X.—Chen, Q.: Deep Metric Learning Autoencoder for Nonlinear Tem-
poral Alignment of Human Motion. 2016 IEEE International Conference on
Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp. 2160–2166, doi:
10.1109/ICRA.2016.7487366.

[64] Roy, S.—Harandi, M.—Nock, R.—Hartley, R.: Siamese Networks: The
Tale of Two Manifolds. Proceedings of the 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Vol. 2, 2019, pp. 3046–3055, doi:
10.1109/ICCV.2019.00314.

[65] He, K.—Zhang, X.—Ren, S.—Sun, J.: Deep Residual Learning for Image Recog-
nition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[66] Hu, J.—Lu, J.—Tan, Y. P.: Discriminative Deep Metric Learning for Face Verifica-
tion in the Wild. 2014 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014, pp. 1875–1882, doi: 10.1109/CVPR.2014.242.

[67] Sun, Y.—Chen, Y.—Wang, X.—Tang, X.: Deep Learning Face Representation
by Joint Identification-Verification. In: Ghahramani, Y., Welling, M., Cortes, C.,
Lawrence, N., Weinberger, K. Q. (Eds.): Advances in Neural Information Processing
Systems 27 (NIPS 2014), 2014, pp. 1988–1996.

[68] Yi, D.—Lei, Z.—Liao, S.—Li, S. Z.: Deep Metric Learning for Person Re-
Identification. Proceedings of the 2014 22nd International Conference on Pattern
Recognition (ICPR), 2014, pp. 34–39, doi: 10.1109/ICPR.2014.16.

[69] Zhang, C.—Liu, W.—Ma, H.—Fu, H.: Siamese Neural Network Based Gait
Recognition for Human Identification. 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 2832–2836, doi:
10.1109/ICASSP.2016.7472194.

[70] Chen, K.—Salman, A.: Extracting Speaker-Specific Information with a Regular-
ized Siamese Deep Network. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F.,
Weinberger, K. Q. (Eds.): Advances in Neural Information Processing Systems 24
(NIPS 2011), 2011, pp. 298–306.

[71] Jiang, C.—Xiao, J.—Xie, Y.—Tillo, T.—Huang, K.: Siamese Network En-
semble for Visual Tracking. Neurocomputing, Vol. 275, 2018, pp. 2892–2903, doi:
10.1016/j.neucom.2017.10.043.

[72] Zhan, H.—Ni, W.—Yan, W.—Wu, J.—Bian, H.—Xiang, D.: Visual Track-
ing Using Siamese Convolutional Neural Network with Region Proposal and Do-
main Specific Updating. Neurocomputing, Vol. 275, 2018, pp. 2645–2655, doi:
10.1016/j.neucom.2017.11.050.

[73] Masana, M.—Ruiz, I.—Serrat, J.—van de Weijer, J.—Lopez, A. M.: Met-
ric Learning for Novelty and Anomaly Detection. arXiv:1808.05492, 2018.

[74] Utkin, L. V.—Zaborovsky, V. S.—Lukashin, A. A.—Popov, S. G.—
Podolskaja, A. V.: A Siamese Autoencoder Preserving Distances for Anomaly
Detection in Multi-Robot Systems. 2017 International Conference on Control, Arti-
ficial Intelligence, Robotics and Optimization (ICCAIRO), Prague, Czech Republic,
IEEE, 2017, pp. 39–44, doi: 10.1109/ICCAIRO.2017.17.

https://doi.org/10.1109/ICRA.2016.7487366
https://doi.org/10.1109/ICCV.2019.00314
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2014.242
https://doi.org/10.1109/ICPR.2014.16
https://doi.org/10.1109/ICASSP.2016.7472194
https://doi.org/10.1016/j.neucom.2017.10.043
https://doi.org/10.1016/j.neucom.2017.11.050
https://doi.org/10.1109/ICCAIRO.2017.17

1200 L. Utkin, M. Kovalev, E. Kasimov

[75] Berlemont, S.—Lefebvre, G.—Duffner, S.—Garcia, C.: Class-Balanced
Siamese Neural Networks. Neurocomputing, Vol. 273, 2018, pp. 47–56, doi:
10.1016/j.neucom.2017.07.060.

[76] Dhami, D. S.—Kunapuli, G.—Page, D.—Natarajan, S.: Predicting Drug-
Drug Interactions from Molecular Structure Images. AAAI Fall Symposium – AI
for Social Good, AAAI, 2019, pp. 1–6.

[77] Shaham, U.—Lederman, R. R.: Learning by Coincidence: Siamese Networks and
Common Variable Learning. Pattern Recognition, Vol. 74, 2018, pp. 52–63, doi:
10.1016/j.patcog.2017.09.015.

[78] Wang, J.—Fang, Z.—Lang, N.—Yuan, H.—Su, M. Y.—Baldi, P.: A Multi-
Resolution Approach for Spinal Metastasis Detection Using Deep Siamese Neural
Networks. Computers in Biology and Medicine, Vol. 84, 2017, pp. 137–146, doi:
10.1016/j.compbiomed.2017.03.024.

[79] Fei-Fei, L.—Fergus, R.—Perona, P.: One-Shot Learning of Object Categories.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, 2006, No. 4,
pp. 594–611, doi: 10.1109/TPAMI.2006.79.

[80] Koch, G.—Zemel, R.—Salakhutdinov, R.: Siamese Neural Networks for One-
Shot Image Recognition. Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, JMLR: W & CP, Vol. 37, 2015, pp. 1–8.

[81] Snell, J.—Swersky, K.—Zemel, R.: Prototypical Networks for Few-Shot Learn-
ing. In: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., Garnett, R. (Eds.): Advances in Neural Information Processing Sys-
tems 30 (NIPS 2017), 2017, pp. 4077–4087.

[82] Triantafillou, E.—Zemel, R.—Urtasun, R.: Few-Shot Learning Through
an Information Retrieval Lens. In: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., Garnett, R. (Eds.): Advances in Neural Information
Processing Systems 30 (NIPS 2017), 2017, pp. 2255–2265.

[83] Wang, Y.—Yao, Q.: Few-Shot Learning: A Survey. arXiv:1904.05046v1, 2019.

[84] Wang, Y.—Yao, Q.—Kwok, J.—Ni, L. M.: Generalizing from a Few Examples:
A Survey on Few-Shot Learning. arXiv:1904.05046v2, 2019.

[85] Bertinetto, L.—Valmadre, J.—Henriques, J. F.—Vedaldi, A.—
Torr, P. H. S.: Fully-Convolutional Siamese Networks for Object Tracking.
In: Hua, G., Jégou, H. (Eds.): Computer Vision – ECCV 2016 Workshops. Springer,
Cham, Lecture Notes in Computer Science, Vol. 9914, 2016, pp. 850–865, doi:
10.1007/978-3-319-48881-3 56.

[86] Leal-Taixé, L.—Canton-Ferrer, C.—Schindler, K.: Learning by Track-
ing: Siamese CNN for Robust Target Association. 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2016, pp. 418–425, doi:
10.1109/cvprw.2016.59.

[87] Barthe, F.—Guédon, O.—Mendelson, S.—Naor, A.: A Probabilistic Ap-
proach to the Geometry of the `np -Ball. The Annals of Probability, Vol. 33, 2005,
No. 2, pp. 480–513, doi: 10.1214/009117904000000874.

https://doi.org/10.1016/j.neucom.2017.07.060
https://doi.org/10.1016/j.patcog.2017.09.015
https://doi.org/10.1016/j.compbiomed.2017.03.024
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1109/cvprw.2016.59
https://doi.org/10.1214/009117904000000874

Explanation of Siamese Neural Networks 1201

[88] Harman, R.—Lacko, V.: On Decompositional Algorithms for Uniform Sam-
pling from n-Spheres and n-Balls. Journal of Multivariate Analysis, Vol. 101, 2010,
pp. 2297–2304, doi: 10.1016/j.jmva.2010.06.002.

[89] LeCun, Y.—Bottou, L.—Bengio, Y.—Haffner, P.: Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE, Vol. 86, 1998, No. 11,
pp. 2278–2324, doi: 10.1109/5.726791.

https://doi.org/10.1016/j.jmva.2010.06.002
https://doi.org/10.1109/5.726791

1202 L. Utkin, M. Kovalev, E. Kasimov

Lev Utkin is Head of the Institute of Computer Science and
Technology in Peter the Great Saint Petersburg Polytechnic Uni-
versity, Saint Petersburg, Russia. He is Professor and the Head
of the Research Laboratory of Neural Network Technologies and
Artificial Intelligence in the same university. In 1986 he gradu-
ated from the Saint Petersburg State Electrotechnical University
(former Leningrad Electrotechnical Institute). He holds Ph.D. in
information processing and control systems (1989) from the same
university and D.Sc. in mathematical modelling (2001) from the
Saint Petersburg State Institute of Technology, Russia. He was

awarded an Alexander von Humboldt Foundation Fellowship (2001–2003). He is a mem-
ber of the Society for Imprecise Probability Theory and Applications (SIPTA) and the
International Society on Multiple Criteria Decision Making (ISMCDM). He is author of
more than 300 scientific publications, including AI journals: Neurocomputing, Neural
Networks, Knowledge-Based Systems, Applied Soft Computing, AI in Medicine, etc. His
research interests are focused on machine learning, imprecise probability theory, decision
making.

Maxim Kovalev is Ph.D. student at the Institute of Applied
Mathematics and Mechanics in Peter the Great Saint Peters-
burg Polytechnic University, Saint Petersburg, Russia. He is
Research Assistant at the Neural Network Technologies and Ar-
tificial Intelligence Laboratory in the same university. In 2019,
he graduated from Peter the Great Saint Petersburg Polytech-
nic University, holding M.Sc. in bioinformatics. His research
interests are focused on machine learning, explainable artificial
intelligence, computational biology.

Ernest Kasimov is Research Assistant at the Neural Network
Technologies and Artificial Intelligence Laboratory in Peter the
Great Saint Petersburg Polytechnic University. In 2020, he grad-
uated from the same university, holding M.Sc. in mathematics
and computer science. His research interests are focused on ma-
chine learning.

