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Abstract. Spiking neural P systems (SNP systems, in short) are a class of dis-
tributed parallel computation systems, inspired from the way that the neurons
process and communicate information by means of spikes. A new variant of SNP
systems, which works in asynchronous mode, asynchronous spiking neural P systems
with multiple channels and symbols (ASNP-MCS systems, in short), is investigated
in this paper. There are two interesting features in ASNP-MCS systems: multiple
channels and multiple symbols. That is, every neuron has more than one synaptic
channels to connect its subsequent neurons, and every neuron can deal with more
than one type of spikes. The variant works in asynchronous mode: in every step,
each neuron can be free to fire or not when its rules can be applied. The com-
putational completeness of ASNP-MCS systems is investigated. It is proved that
ASNP-MCS systems as number generating and accepting devices are Turing uni-
versal. Moreover, we obtain a small universal function computing device that is an
ASNP-MCS system with 67 neurons. Specially, a new idea that can solve “block”
problems is proposed in INPUT modules.

Keywords: Membrane computing, spiking neural P systems, asynchronous sys-
tems, multiple channels, multiple symbols, Turing universality
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1 INTRODUCTION

Abstracted from the structure and functioning of living cells as well as the coop-
eration of cells in tissue, organs and biological nervous systems, membrane com-
puting is a class of distributed and parallel computation systems [1, 2], known as
P systems. There are three main types of P systems: cell-like P systems, tissue-
like P systems and neural-like P systems. Abstracted from distinct biological cell
mechanisms, a lot of P systems and variants have been proposed, for example,
tissue-like P systems [3], population P systems [4], P colonies [5], spiking neural
P systems [6], and the latest works can be found on the membrane computing
website (http://ppage.psystems.eu). In terms of computational theory, most of
P systems have been proven to be Turing universal, and some NP-hard problems
have been solved in a feasible time [7, 8, 9, 10, 11]. Moreover, there are a various
of applications of P systems, for instance, ecology and structural biology [12, 13],
function optimization [14], machine learning [15, 16, 17], image and signal process-
ing [18, 19, 20, 21, 22, 23].

Spiking neural P systems (SNP systems, in short) were first proposed by Ionescu
et al. [6], inspired by the way of transmitting and exchanging information, by
means of spikes, between neurons. SNP systems are also a class of distributed
and parallel computation systems. Directed graphs are used to express SNP sys-
tems, where the nodes are the neurons and the arcs are used to denote the synapses
between these neurons. Each SNP system consists of two components: data and
rules. The data is denoted by the number of spikes contained in it and is evolved
by rules. There are two forms of rules: spiking rule and forgetting rule. Spik-
ing rule has the form E/ac → ap, where E is a regular expression over {a}, c
is the number of spikes consumed by the rule and p is the number of the pro-
duced spikes, and c ≥ p ≥1. The semantics of spiking rule can be explained as
follows. Suppose that neuron σ has a spiking rule E/ac → ap and contains n
spikes satisfying an ∈ L(E). The neuron fires and consumes c spikes, and then
it produces p spikes and sends them to all subsequent neurons connected with it.
Forgetting rule has the form as → λ, where s ≥ 1. If forgetting rule as → λ
is applied in the neuron, then s spikes are removed from it and no spike is pro-
duced.

Most SNP systems work in synchronous mode. A global clock is assumed for the
synchronization of all neurons, and all neurons in the systems work in parallel, and
the rules in each neuron are applied sequentially. When there are more than one
rules can be applied in a neuron, one of them must be chosen non-deterministically
and applied.

Generally, there are three main research topics:

1. theoretical works,

2. application and

3. simulation systems.

http://ppage.psystems.eu
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Many variants of SNP systems were proposed, for example, SNP systems with as-
trocytes [24, 25], SNP systems with anti-spikes [26], SNP systems with weights [27],
SNP systems with thresholds [28], SNP systems with rules on synapses [29, 30,
31], SNP systems with multiple channels [32, 33], coupled neural P systems [34],
dynamic threshold neural P systems [35], SNP systems with polarizations [36],
SNP system with inhibitory rules [37], dendrite P systems [38], nonlinear SNP
systems [39], and so on. In addition, several working modes have been investi-
gated, such as asynchronous mode [40], asynchronous mode with local synchro-
nization [41], and sequential mode [42]. Turing universality is one of computa-
tional theory of SNP systems. SNP systems and variants can be considered as
four devices: number generating/accepting devices, function computing devices
as well as language generating devices. In universality investigation, register ma-
chines are often regarded as standard model, because it has been proven that reg-
ister machines can compute/accept any Turing computable number set and ob-
tain a small universal function computing device. Therefore, by simulating regis-
ter machines, it has been proven that most variants of SNP systems are Turing
universal [43, 44]. Moreover, fuzzy logic was introduced into SNP systems to pro-
pose a variety of fuzzy spiking neural P systems [45, 46], which have been applied
in fault diagnosis [47, 48, 49, 50]. In addition, a number of simulation systems
have been developed, for example, P-Lingua [51] and SNP system simulator on
GPU [52].

It is no doubt that the synchronization plays a vital role in the proof of above
results, however, the assumption of global clock is rather natural from a neurobio-
logical point of view. Therefore, SNP systems working in non-synchronous modes
have received much attention in the recent years, especially, in asynchronous mode.
The SNP systems working in asynchronous mode are called asynchronous SNP sys-
tems (ASNP systems, in short). In asynchronous mode, the global clock is removed
and every neuron is not obligatory to use its rules. Therefore, each neuron is free to
choose time to fire without any time restriction when its rules are available. New
spikes that are received from adjacent neurons may cause the rules to no longer be
available. In this case, the computation will continue to work under the new configu-
ration. The result of the computation is no longer relevant with the distance in time
because of the asynchronous working mode. Thus, the total number of spikes, which
is sent out to the environment, is regarded as the result of the computation. Cav-
aliere et al. [40] provided a specific description about asynchronization and proved
that asynchronous SNP systems with extended rules are equivalent with Turing ma-
chines. After that, several asynchronous SNP systems have been investigated, such
as asynchronous SNP systems with local synchronization [41], asynchronous SNP
systems with rules on synapses [53], asynchronous SNP systems with structural plas-
ticity [54] and asynchronous SNP systems with anti-spikes [55]. These asynchronous
systems have been proven to be Turing universal. In addition, Cavaliere et al. [56]
investigated the decidability and undecidability of asynchronous SNP systems. The
language generating problems of asynchronous SNP systems have been discussed in
Zhang et al. [57].
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This work discusses a new variant of SNP systems, which works in asynchronous
mode and has two interesting features (multiple channels and multiple symbols),
asynchronous spiking neural P systems with multiple channels and symbols (ASNP-
MCS systems, in short). ASNP-MCS systems are different from the existing asyn-
chronous SNP systems in the following two aspects:

1. Every neuron in ASNP-MCS systems has one or more synaptic channels, thus,
different sets of subsequent neurons can be connected with it. It is suitable for
ASNP-MCS systems, because of the multiple channels feature, to characterize
higher-order dynamic systems.

2. More than one symbols are considered in ASNP-MCS systems. Therefore, the
rules in ASNP-MCS systems are extended to handle these multiple symbols. It
is also suitable for ASNP-MCS systems, due to the multiple symbols feature, to
simulate some complicated systems with different parts.

This work investigates the computational power of ASNP-MCS systems. By
simulating register machine, it is proven that ASNP-MCS systems as number gen-
erating/accepting devices are Turing universal. In addition, we construct an ASNP-
MCS system with 67 neurons as a small universal function computing device. The
result can be interpreted as the reason that the loss of computational power caused
by removing synchronization can be offset by the use of multiple channels and mul-
tiple symbols.

The remainder of this paper is organized as follows. In Section 2, we review some
basic mathematical knowledge that will be useful for investigation of universality.
The definition of ASNP-MCS systems and an illustrative examples are given in
Section 3. In Section 4, we first discuss the computational power of ASNP-MCS
systems as number generating/accepting devices, and then we construct a small
universal ASNP-MCS system for computing functions. Finally, conclusions and
future work are drawn in Section 5.

2 PRELIMINARIES

It is assumed that readers have some knowledge with formal language theory and
membrane computing. Basic notions and notations are reviewed in this section.

For an alphabet O, the set of all finite strings of symbols from O is denoted by
O∗, and the set of all nonempty strings over O is denoted by O+; the empty string
is denoted by λ.

A regular expression over an alphabet O is defined as follows:

1. λ and each a ∈ O is a regular expression;

2. if E1 and E2 are regular expressions over O, then (E1)(E2), (E1)
⋃

(E2) and
(E1)

+ are regular expressions over O, and

3. nothing else is a regular expression over O.
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With each regular expression E we associate with a language L(E), defined in the
following way:

1. L(λ) = {λ} and L(a) = {a}, for all a ∈ O;

2. L((E1)
⋃

(E2)) = L(E1)
⋃
L(E2), L((E1)(E2)) = L(E1)L(E2), and L((E1)

+) =
(L(E1))

+, for all regular expressions E1, E2 over O.

When writing a regular expression, unnecessary parentheses can be omitted. We
can simply write E+

⋃
{λ} as E∗.

A register machine, which is a construct M = (m,H, l0, lh, I), can be used to
prove the universality of ASNP-MCS systems, where m is the number of registers,
H is the set of instruction labels, l0 is the starting label, lh is the halting label
(assigned to instruction HALT), and I is the set of instructions. Each label from H
corresponds to an instruction from I. There are instructions of three forms:

1. li : (ADD(r), lj, lk) (add 1 to register r then go non-deterministically to one of
the instructions with labels lj, lk).

2. li : (SUB(r), lj, lk) (if register r is non-zero, then subtract 1 from it and go to
the instruction with label lj; otherwise, go to the instruction with label lk).

3. lh : HALT (the halting instruction).

It is well-known that a register machine M can generate/accept any Turing
computable number set (denoted by NRE).

Number n can be generated by register machine in the following way. The reg-
ister machine starts with all registers empty (for example, storing the number zero).
What instruction activated first is the instruction with label l0. Then, the subse-
quent instructions are processed in order. If the register machine reaches the halting
instruction, then the computation is completed, and the result of the computation
is the number n stored in the first register r0. We denote by Ngen(M) the set of all
numbers generated by M .

The register machine M can also accept the numbers. We denote by Nacc(M)
the set of numbers accepted by M . Its working mechanism can be illustrated as
follows. At the beginning, all registers are empty except the first register, and
a number is introduced into the first register. In accepting mode, register machine is
deterministic, meaning that li : (ADD(r), lj) is used to substitute li : (ADD(r), lj, lk)
as the ADD instruction.

Functions of form f : Nk → N can be computed by register machines. It
works as follows: at the beginning, all registers are empty and k parameters are
introduced into k specific registers; register machine M starts with instruction l0,
and then continues a series of computations until it reaches the halting instruction
lh. The computed function value will be stored in a specific register r when the
system halts. In computing mode, M is deterministic, where ADD instructions
have the form li : (ADD(r), lj).

Korec [58] introduced a small universal register machine, Mu = (8, H, l0, lh, I),
for computing functions, shown in Figure 1. The register machine contains 8 registers
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and 23 instructions. By introducing numbers g(x) and y into registers 1 and 2,
respectively, the register machine Mu can compute function ϕx(y) = Mu(g(x), y),
where g is a recursively function for all natural numbers x and y. When register
machine Mu halts, the number stored in the register 0 is the computed function
value.

In this work, we will discuss the universality of ASNP-MCS systems as function
computing devices by means of register machine Mu as a standard model.

l0: (SUB(1),l1,l2)           l1: (ADD(7),l0)           l2: (ADD(6),l3)

l3: (SUB(5),l2,l4)           l4: (SUB(6),l5,l3)         l5: (ADD(5),l6)

l6: (SUB(7),l7,l8)           l7: (ADD(1),l4)           l8: (SUB(6),l9,l0)

l9: (ADD(6),l10)            l10: (SUB(4),l0,l11)      l11: (SUB(5),l12,l13)

l12: (SUB(5),l14,l15)       l13: (SUB(2),l18,l19)     l14:(SUB(5),l16,l17)

l15: (SUB(3),l18,l20)       l16: (ADD(4),l11)         l17: (ADD(2),l21)

l18: (SUB(4),l0,lh)        l19: (SUB(0),l0,l18)       l20: (ADD(0),l0)

l21: (ADD(3),l18)         lh:HALT

Figure 1. A small universal register machine Mu

3 ASYNCHRONOUS SPIKING NEURAL P SYSTEMS
WITH MULTIPLE CHANNELS AND SYMBOLS

3.1 Definition

Definition 1. An ASNP-MCS system, of degree m ≥ 1, is a construct:

Π = (O,L, σ1, σ2, . . . , σm, syn, in, out)

where

1. O = {a1, a2, . . . , ak} is the alphabet (a1, a2, . . . , ak denote k types of spikes,
respectively);

2. L = {1, 2, . . . , N} is the alphabet of channel labels;

3. σ1, . . . , σm are neurons, of the form σi = (~ni, Li, Ri), 1 ≤ i ≤ m, where

(a) ~ni = (ni1, ni2, . . . , nik) is a k-dimensional vector, where nij ≥ 0 is the initial
number of spikes of jth type aj contained in neuron σi, 1 ≤ j ≤ k;

(b) Li ⊆ L is a finite set of channel labels used in neuron σi;

(c) Ri is a finite set of rules of the following two forms:

i Spiking rule E/ac11 a
c2
2 · · · a

ck
k → ap11 a

p2
2 · · · a

pk
k (l), where E is a regular

expression over O, and cj ≥ 0, pj ≥ 0 (1 ≤ j ≤ k), c1 + c2 + · · · + ck ≥
p1 + p2 + · · ·+ pk ≥ 1, l ∈ Li;

ii Forgetting rule as11 a
s2
2 · · · a

sk
k → λ, where sj ≥ 0 (1 ≤ j ≤ k) and s1 +s2 +

· · · + sk ≥ 1, with the restriction that for each rule E/ac11 a
c2
2 · · · a

ck
k →

ap11 a
p2
2 · · · a

pk
k (l) of type (i) from Ri, we have as11 a

s2
2 · · · a

sk
k 6∈ L(E);
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4. syn = {(i, j, l)} ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} × L with (i, i, l) 6∈ syn for ∀1 ≤
i ≤ m and ∀l ∈ L (synapse connections);

5. in indicates the input neuron of the system;

6. out indicates the output neuron of the system.

There is only one single type of spikes, denoted by symbol a, in SNP systems,
while ASNP-MCS systems proposed in this work have several distinct types of spikes,
denoted by symbols a1, a2, . . . , ak, and these multiple symbols can be interpreted
as electrical signals with distinct frequencies. The number of spikes in every neuron
in an SNP system is denoted by a natural number. However, since there are spikes
of k types in an ASNP-MCS system, a k-dimensional vector, ~ni = (ni1, ni2, . . . , nik),
is considered to indicate the number of each neuron. If nij > 0, one or more spikes
of type aj are contained in the neuron σi. If nij = 0, there is no spike of type aj in
the neuron σi.

An ASNP-MCS system can be represented by a directed graph, where the nodes
are used for labeling m neurons and the arcs are used for denoting the synapses be-
tween these neurons. The connection relationships between m neurons are described
by syn = {(i, j, l)} ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m}×L, meaning that neuron σi con-
nects neuron σj via channel (l) .

Since ASNP-MCS systems work in asynchronous mode, the use of rules in
neurons is not obligatory, which means that a rule can be used immediately or
also can be used later if the spikes in the neuron enable the rule. If the num-
ber of spikes in the neuron has been changed before using the rule, such as new
spikes coming, and the present rule can not be used any more, then the com-
putation continues in the new circumstance. Notice that the produced spikes in
the neuron will be sent immediately when the neuron applies the rule in a later
step.

Spiking rules and forgetting rules also exist in ASNP-MCS systems. What is
the meaning of spiking rules of form (i) can be explained as follows. The rule
E/ac11 a

c2
2 · · · a

ck
k → ap11 a

p2
2 · · · a

pk
k (l) in neuron σi can be applied at some time with

the condition of an1
1 a

n2
2 · · · a

nk
k ∈ L(E). When neuron σi fires, cj spikes of type aj

are consumed (thus nj − cj spikes of type aj are remained), and pj spikes of type
aj are produced, 1 ≤ j ≤ k. The spikes generated by neuron σi are sent to the
subsequent neurons via channel (l). The semantics of forgetting rules of form (ii)
can be described as follows. If the spikes in neuron σi are exactly sj spikes of type
aj, 1 ≤ j ≤ k, then the rule as11 a

s2
2 · · · a

sk
k → λ can be enabled, which means that all

sj spikes of type aj are removed from neuron σi.

We use the following m×k matrix to describe the initial configuration in ASNP-
MCS systems,

C0 =


n11 n12 · · · n1k

n21 n22 · · · n2k

· · · · · · · · · · · ·
nm1 nm2 · · · nmk


m×k
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where nij is the initial number of spikes of type aj contained in neuron σi, i =
1, 2, . . . ,m, j = 1, 2, . . . , k. Besides, the similar m × k matrix also can describe
the configuration at any time t during the computation. The transitions among
configurations can be therefore defined. One can define a computation with the
sequence of transitions starting from the initial configuration. When there is no rule
which can be applied and no “block” condition happened, the computation halts.

In SNP systems, we can associate any computation (halting or not) with a spike
train: the sequence of zeros and ones describing the behavior whether the output
neuron spikes. Since ASNP-MCS systems work in asynchronous mode, zeros sent
out by the output neuron are normal. Thus, we define the result of a computation
as the number of ones sent out by the output neuron starting from the initial config-
uration. We denote by Ngen(Π) the set of numbers generated by Π, where subscript
gen indicates that the present system works in generating mode. We denote by
NgenASNP-MCSnm the family of all sets Ngen(Π) computed by ASNP-MCS systems
with at most m neurons and at most n rules in every neuron.

An ASNP-MCS system Π can work in accepting mode. There is no output
neuron any more. Instead, the input neuron is added to receive a spike train from
the environment. The system Π begins the computation by reading a spike train
from the environment, and 3Tn spikes of type a is stored in a specific neuron. Denote
by Nacc(Π) the set of numbers accepted by system Π, where subscript acc represents
that the system works in accepting mode. Denote by NaccASNP-MCSnm the family
of all sets Nacc(Π) accepted by ASNP-MCS systems, which have at most m neurons
and at most n rules in every neuron.

3.2 An Example

An example is provided to explain the differences between an SNP-MCS system and
an ASNP-MCS system, shown in Figure 2. SNP-MCS system works in synchronous
mode, while ASNP-MCS system works in asynchronous mode. There are three
neurons, σ1, σ2 and σ3, labeled by 1, 2 and 3 in Figure 2. Neuron σ1 has the spikes
of two types (type a and type b), and it has only one synaptic channel labeled by (1).
Neuron σ3 contains the spikes of two types, however, it has two different synaptic
channels, labeled by (1) and (2). There is only one type of spikes, type a, and
a single synaptic channel labeled by (1) in neuron σ2. Neuron σ1 starts with a spike
of type a, and neuron σ3 starts with a spike of type b. What the mainly difference
between an SNP-MCS system and an ASNP-MCS system is their working mode.

In the synchronous mode, since neuron σ1 initially has a spike of type a and
neuron σ3 initially has a spike of type b, the spikes enable rule a → b(1) and
rule b → a(1) in neurons σ1 and σ3, respectively. Thus, two rules can be applied
simultaneously. Neuron σ1 sends a spike of type b to neuron σ3 via channel (1).
Neuron σ3 emits a spike of type a to neuron σ1 through channel (1). When neuron
σ1 receives a spike of type a from neuron σ3, it can apply rule a → b(1) again.
Similarly, neuron σ3 also receives a spike of type b from neuron σ1 and it can apply
its rule b → a(1), too. Therefore, the two neurons simultaneously fire again and
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(1)
2

1
a

a→b(1)

3

b

b→a(1)

b
2
→a(2)

(2)

(1)
(1)

a→a(1)

Figure 2. An example of spiking neural P systems with multiple channels and symbols

exchange a spike with each other. Repeatedly, in every step, neurons σ1 and σ3 will
exchange a spike, and no spike is sent to the environment. Therefore, there is no
result of the computation.

For the ASNP-MCS system that works in the asynchronous mode, when the
number of spikes in a neuron enables its rule, the neuron can fire its rule at some
time, sooner or later. Here, the rules in neurons σ1 and σ3 are available separately,
but neurons σ1 and σ3 are free to choose a time to fire. Thus, there are three
cases.

Case 1: Neuron σ1 fires before neuron σ3. At first, rule a→ b(1) in neuron σ1 can
be applied, which means that neuron σ1 sends a spike of type b to neuron σ3.
The number of spikes in neuron σ3 has been changed to two spikes of type b,
after receiving a spike sent by neuron σ1. Thus, rule b2 → a(1) can be applied.
At a later time, neuron σ3 fires and sends a spike of type a to neuron σ2 through
channel (2). Rule a→ a(1) in neuron σ2 can be applied when it receives a spike,
and neuron σ2 sends a spike of type a to the environment. In this case, only
one single spike is sent to the environment. Therefore, the computation result
of the system is 1.

Case 2: Neuron σ1 fires later than neuron σ3. Since there is a spike of type b in
neuron σ3, rule b→ a(1) can be applied, and neuron σ1 receives a spike of type
a from neuron σ3 via channel (1). The number of spikes in neuron σ1 are two
now and there is no rule can be applied, thus the computation is blocked. We
can know that there is no any output, thus no any computation result.

Case 3: Neurons σ1 and σ3 fire together. In this case, the running of an ASNP-
MCS system is the same with the situation in synchronous mode at the first
round. So, after the first round, the number of spikes in every neuron is back
to its available state and no spike is sent out. Then, neurons σ1 and σ3 face
a choice again: who want to fire first? And there are also three choices:
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1. If it is the Case 1, neuron σ1 fires before neuron σ3, then a spike will be sent
from the system and the computation will halt. Hence, the final result of
the computation is 1;

2. If it is the Case 2, neuron σ1 fires later than neuron σ3, then there will be
no result in the second round and the computation will be blocked;

3. If it is the Case 3, which means that the two neurons fire together, no spike
will be sent to the environment and the numbers of spikes in neurons σ1 and
σ3 will be back to their available state again.

And then there will be also the three choices again at the next round. The
above situation is repeated again. Therefore, if the neurons choose Case 3 at
the second round, the final computation result of the system will be one of the
following three results: generating the result (number 1), blocked and infinitive
repeat.

From the description above, we know that ASNP-MCS systems, which work in
the asynchronous mode, have more nondeterministic results compared with SNP-
MCS systems.

4 UNIVERSALITY RESULTS

In this section, we will discuss the Turing universality of asynchronous spiking neural
P systems with multiple channels and symbols (ASNP-MCS systems, in short) as
number generating/accepting devices and function computing devices. We prove
the universality by simulating the register machine. The systems proposed can
generate/accept any sets of recursively enumerable numbers (the family of sets of
recursively enumerable numbers is denoted by NRE) and any recursively enumerable
computational function.

We construct an ASNP-MCS system Π to simulate register machine M and the
result computed by M is presented by the number of spikes that the output neuron
sends to the environment. Without loss of generality, two symbols, a and b, are
considered in Π, thus O = {a, b}. INPUT module, ADD module, SUB module and
FIN module are constructed to simulate instructions of M , shown in Figures 3, 4,
5, 6, 7 and 8. If tr is the number of all SUB instructions that act on the same
register r, a constant is defined as follows:

T = 8 ∗max {tr|0 ≤ r ≤ 7} = 8 ∗ t5 = 8 ∗ 4 = 32.

The following rule is used to activate instruction neurons: when instruction neurons
σli , σlj and σlk receive 3T spikes of type b, they will be activated and execute the
corresponding operations. In the process of the computation, the content of register
r is coded by the number of spikes in neuron σr through the following way: if there
is a number n(≥ 0) in register r, then neuron σr has 3Tn spikes of type a, vice
versa.
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Rule b3T → aψ(p)(q) is a formal spiking expression, used in INPUT, ADD, SUB
and FIN modules. It works as follows. When the rule is available, the neuron
consumes 3T spikes of type b and sends ψ(p) spikes of type a to the subsequent
neurons connected with the neuron, where the rule uses channel (q). We define the
function ψ(p) on the sets of instruction symbols as follows:

ψ(p) =


3T, if p is an ADD instruction;

2T + s, if p is ith SUB instruction in all SUB instructions on register r;

1, if p is the output instruction.

In this paper, we use the following way to define the value of s in the SUB
instructions which act on the same register r:

• If the instruction is the first SUB instruction in register r, then s = 1;

• If the instruction is the second SUB instruction in register r, then s = 2;

• If the instruction is the third one in register r, then s = 4;

• If the instruction is the forth one, then s = 9.

For example, there are four SUB instructions acted on register 5 in universal reg-
ister machine Mu, l3 : (SUB(5), l2, l4), l11 : (SUB(5), l12, l13), l12 : (SUB(5), l14, l15),
l14 : (SUB(5), l16, l17). Therefore, because the first SUB instruction in register 5 is
instruction l3 : (SUB(5), l2, l4), the function is ψ(p) = 2T + 1. The second SUB in-
struction is instruction l11 and its function is ψ(p) = 2T + 2. Similarly, the function
of the third SUB instruction, l12 : (SUB(5), l14, l15), is ψ(p) = 2T + 4. The function
of the forth SUB instruction l14 is ψ(p) = 2T + 9.

4.1 ASNP-MCS Systems as Number Generating Devices

Theorem 4.1. NgenASNP-MCS3
∗ = NRE.

Proof. It is only proven that NRE ⊆ NgenASNP-MCS3
∗, because it is obvious for

conclusion NgenASNP-MCS3
∗ ⊆ NRE. To this aim, we characterize NRE by a non-

deterministic register machine M working in generating mode.
In order to prove this conclusion, we construct an ASNP-MCS system Π1 to

simulate the register machine M . The system consists of three parts, ADD module,
SUB module and FIN module, which simulate ADD instruction, SUB instruction
and halting instruction, respectively.

1. ADD module, simulating li : (ADD(r), lj, lk).

The ADD module is shown in Figure 3. Suppose that we simulate instruction
li : (ADD(r), lj, lk) at some time, which means that neuron σli has 3T spikes
of type b and no any spikes are in other neurons except those associated with
registers. The rule b3T → a3T (1) in neuron σli is applied at some time and then
neuron σli sends 3T spikes of type a to neurons σr and σli1 . When neuron σr
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lk

(2)

(1)
li b3T→a3T(1) r

li1

lj

(1)

(1)

a3T→b3T(1)
a3T→b3T(2)

Figure 3. A nondeterministic ADD module

receives the spikes from neuron σli , number 1 is added into the corresponding
register. Two rules in neuron σli1 become available after it receives the spikes
from neuron σli , but one of the two rules can be applied non-deterministically.
If rule a3T → b3T (1) is applied, neuron σlj will receive 3T spikes of type b via
channel (1). If rule a3T → b3T (2) is applied, neuron σli1 will send the spikes to
neuron σlk through channel (2).

As can be seen from above, ADD module can correctly simulate ADD instruc-
tion: starting from 3T spikes of type b in neuron σli , 3T spikes of type a are
added in neuron σr (meaning that the corresponding register r is added by 1),
and one of two instruction neurons, σlj and σlk , receives 3T spikes of type b
non-deterministically.

(b2T)+bq→λ 

for q≥0

a2T+sb2T+s→b3T(1)

a2T+sb3T→b3T(2)

(2)

(1)

li

lj

b3T→a2T+s(1)

r

(1)

lk

a2T+s(a3T)+/a5T+s→b2T+s(1)

a2T+s→b2T+s(2)

(1)

(2)

(1) (1)

(b2T)+bq→λ 

for q≥0

a2T+sb2T+s→b3T(1)

a2T+sb3T→b3T(2)

li1 li2

(1)

(2)

Figure 4. SUB module
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2. SUB module, simulating li : (SUB(r), lj, lk).

This module is shown in Figure 4. Suppose that a SUB instruction is simulated
at some time, 3T spikes of type b are in neuron σli and no spike is in other
neurons except neuron σr (i.e., the multiple of 3Tth spikes in neuron σr is the
number in the corresponding register r). The SUB instruction works as follows.
At some time, neuronσli fires, and then 3T spikes of type b are consumed and
2T+s spikes of type a are produced, and the generated spikes are sent to neurons
σr, σli1 and σli2 via channel (1). Neuron σr fires, at a later time, according to
the number of spikes in it:

(a) If there are several spikes in neuron σr, indicating that the number in register
r is not zero, then rule a2T+s(a3T )+/a5T+s → b2T+s(1) can be applied;

(b) If there is no spike in neuron σr, indicating that the number in register r is
0, then rule a2T+s → b2T+s(2) can be applied. There are the following two
cases.

Case 1: If several spikes are in neuron σr (i.e., the number in register r is
greater than 0), then, at a later time, rule a2T+s(a3T )+/a5T+s → b2T+s(1)
can be applied. Therefore, neuron σr consumes 5T + s spikes of type a and
produces 2T + s spikes of type b, and then it sends the produced spikes to
neuron σli1 by channel (1). As a result, neuron σli1 has 2T + s spikes of type
a sent by neuron σli and 2T + s spikes of type b sent by neuron σr. Hence,
rule a2T+sb2T+s → b3T (1) can be applied. At a later time, neuron σli1 fires
and transmits 3T spikes of type b to neuron σli2 . Neuron σli2 receives 2T + s
spikes of type a sent by neuron σli and 3T spikes of type b sent by neuron
σli1 . So, rule a2T+sb3T → b3T (2) is enabled. At some time, neuron σli2 fires
and emits 3T spikes of type b to neuron σlj .

Case 2: If no spike is in neuron σr, indicating that the number in register r is 0,
then, at a later time, rule a2T+s → b2T+s(2) is applied to send 2T + s spikes
of type b to neuron σli2 via channel (2). Except from receiving 2T + s spikes
of type b, neuron σli2 also receives 2T + s spikes of type a from neuron σli .
Therefore, the spikes in the neuron enable rule a2T+sb2T+s → b3T (1). Then,
at some time, the rule in neuron σli2 is applied to send 3T spikes of type b to
neuron σli1 . With 2T + s spikes of type a and 3T spikes of type b in neuron
σli1 , rule a2T+sb3T → b3T (2) can be used at a later time. Therefore, neuron
σli1 sends 3T spikes of type b to neuron σlk via channel (2).

Note that there is interference between SUB modules and other modules, which
means that the same register could be operated by different instructions. Here
an example is provided to illustrate this question: instructions l11 : (SUB(5), l12,
l13) and l12 : (SUB(5), l14, l15), for instance, all act on the register 5. The SUB
modules that act on the same register, register 5 here, all will receive the spikes
via channel (1) (the number in register is not null) or via channel (2) (the num-
ber in register is 0) from neuron σr. Specifically, suppose that instruction l11
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is activated, so the corresponding neurons in SUB module of instruction l11 is
activated (active neurons, in short), too. Other instructions, like l12 here, are
non-activated, so the corresponding neurons in SUB modules of other instruc-
tions, no instruction l11, are also not activated (passive neurons for short). In-
struction l11 is the second SUB instruction of register 5. Therefore, the function
of its sets of instruction symbols is ψ(p) = 2T + s = 2T + 2. So, neuron σr will
send 2T + 2 spikes of type b to the following neurons which are also connected
with register 5 through channel (1) if register 5 contains numbers. This means,
not only active neuron σl111 (neuron σli1 connects with neuron σr via channel (1)
in the module of l11) but also passive neuron σl121 (neuron σli1 connects with
neuron σr via channel (1) in the module of l12) as well as other passive neurons
that are connected with neuron σr via channel (1) can receive the spikes. For
active neurons, the spikes received are exactly they want. However, the passive
neurons receive the spikes in a wrong way and cannot refuse to accept them
because of the interference between neurons, so we called these spikes, “wrong
spikes”.

We can find that, if neurons σli1 or σli2 receive the “wrong spikes” before the
instruction is activated, then the rule (b2T )+ → bq, q ≥ 0, can be applied, and
neurons σli1 or σli2 will remove the “wrong spikes”. There is also a possible
situation that there still are “wrong spikes” until the instruction is activated.
Therefore, when SUB module of active instruction starts running, neuron σli
emits the spikes to neurons σli1 and σli2 , and no rule in the two neurons can be
used because of the “wrong spikes”. If the “wrong spikes”, new or not, cause
that no rule can be applied in neurons σli1 or σli2 , then the computation is
blocked. Since the system works asynchronously, another “bad” situation must
be considered. Specifically, before the new computation starts, there are still
several “wrong spikes” that are not removed in last computation. In this case,
the new computation will be blocked, too, when neuron σli sends the spikes by
its rule. When the computation is blocked, no spike is sent out. No error results
appear in this situation and the output is the computation result when the
system finally reaches instruction lh. Therefore, the system correctly simulates
the SUB instruction of register machine M .

a(a3T)+/a3T→a(1)
(1)

lh

b3T→a(1)

out

(1)

1

Figure 5. FIN module

3. FIN module, outputting the computation result.

Figure 5 shows this module. Suppose that the computation of M stops at some
time, meaning that M receives the halting instruction. For system Π1, this
indicates neuron σlh receives 3T spikes of type b. Thus, rule b3T → a(1) in
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neuron σlh can be applied at a later time, and then a spike of type a is sent to
the output neuron by channel (1). After receiving the spike from neuron σlh ,
neuron σout transmits a spike of type a to the environment constantly when it
fires continually, until the moment no rule can be applied in the output neuron.
The number of spikes sent to the environment is the results of the computation.

From the description of working modules in system Π1, we know that the register
machine M can be correctly simulated by system Π1 with at most two kinds of spikes
and at most three rules in each neuron. Therefore, the theorem holds. �

4.2 ASNP-MCS Systems as Number Accepting Devices

Theorem 4.2. NaccASNP-MCS3
∗ = NRE.

Proof. Like the proof of Theorem 4.1, we construct an ASNP-MCS system Π2 to
simulate a deterministic register machine M , M = (m,H, l0, lh, I). There are three
parts in system Π2: INPUT module, deterministic ADD module and SUB module.
The INPUT module is used to input a spike train from the environment, shown in
Figure 6. Spike train a2T (a3T )nbT can be read by neuron σin from the environment,
and then 3Tn spikes of type a are stored in neuron σ1, where the multiple of 3T
spikes of type a is n, indicating that the accepted number is n. At some time, neuron
σin reads 2T spikes of type a and several groups of 3T spikes of type a from the
environment. Therefore, rule a2T (a3T )+/a3T → a3T (1) can be applied from reading
the first 3T spikes of type a to receiving last ones. As a result, neuron σin sends 3T
spikes of type a to neuron σ1 via channel (1) once the rule is applied. When neuron
σ1 receives 3T spikes of type a from neuron σin, the number in register is added
by 1. There are two cases before neuron σin reads T spikes of type b.

in

a2T(a3T)+/a3T→a3T(1)
a2TbT(a3T)+/a3T→a3T(1)

a2TbT→b3T(2)

1 l0

(2)(1)

a2T(a3T)nbT

Figure 6. INPUT module

Case 1: Though 3Tn spikes of type a have been read from the environment, there
are still several groups of 3T spikes of type a in neuron σin because of the
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asynchronous mode. After T spikes of type b in spike train are received, rule
a2T (a3T )+bT/a3T → a3T (1) becomes available. Since neuron σin has read all
spikes in the spike train, no new spike comes. Thus, the rule can be applied at
a later time and neuron σin will send the spikes to neuron σ1 every time as the
rule is applied. When all 3Tn spikes of type a are stored in neuron σ1, turn to
Case 2.

Case 2: 3Tn spikes of type a are all stored in neuron σ1. When T spikes of type b
are read or when T spikes of type b have already been in neuron σ1 (the situation
that Case 1 turns to Case 2), there are only 2T spikes of type a and T spikes
of type b left in neuron σin. Hence, rule a2T bT → b3T (2) can be applied at some
time, and 3T spikes of type b will be sent to neuron σl0 via channel (2).

Therefore, neuron σ1 receives 3Tn spikes of type a, which means that the number
stored in register 1 is n. Besides, since neuron σl0 receives 3T spikes of type b, the
system starts to simulate the initial instruction l0 of M .

We also can get something more. Neuron σ1 will receive 3Tn spikes of type a
and neuron σl0 will receive 3T spikes of type b after neuron σin reads the spike train,
a2T (a3T )+bT , from the environment, which means the result of the computation can
be gotten normally without “block” situation.

When a register machine works in accepting mode, its ADD instruction of form
li : (ADD(r), lj) is deterministic. The deterministic ADD module is shown in Fig-
ure 7. Since 3T spikes of type b are in neuron σli , then the neuron fires at a later
time and transmits 3T spikes of type a to neurons σli1 and σr via channel (1). The
number of spikes in neuron σr is added by 3T , which indicates that the number of
the corresponding register is added by 1. After receiving 3T spikes of type a from
neuron σli , neuron σli1 applies the rule, at a later time, to converse 3T spikes of
type a to 3T spikes of type b and sends the generated spikes to neuron σlj . With 3T
spikes of type b in neuron σlj , the system starts to simulate the instruction lj of M .

li b3T→a3T(1)

a3T→b3T(1)li1

r
(1)

(1)

lj

(1)

Figure 7. A deterministic ADD module

SUB module remains unchanged, shown in Figure 4. FIN module is removed,
but the system remains neuron σlh . Since neuron σlh has 3T spikes of type b, the
computation of M reaches instruction lh and halts.
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Based on the discussion above, an ASNP-MCS system with at most three rules
in each neuron can correctly simulate the register machine working in accepting
mode and no “block” happens in INPUT module. Therefore, the theorem holds. �

4.3 ASNP-MCS Systems as Small Universal Function Computing Devices

(1) (2)

in

a2T(a3T)+/a3T→a3T(1)
a2T(a3T)+(b3T)+/a3T→a3T(1)
a2TbT(a3T)+(b3T)+/a3T→a3T(1)

a2T(b3T)+/b3T→b3T(2)
a2TbT(b3T)+/b3T→b3T(2)

a2TbT→a3T(2)

1

l02

(2)(1)

(b3T)+/b3T→a3T(1)
a3T(b3T)+/b3T→a3T(1)

a3T→b3T(2)

a2T(a3T)g(x)(b3T)ybT

li1

Figure 8. INPUT module

In this section, we will investigate the Turing universality of ASNP-MCS systems
as function computing devices. The universality of ASNP-MCS systems will be
proved by simulating a small universal register machine Mu.

Theorem 4.3. There is a small universal ASNP-MCS system with 67 neurons for
computing functions.

Proof. We construct an ASNP-MCS system Π3, including INPUT module, ADD
module, SUB module and FIN module, to simulate a small universal register machine
Mu. The ADD module is the same with ADD module working in accepting mode,
shown in Figure 7. The SUB module is the same with SUB module that works in
accepting mode, shown in Figure 4. The FIN module is the same with FIN module
working in accepting mode, shown in Figure 5. However, the INPUT module is
different from INPUT module that works in accepting mode.
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The INPUT module, shown in Figure 8, is used for reading a spike train
a2T (a3T )g(x)(b3T )ybT from the environment and introducing 3Tg(x) spikes of type
a to neuron σ1 and 3Ty spikes of type a to neuron σ2. At some moment, neuron σin
reads 2T spikes of type a and several groups of 3T spikes of type a from the envi-
ronment. Thus, rule a2T (a3T )+/a3T → a3T (1) can be applied from first 3T spikes
of type a to last ones coming. Notice that neuron σin is free to choose to fire or
not once the rule is activated by the spikes in neuron σin. If neuron σin fires, then
3T spikes of type a are produced and the produced spikes are sent to neuron σ1 by
channel (1). If not, neuron σin goes on reading the next spike in the spike train.
Before the first 3T spikes of type b come into neuron σin, indicating that 3Tg(x)
spikes of type a already have been read, rule a2T (a3T )+/a3T → a3T (1) in neuron σin
can be:

1. No execution, which means that 3Tg(x) spikes of type a are still remained in
neuron σin;

2. Partial execution, meaning that some groups of 3T spikes of type a are still in
neuron σin;

3. Total execution (no 3T spikes of type a in neuron σin). Hence, there are two
cases before the first 3T spikes of type b are received: remaining groups of 3T
spikes of type a or not.

The two cases are considered as follows.

Case 1: All the 3Tg(x) spikes of type a are stored in neuron σ1 by the execution
of the rule and there are only 2T spikes of type a left in neuron σin. At the
period of time when neuron σin reads the following groups of 3T spikes of type
b, rule a2T (b3T )+/b3T → b3T (2) is enabled. Thus, neuron σin fires, at some time,
and then it sends 3T spikes of type b to neuron σli1 . There are two situations
when neuron σin has read all the spikes in the spike train. The two cases are as
follows.

1. All the 3Ty spikes of type b are sent to neuron σli1 by the rule. There are
2T spikes of type a and T spikes of type b left in neuron σin. Therefore, rule
a2T bT → a3T (2) can be applied at a later time. Then, neuron σin transmits
3T spikes of type a to neuron σli1 via channel (2).

2. Several groups of 3T spikes of type b are remained in neuron σin. The
spikes in neuron σin enable rule a2T bT (b3T )+/b3T → b3T (2). Thus, the rule
can be applied whenever the rule is available. After all the 3Ty spikes of
type b are sent to neuron σli1 , rule a2T bT → a3T (2) in neuron σin can be
enabled. Finally, neuron σin sends 3T spikes of type a to neuron σli1 through
channel (2).

Case 2: There are still some groups of 3T spikes of type a in neuron σin. After neu-
ron σin reads the next groups of 3T spikes of type b, rule a2T (a3T )+(b3T )+/a3T →
a3T (1) can be applied. Then, neuron σin fires at some time, sending 3T spikes of



Asynchronous SNP-MCS Systems 943

type a to neuron σ1 through channel (1). At the period of time from reading the
first 3T spikes of type b to last ones coming, rule a2T (a3T )+(b3T )+/a3T → a3T (1)
or rule a2T (b3T )+/b3T → b3T (2) can be applied according to the number of spikes
in the neuron. If all 3Tg(x) spikes of type a are stored in neuron σ1, rule
a2T (b3T )+/b3T → b3T (2) can be enabled. If not, rule a2T (a3T )+(b3T )+/a3T →
a3T (1) can be applied. There are also three situations after T spikes of type b
are read. The three cases are as follows.

1. If all the 3Tg(x) spikes of type a are stored in neuron σ1 and 3Ty spikes of
type b are sent to neuron σli1 , then turn to Case 1 (1).

2. If all the 3Tg(x) spikes of type a are stored in neuron σ1 and 3Ty spikes of
type b are not sent to neuron σli1 , then turn to Case 1 (2).

3. If there are still several groups of 3T spikes of type a in neuron σin, then rule
a2T bT (a3T )+(b3T )+/a3T → a3T (1) can be used until no groups of 3T spikes of
type a are left. Then, turn to Case 1 (2).

After all the 3Tg(x) spikes of type a are stored into neuron σ1, 3Ty spikes of type
b also will be sent to neuron σli1 sequentially. Thus, rule (b3T )+/b3T → a3T (1) in
neuron σli1 can be applied between the period of time that several groups of 3T
spikes of type b are received. Neuron σli1 fires at some time, consuming 3T spikes of
type b, producing 3T spikes of type a and transmitting the produced spikes to neuron
σ2. Notice that neuron σli1 is free to fire or not. There are two cases according to
the number of spikes in neuron σli1 after 3T spikes of type a are received by the
neuron.

1. All the 3Ty spikes of type b in neuron σli1 are processed by rule (b3T )+/b3T →
a3T (1), which means that neuron σ2 received 3Ty spikes of type a (the corre-
sponding number in register 2 is y). Then, rule a3T → b3T (2) can be applied,
at a later time, and neuron σli1 sends 3T spikes of type b to neuron σl0 via
channel (2).

2. There are still some groups of 3T spikes of type b in neuron σli1 . Thus, rule
a3T (b3T )+/b3T → a3T (1) can be used at a later time. Turn to (1) unless all the
3Ty spikes of type b are changed as 3Ty spikes of type a and stored in neuron σ2.

When neuron σl0 receives 3T spikes of type b, the system starts to simulate
initial instruction σl0 of M .

In conclusion, the spikes in neuron σin are processed as follows. When there
are some groups of 3T spikes of type a in neuron σin, rule a2T (a3T )+/a3T → a3T (1)
or rule a2T (a3T )+(b3T )+/a3T → a3T (1) or rule a2T bT (a3T )+(b3T )+/a3T → a3T (1) can
be used first in order to store all the 3Tg(x) spikes of type a in neuron σ1. Then
all the 3Ty spikes of type b in neuron σin are passing into neuron σli1 by rule
a2T (b3T )+/b3T → b3T (2) or rule a2T bT (b3T )+/b3T → b3T (2). When all this is done,
neuron σin finally sends 3T spikes of type a to neuron σli1 . Besides, the spikes in
neuron σli1 are processed as follows. 3Ty spikes of type a are sent to neuron σ2 first
by rule (b3T )+/b3T → a3T (1) or rule a3T (b3T )+/b3T → a3T (1) in neuron σli1 . When
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there are only 3T spikes of type a left in neuron σli1 , rule a3T → b3T (2) can be
applied and the neuron emits 3T spikes of type b to neuron σl0 .

All in all, we can find that 3Tg(x) spikes of type a will be stored in neuron σ1
and 3Ty spikes of type a will be stored in neuron σ2 after neuron σin reads the spike
train a2T (a3T )g(x)(b3T )ybT from the environment. And finally, neuron σl0 will receive
3T spikes of type b. This means there is no “block” situation in this INPUT module.

A total of 67 neurons are used in this system: 8 neurons for 8 registers; 23
neurons for 23 instruction labels; 1 auxiliary neuron for each ADD module, 9 in
total; 2 auxiliary neurons for each SUB module, 26 in total; INPUT module uses
1 auxiliary neuron.

From the description above, we know that ASNP-MCS systems with 67 neurons
can correctly simulate register machine Mu working in computing mode. Therefore,
Theorem 4.3 holds. �

5 CONCLUSIONS AND FUTURE WORK

In this work, we investigated a variant of SNP systems working in the asynchronous
mode, asynchronous spiking neural P systems with multiple channels and symbols
(ASNP-MCS systems for short). Different from regular SNP systems, ASNP-MCS
systems work in the asynchronous mode: neurons are free to fire when their rules
can be applied; if the coming of new spikes causes the rules to be unavailable, the
computation will continue in the new configuration. Different from the existing
asynchronous SNP systems, ASNP-MCS systems have two interesting characters:
multiple channels and multiple symbols. We proved that ASNP-MCS systems as
number generating and accepting devices are Turing universal. Then, we constructed
an ASNP-MCS system with 67 neurons as a small universal function computing
device.

Several open problems still need to be discussed. For example, how to avoid the
“block” situation in asynchronous systems. In the existing work, Song et al. [41]
provided a scheme for solving this problem with the mode of “synchronization”. This
paper has made some attempt to deal with this “block” problem. The features of
multiple channels and multiple symbols can give some help, in accepting/computing
mode, to solve the “block” situation in INPUT module. Some issues remain to
investigate: Can the “block” be solved in SUB module? Is there a small universal
ASNP-MCS system with less neurons?

From the perspective of application, ASNP-MCS systems are the distributed
and parallel computation systems working in the asynchronous mode and have the
feature of multiple channels and the power of dealing with multiple symbols. In
this work, only the discussion of Turing universality of the systems was in our
focus. In the future, we will consider the application of ASNP-MCS systems in
complex problems, for example, high-order dynamic systems and social network in
real-world.
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Efficiency of Minimal Cooperation and Distribution in Polarizationless P Sys-
tems with Active Membranes. Fundamenta Informaticae, Vol. 153, 2017, No. 1-2,
pp. 147–172, doi: 10.3233/fi-2017-1535.

[11] Zhang, X.—Liu, Y.—Luo, B.—Pan, L.: Computational Power of Tissue P Sys-
tems for Generating Control Languages. Information Sciences, Vol. 278, 2014, No. 10,
pp. 285–297, doi: 10.1016/j.ins.2014.03.053.

https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1016/j.tcs.2004.09.013
https://doi.org/10.3217/jucs-010-05-0509
https://doi.org/10.1007/s11047-016-9591-0
https://doi.org/10.15837/ijccc.2009.3.2430
https://doi.org/10.15837/ijccc.2010.2.2478
https://doi.org/10.1016/j.tcs.2016.05.022
https://doi.org/10.3233/fi-2017-1535
https://doi.org/10.1016/j.ins.2014.03.053


946 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang
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