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Abstract. Effectively implementing scientific algorithms in distributed memory
parallel applications is a difficult task for domain scientists, as evident by the large
number of domain-specific languages and libraries available today attempting to
facilitate the process. However, they usually provide a closed set of parallel pat-
terns and are not open for extension without vast modifications to the underlying
system. In this work, we present the AllScale API, a programming interface for
developing distributed memory parallel applications with the ease of shared mem-
ory programming models. The AllScale API is closed for a modification but open
for an extension, allowing new user-defined parallel patterns and data structures
to be implemented based on existing core primitives and therefore fully supported
in the AllScale framework. Focusing on high-level functionality directly offered to
application developers, we present the design advantages of such an API design, de-
tail some of its specifications and evaluate it using three real-world use cases. Our
results show that AllScale decreases the complexity of implementing scientific appli-
cations for distributed memory while attaining comparable or higher performance
compared to MPI reference implementations.
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1 INTRODUCTION

Even with the recent trend of many-core processors providing users with dozens of
cores per chip in a single memory address space, distributed memory systems pose
an essential aspect of HPC in order to achieve large-scale performance for scientific
applications. Although there are certain system architectures that overcome the
issue of distinct memory address spaces by hardware means (e.g. SGI's UV [21]
series using the NumaLink protocol), the conventional approach is still to handle
distinct memory address spaces in the software stack by providing a global address
space in software or by explicit message exchange.

However, most of these ubiquitous software solutions entail several disadvantages
that make them hard to use for domain scientists. Programming interfaces such as
MPI are often too low-level for non-computer science experts and clutter up the
application with a non-domain-relevant source code. On the other hand, there are
high-level domain-specific languages or libraries that lack extensibility in order to
support new scientific problems [4]. In addition, many of these solutions often lack
the composability required for building libraries and integrating them seamlessly
into larger applications, they deny an incremental approach that allows parallelizing
an application step by step, or are limited to shared memory only. Therefore, users
often resort to combining several of these solutions (e.g. MPI4+OpenMP), which
presupposes knowledge in at least two different programming models and entails
a lack of resource management coordination that is left to the user.

In contrast, the AllScale API aims at providing the application developer with
a single, extensible programming interface to express the parallel algorithms on
a high level of abstraction, with automatic support for distributed memory.

The specific contributions of this work are:

e a shared-memory-style API for high-level specifications of algorithms and data
structures with implicit distributed memory support,

e the capability of expressing new algorithms by extending the API with full
compatibility to the rest of the software stack, and

e an evaluation of its programmability and performance using three real-life use
cases.

While documentation and tutorials introducing the novice to the AllScale API
are available onlind'} the remainder of this work focuses on the API specification
and important properties.

The rest of the paper is structured as follows. Section [2] discusses API design
motivation while Section [ and Section [] detail API components. Implementation
information is given in Section [f| Three real-world pilot applications and their
respective API use are presented in Section [f] followed by an evaluation in Section [7}
Related work is discussed in Section [§ and Section [ provides the conclusion and
future work.

! https://github.com/allscale/allscale_api/wiki
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2 API DESIGN
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Figure 1. AllScale API design and usage overview

AllScale aims at providing domain scientists with the ability to write parallel
applications for distributed memory using an API that is as easy to use as shared
memory programming models such as OpenMP. While AllScale consists of many
components including the API, a compiler, a distributed memory runtime system,
and additional components for monitoring, resilience, etc., this work will present the
API in detail. The overall architecture is discussed in detail by Jordan et al. [9].

The AllScale APT is the fagade of the AllScale Environment towards end-user
applications. It provides the necessary primitives to express parallelism, data de-
pendences, and needed synchronization steps within application code. The API is
subdivided into two layers: the AllScale Core API and the AllScale User API. Their
relationship is illustrated in Figure [I] and further discussed in the remainder of this
section.

The Core API provides a concise set of basic generic primitives, comprising par-
allel control flow, synchronization, and communication constructs. It furthermore
offers a generic data item interface that enables automatic data management of
user-defined data structures. The User API is harnessing the expressive power of
the Core API to provide specialized primitives for particular use cases, including
basic constructs like parallel loops or adaptive grids.

The purpose of the subdivision into a Core and User API is to enable the imple-
mentation of a variety of parallel primitives on top of a small, concise set of central
constructs which can be utilized to provide portability among different implementa-
tions of the AllScale Core API. Currently there are two implementations available
within AllScale:

e a shared memory, pure C++ implementation, also referred to as the standard
toolchain, which can be compiled by any C+-+14-compliant compiler with no
further third-party library dependences — this implementation serves as a de-
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velopment platform for AllScale applications and also represents a reference
implementation; and

e the implementation utilizing the AllScale Compiler and Runtime System, also
called the AllScale toolchain, which comprises a combination of static program
analysis (crucial for automatically deriving data dependences required for dis-
tributed memory execution), code generation, scheduling, and resilience tech-
niques to provide a highly scalable and portable implementation of the Core
API on distributed memory systems.

Hence, applications developed within AllScale can be ported from shared to
distributed memory simply by switching the toolchain, without any modifications
required in the application. Additional parallel constructs may be introduced in the
User API without the necessity of altering the underlying Core API implementa-
tion. Thus, the User API layer provides an effective way of extending the range of
supported parallel patterns.

Furthermore, the User API shields application developers from the complexity
of the Core API constructs. Due to the introduction of the User API efficient imple-
mentations of primitives native to the domain of the applications can be provided
by parallelization experts. Therefore, AllScale provides a separation of concerns —
with the overall task of providing efficient parallel codes — distributed among three
contributors:

e the domain erpert, aiming at obtaining the most effective algorithmic solution
for the problem of interest;

e the HPC ezpert, able to develop efficient domain specific primitives to be used
by the domain expert, focusing on e.g. communication and synchronization over-
heads or cache efficiency; and

e the system-level expert focusing on providing the most flexible and portable
implementation of the Core API, hence handling load management, scheduling,
resilience, and hardware management obligations.

The separation of responsibilities also effects the code base. By shielding the
domain expert from all the underlying details (e.g. synchronization, communication,
cache efficiency, scheduling, utilization of low-level parallel APIs), the resulting ap-
plication code remains free of the otherwise necessary management code. This im-
proves the maintainability of the resulting applications and thus the productivity of
the domain expert.

3 CORE API

This section will detail the Core part of the AllScale API, specifically the primi-
tives for parallel control flow and the concept of data items and their requirements.
The User API, discussed in the section thereafter, builds on-top of these basic con-
structs to provide more high-level operations to domain experts. Note that while
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the Core API also offers additional features such as a small performance profiling
tool, discussing those exceeds the scope of this paper.

3.1 Parallel Control Flow

The AllScale Core API provides a single primitive for running concurrent tasks,
resulting in feasible yet profound compiler and runtime system support for automatic
distributed memory management of parallel applications. This single parallelism
primitive forms the basis for all higher-level operators of the User API such as
parallel loops, allowing the User API to be open for extension with new higher-
level operators without any modifications required in the Core API or underlying
compiler and runtime system [10].

This primitive, the prec [12] operator, is a higher order function combining three
given functions into a new, recursive function. The three combined input functions
are:

e a function testing for the base case of a recursion,
e a function processing the base case of a recursion, and

e a function processing the recursive step case.

The result is a new recursive function which, for a given input parameter, conducts
the specified computation accordingly. To support an arbitrary input type, the prec
operator has the type

a — bool,
a— B, — (a — treeture(B3))
(o, 0 — treeture(3)) — treeture(s)

where « is the parameter type of the resulting recursive function and treeture(s) is
a parameterized abstract data type (ADT) modeling a handle on parallel tasks. The
three parameters of the prec operator are the input functions discussed above. The
resulting value of type o — treeture(/3) is a function which, upon invocation, spawns
a new task conducting the specified recursive operation in parallel. The resulting
task handle can be utilized to orchestrate the parallel execution of additional tasks.
A more in-depth discussion of ADTs can be found online [IT].

3.2 Data Structure Primitives

While the parallel control flow primitive has been covered so far, it is not sufficient to
compose parallel applications for distributed memory. In order to properly manage
data dependences for parallel tasks executed in distinct memory address spaces,
a specification for user-defined data structures needs to be defined as well. The
purpose of this specification is to provide a single generic interface for HPC experts
to implement new user-defined data structures while offering management access to
the underlying runtime system for data distribution.
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To this end, the data structure primitives offered by the Core API are a mere
specification of any potential data type’s interfaces and behaviors. Any data type T
to be managed by an AllScale API implementation must provide a fragment type F'
for managing data storage and a range type R for addressing and managing sub-
ranges of the data structure. Table [I]lists the operators required to be defined by F
and R. Proper implementation of these operators for any arbitrary data structure
ensures its suitability for automatic distributed data management by the AllScale
Compiler and Runtime System. Several examples that implement widely-used data
structures such as grids are discussed in Section [I.2] while their implementation,
among others, can be found onlineﬂ.

Name ‘ Type ‘ Description
Fragment

create R—F creates a fragment covering (at least) the speci-
fied range

delete F — unit deletes the given fragment

resize (F,R) — unit alters the capacity of given fragment F' to cover
at least the range R

mask F—-T provides access to the data stored in fragment F'
via the interface defined by type T

extract (F, R) — Archive extracts the data addressed by R from frag-

ment F and packs it into an archive; Archive
is a generic type of a utility provided by the API
implementations to serialize data to be trans-
ferred between address spaces

insert (F, R, Archive) — unit | imports the data stored in the given archive into
fragment F at the specified range R
Range
union (R,R)—= R computes the union of two ranges
intersect | (R,R) = R computes the intersection of two ranges
difference | (R,R) = R computes the set difference of two ranges
empty (R) = bool determines whether the given range is empty,
thus addressing no elements
pack (R) — Archive serializes instances
unpack (Archive) = R deserializes instances

Table 1. Operators to be defined by fragment F and range R types of an AllScale data
structure

3.3 10 Primitives

All sensible applications require input/output (I10) for their operations. While high-
performance IO is a research topic on its own, the Core API offers basic primitives

2 https://git.io/£j4Xj


https://git.io/fj4Xj

814 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

to facilitate high-performance IO while keeping actual implementations abstract. To
that end, the Core API provides two means for storage interaction:

e stream-based, providing unordered input and output facilities, facilitating e.g.
the writing of simulation results to output streams,

e memory-mapped, providing read-only facilities for efficient random access within
large data sets.

Their individual discussion in Section B3] and Section B.3.2 illustrates the
need for two separate components that match the different requirements while still
providing efficient operations.

3.3.1 Stream-Based

The underlying concept of the AllScale stream-based 10 interface is an out-of-order
stream. Data entries can be atomically read from or written to such a stream.
However, the order in which entries show up in the stream is undefined. Although
tasks may be restricted due to imposed synchronization constraints to write data
in a certain order to a stream pointing e.g. to a file, the resulting file may contain
the written data in an arbitrary order. Furthermore, the API only guarantees the
eventual visibility of a written element within an output stream, before the ap-
plication terminates — not any particular timing. Thus, in particular, stream 10
primitives may not be mis-used for implementing synchronization operations among
tasks (nor are they required for this purpose for applications that adhere to the
AllScale programming model).

Within the API we utilize the abstract types istream and ostream as a repre-
sentation of an input or output stream. Table [] lists the operations provided by
stream-based 10.

Streams are designed to be the main facility to be utilized by application devel-
opers to produce output data without the artificial introduction of extra synchro-
nization overhead. Furthermore, the abstraction to streams, their global addressing
through names, and the lack of guarantees on the output order enables the flexible
migration of tasks throughout the system. Tasks holding a stream to a file X on some
node may be moved to another node, where they get assigned a new stream pointing
to the logically same file. However, in reality the stream may point to a physically
different output file maintained by the local runtime process. The concatenation of
all the locally maintained output files controlled by the various AllScale Runtime
System instances on a system are logically forming the actual output file. Thus, no
synchronization beyond the boundaries of an AllScale node is required to facilitate
streaming 10.

3.3.2 Memory-Mapped

In some cases, quite complex input data structures need to be handled. For instance,
indexed files providing efficient access to desired sub-fractions may be loaded by
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Description

read

atomic

write

atomic

create_in

create_out

get_in

get_out

(istream) — «

istream,
(istream) — unit

) — unit
(ostream, &) — unit

ostream,

( (ostream) — unit > — unit

(string) — istream

(string) — ostream

(string) — istream

(string) — ostream

atomically reads an element of type «
from the given input stream

An operator providing atomic access to
an input stream, enabling the provided
function to read a sequence of consecu-
tive elements in order

atomically writes the given element of
type « to the given output stream,
where it will be visible eventually

An operator providing atomic access to
an output stream, enabling the pro-
vided function to write a sequence of
consecutive elements in order

opens an input file with the given name
and provides a stream to read from
it; the file format is implementation-
specific and data may only be read and
written using the AllScale IO API
creates a new empty file under the given
name and provides an output stream to
write information to the file; the file for-
mat is implementation specific and may
only be read using AllScale IO primi-
tives

obtains an input stream to a previously
opened input file which might be con-
currently read

obtains an output stream of a previ-
ously opened output file which might be
concurrently written to

Table 2. Operations supported by stream-based 10

an application. Since the sequential access through streams would impose a major
performance penalty for accessing such files, memory-mapped 10 is offered for read
only files. It provides the means for efficient random read-only access of sub-sets of
larger data, with open files available in the address spaces of all AllScale runtime
system processes.

The abstract type referencing a memory-mapped IO file is mmfile. Table [3] lists
the operations provided by memory-mapped IO.

Opening and closing memory-mapped files is a global operation throughout the
system. Once a file is opened, it is available within the address spaces of all runtime
system processes, although not necessarily at the same address range. The task
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Name | Type Description

open (string) — mmfile | globally opens a memory-mapped file with the given path

get (string) — mmfile | obtains a reference to a previously opened memory-
mapped file

access | (mmfile) —» « interprets the content of the memory-mapped file as
a value of type «

close (mmfile) — unit globally closes a memory-mapped file such that it is no
longer available for any process in the application

Table 3. Operations supported by memory-mapped 10

migration of the runtime system ensures that references to such files are adapted
accordingly whenever a task is migrated between nodes.

Memory-mapped 10 is mainly considered a facility for special use cases in the
construction of efficient data structures within the User API layer. An example is
the static graph structure of a mesh (see Section . While it might also be
utilized by the end user, it will always be strictly limited to read-only use cases.
Write operations are restricted to the steam-based 10 API.

4 USER API

The generic nature of the Core API exceeds the complexity which could be effec-
tively handled by domain experts for implementing parallel algorithms. For this
reason, the AllScale User API aims at providing a set of more user-friendly, higher-
level constructs for the composition of parallel applications by domain experts. The
implementation of these constructs is carried out by HPC experts utilizing the prim-
itives offered by the Core API.

4.1 Parallel Control Flow Constructs

While the User API is open for extension with new parallel patterns as required,
several frequently-occurring patterns such as parallel loops are already provided and
discussed below.

4.1.1 Parallel Loops

A vast majority of algorithms expressing data parallelism rely on parallel loops.
They provide the means to perform computational work in an iteration space in
parallel at the cost of executing the individual iterations concurrently and in an ar-
bitrary order. To that end, the User API offers a parallel loop construct for realizing
data-parallel programming within the AllScale environment.

Let iterator be a random access iterator. Then the pfor operator provides a par-
allel loop execution with the parameters defined in Table[d]l Figure 2 shows a sample
usage of the pfor operator with fine-grained synchronization. Several of these syn-
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chronization patterns are available, such as neighborhood_sync or one_on_one. HPC
experts are free to extend these by new patterns not yet covered.

Name ‘ Type ‘ Description

begin iterator inclusive beginning of the iterator range

end iterator exclusive end of the iterator range

body (iterator) — B | the function applied to each element

dependence | dep(iterator) optional dependence for fine-grained synchronization

Table 4. Parameters of the pfor operator

1 #include <array>
2 #include <allscale/api/user/algorithm/pfor.h>
3 namespace alg = allscale::api::user::algorithm;
4 using ArrayType = std::array<int,N>;
5 const int N = 200;
6 void initAndIncrement(const ArrayType& data, ArrayType& output) {
7 auto ref = alg::pfor(0,N,[&](int 1) {
8 outputli] = ...; // initialization
9 9k
10 alg::pfor(1,N—1,[&](int 1) {
11 output[i] += data[i+1] + data[i] + data[i—1];
12 }, alg:meighborhood_sync(ref));
13 }

Figure 2. Two pfor operators initializing and incrementing data in a std::array with fine-
grained synchronization. The second pfor will execute iteration 7 after the first has finished
its iterations i — 1, ¢, and ¢ + 1. Constructs specific to the AllScale APT are shown in blue
and underlined.

4.1.2 Recursive Space/Time Decomposition

A frequently utilized template for large-scale high-performance applications are sten-
cils. In a stencil-based application, an update operation is iteratively applied to the
elements of an n-dimensional array of cells. Thereby, for each update, the update
operation is combining the previous values of cells within a locally confined area
surrounding the targeted cell location to obtain the updated value for the targeted
cell. Since these update operations within a single update step (also known as
timestep) are independent, this application pattern provides a valuable source for
parallelism within a correspondingly shaped application. The User API offers the
stencil operator, the parameters of which are defined in Table 5



818

P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

Name Type Description

timesteps int number of time steps to be com-
puted

size int"™ spatial size of n-dimensional

kernel function

(int, int™, @175 ) —

data to be processed
update function accepting cur-

rent time, location, and grid,
computing the resulting value
compile-time-constant list of off-
sets to cells accessed by kernel,
determining its shape

kernel shape (int™)*

boundary function (int, int™, aS1% 750 ) — update function for boundary
cases, where some elements are
outside the grid
initialization function | (int") — « computes initial value for cell at
given coordinate
(int™, o) — unit function consuming value of cell

at the end of a computation

finalization function

observers list of pairs, each describing
an observer with time/location
filtering function and actual

trigger function to be applied

< (int, int™) — bool, >*

(int, int", o) — unit

Table 5. Parameters of the stencil operator

4.1.3 Additional Operations

Beyond the pfor and stencil operators presented thus far, the User API offers ad-
ditional parallel operations that are frequently encountered in parallel applications.
These include e.g. the map-reduce operator for data aggregation, the async opera-
tor for single tasks, or the veycle operator for multi-grid methods. However, a more
detailed presentation is omitted for brevity.

4.2 Data Structures

4.2.1 Grid

A frequently-encountered data structure in high-performance codes is formed by
n-dimensional arrays of values. While many programming languages support such
structures for arbitrary dimensions, C/C++ only supports one-dimensional, dy-
namically sized arrays natively. However, this leaves creation and management of
these structures to the user, forming a major obstacle for the usability of C++ on
distributed memory systems.

To ease the use of C++ for use cases depending on such structures, the AllScale
User API provides a uniform Grid data structure providing the following features:
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e regular n-dimensional array of runtime-defined size,

e cfficient read/write random access operators,

o efficient scan operation (processing all elements),

e type-parameterized in element type and no. of dimensions,

e enforces the serializability of its element types,

e implements data item concept for automated distribution.

Let Grid{a,n) be the abstract data type family implemented by the AllScale

User API to represent n-dimensional grids, where « is a type variable specifying the

element type. Furthermore, let type{a) be the meta type of type a. Then Table |§|
lists the operators defined on Grid data structures.

Name Type Description
create ( ty].)e<§ » ) — Grid(o,n) creates new n-dimensional grid with el-
nt ement type « of given size
destroy | (Grid{a,n) —) unit deletes given grid
read ( Grid( O:l n) ) -« reads element from given grid at spec-
it . .
ified coordinates
Grid{a,n),
write int", — unit updates element within given grid at
« specified coordinates
nt",
scan nt", — treeture{unit) | applies given function (in parallel) to
(int") — B all elements of given interval in arbi-
trary order

Table 6. Operators defined on Grid data structures

Figure [3 illustrates the use of such a Grid data structure. In this case,
Grid<int,2> (type 7', as described in Section offers operators for access-
ing elements within a two-dimensional structure, indexed by coordinates of type
GridRegion (line 7, the type is not explicitly visible in this example code).
GridRegion is the corresponding range type R of T and holds a conjunction of 2D-
coordinate pairs describing axis-aligned boxes covering the range to be described —in
this case a single point at position {7,9}. An instance of type
GridFragment<double, 2> (the corresponding fragment type F of T', generally not
visible in user code) realizes the actual storage of fragments of the data stored in Grid
instances; the implementation may hold a reference to allocated memory plus the
coordinates of the covered ranges. For further reference, the Grid implementation
of types T', R and F is available onlineﬂ.

3 mttps://git.io/JUCIF
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#include <allscale/api/user/data/grid.h>

// create a two—dimensional grid of integers of size 10x20
allscale::api::user::data::Grid<int, 2> grid({10,20});

// initialize all elements with 1.0

grid.pforEach([](int& element) { element = 1.0; });

// set element at position [7,9] to 5.0

grid[{7,9}] = 5.0;

N O U W N

Figure 3. Example usage of the Grid data structure

4.2.2 Adaptive Grid

The Adaptive Grid is an advanced variant of the Grid structure also frequently
encountered within a simulation code. In addition to the properties of Grid, the
Adaptive Grid provides means to nest grids within grid cells. For a given instance,
each top-level grid cell contains an identically structured fixed-length sequence of
grids. The first of those contains a single cell. Every consecutive grid contains
a multiple number of cells per dimension of its predecessor. Each top-level grid cell
comprising the sequence of its nested grids is referred to as an Adaptive Grid Cell.

Let AGrid{c,n,[r1,...,7]) be the ADT family implemented by the AllScale
User API to represent n-dimensional Adaptive Grids, where « is a type variable
specifying the element type, 71, ..., the refinement factors, and [ the number of
refinement levels. Thus, the size of the grid at level i is defined by

_ [1,....1] € int", ifi=0,
s(i) =

s(i— 1) *my, otherwise.

To address elements within an Adaptive Grid an extension of Grid coordinates
is required. While elements within a Grid can be addressed using a single coordinate
of type int", the Adaptive Grid requires information regarding the location of the
addressed element in the nested grid structure. Thus, additional coordinates to
navigate through these refinement layers are required. Hence, to address an element
within an Adaptive Grid, a hierarchical coordinate of type (int")* is required. For
instance, the coordinate [[7, 3], [2,4], [8, 2]] addresses the element located within the
cell that can be reached by navigating first to the top-level cell [7, 3], continuing to
cell [2,4] of its first refinement layer, and ending up within cell [8,2] of the second
refinement layer. Let seq(r1,...,r;) be the static meta-type of a sequence of integers
T1,...,7, then Table[7]lists the operators defined on Adaptive Grid data structures.

4.2.3 Unstructured Mesh

The Mesh data structure is designed to represent a graph structure of multiple node
types that are connected through various types of edges. Furthermore, a Mesh may
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Name Type Description
type(a),
create nt", — AGrid(a,n,[r1,...,m]) | creates new n-dimensio-
seq(ry,...,m) nal adaptive grid with el-
ement type a of given
size and grid cell struc-
ture
destroy | (AGrid{a,n,[r1,...,7])) — unit deletes the given adap-
tive grid
read ( AGrid{e, ,n’ [, mal), ) — o reads element from given
(int")* . . .
grid at specified hierar-
chical coordinates
AGrid{a,n, [r1,...,r]),
write (int™) T, — unit updates element within
« given grid at specified hi-
erarchical coordinates
AGrid{a,n, [r1,...,r]),
refine (int™) T, — unit refines resolution of cell
Grid(a,n) addressed by given hier-
archical coordinate by in-
serting given grid data as
refinement information
AGrid{a, n,[r1,...,r]),
coarsen (int") T, — unit coarsens resolution of
@ cell addressed by given
hierarchical coordinate
and inserting given value
data as coarsened infor-
mation
getLevel ( AGMd<a’ﬂ’ty[lr1+’ —il)s ) — int gets currently active res-
(int?) olution level at a speci-
fied hierarchical grid po-
sition
int™,
nt" ) . . . .
scan ’ — treeture{unit) | applies given function (in

AGrid{a,n,[ry, ...

7rl]>7

((int")*) =

parallel) to all active hi-
erarchical coordinates of
a given interval in an ar-
bitrary order

Table 7. Operators defined on Adaptive Grid data structures
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consist of several layers, which describe the same graph in different levels of detail.
Hierarchical edges may connect the same nodes of different layers.

Besides the topological information maintained by Mesh instances, means to
maintain attributes associated to nodes, edges, and hierarchical edges within a Mesh
need to be included. For instance, node IDs, coordinates, volumes, temperatures,
and other domain space specific properties may be incorporated through this facility.

Let ny, ..., ny, be a list of node types, ey, ..., ex € {n1,...,n,}? a list of edge
types, and hy, ..., hy € {ny,...,n,,}? alist of hierarchical edge types. Then the type
Mesh{[n1,...,nml,[e1,. .., ek, [h1,. .., ho),1) represents the type of a Mesh structure
including the given node, edge, and hierarchical edge types on [ layers. Furthermore,
let id(c,l) be an identifier for an element of type « on layer [ within a Mesh — thus
the type of ID used for addressing nodes, edges, or hierarchical edges within meshes.
Also, let MData(n,l, ) be the type of an attribute collection associating values of
type a to nodes of type n located on layer [ of some Mesh instance. Finally, let
MBuilder([ny, ..., nm), €1, ..., €], [P, ..., ho),[) be the type of construction utility
for creating meshes. Then Table [§] lists the operations defined on these types.

5 IMPLEMENTATION

The AllScale API is based on C++, which allows the re-use of existing tools such
as debuggers, and makes heavy use of template-based meta-programming. This
built-in language feature of C++ enables the scripted generation of code during
compilation. Widely utilized examples include the generation of data structures like
vectors, sets, or maps specialized to specific type parameters. However, the capabil-
ities of this feature reach much further. It also enables the generic implementation
of primitives, where a single primitive may cover a wide range of use cases, without
the introduction of any abstraction overhead. All primitives of the AllScale Core
API are generic primitives, making heavy use of C++ meta-programming features
for the automated synthetization of program code. The same applies for all AllScale
User API constructs, to improve their (re-)usability and flexibility.

In addition, the standard toolchain implementation of the API only requires
a C++14-compliant compiler and standard library (e.g. recent versions of GCC,
Clang, Apple-Clang, and Visual Studio), and hence supports application develop-
ment on at least three different operating systems (Linux, OS X, Windows). In order
to mitigate the initial adoption barrier of porting applications to AllScale, an SDK
comprising a build system infrastructure and setup scripts is providedﬁ

6 USE CASES

This section presents our real-world pilot applications that build on the AllScale
APL. The first, iPIC3D [I4], is a particle-in-cell simulation code developed together
with KTH Stockholm and employs multiple pfor operators and 3-dimensional Grid

4 mttps://github.com/allscale/allscale_sdk
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type(s),

to every instance of se-
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Name | Type | Description
Mesh Builder
create (type(Mesh{n, e, h,l))) — MBuilder{n,e, h,l) creates  builder  for
a given mesh type;
intially, mesh is empty
destroy (MBuilder{n, e, h,1)) — unit destroys builder instance
MBuilder{[ny,...,nm],e, h,l),
addNode type(n), — id(n, i) creates a new node of
type(i) a given type n on a given
level ¢ within mesh under
construction
MBuilder(n, [(n1a,n1b), - - -, (Nka, nkb)]s By 1),
link 1d(Nia, J), — unit ads edge to mesh under
id(nav, j) construction
MBUild6T<TL7 €, [(nlﬂw Tl]b), ceey (nﬂﬂw Tlob)], l>’
link id(nia, j + 1), — unit adds hierarchical edge to
td(nip, ) mesh under construction
toMesh (MBuilder(n, e, h,l)) — Mesh(n, e, h,l) obtains a copy of mesh
under construction
Mesh Structure
store (Mesh{n,e, h,1)) — byte* serializes mesh
*
load type(Mzgliffn:e,h,l)) ) — Mesh{n, e, h,l) deserializes given byte
array to mesh
destroy (Mesh{n,e, h,l)) — unit destroys given mesh
M@Sh(’ﬂ, [(Tlla, nlb)7 sy (”km nkb)]7 hv l>’
getNeighbors type(nia, niv), — id(nip, j) * obtains a list of neigh-
id(nia, J) bors of the given node
following given kind of
edge
Mesh(n, e, [(h1a, h1b), - ., (hoa, hob)], 1),
getParents type(hia, hiv), — id(hi, j + 1) * | obtains a list of parents
td(hia, j) of the given node follow-
ing given kind of hierar-
chical edge
Mesh{n, e, [(hia, h1b), - - -, (hoa, hob)], 1),
getChildren type(hia, hiv), — id(hia,j — 1) *| obtains a list of children
id(hip, J) of the given node follow-
ing given kind of hierar-
chical edge
Mesh([n1,...,nml, e, h,1),
scan tfy’:ég.g)” — treeture(unit) applies g'}ven operation
(id(ns, ) — B to every instance of se-
lected node type on se-
lected level within given
mesh
Mesh(n, [(nlﬂynlb)v SR (nkmnkb)]’ h, l>7
scan typ ei(n”’,”“’»’ — treeture{unit) | applies given operation
(id(nia ]ff;éii; ) =8 to every instance of se-
i ’ lected edge type on se-
lected level within given
mesh
Mesh(n, e, [(n1a,n18), - - -, (Toa, Mab)], 1),
scan ( type((nm,'nw)% — treeture(unit) | applies given operation

(id{nia, j + 1), id{ni, j)) — B

lected hierarchical edge
type on selected pair
of adjacent levels within
given mesh
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Mesh Data
( Mesh{[nn, -]y & B ),

tz};;i(?)), — MData(n;, j, ) creates attribute storage
t‘ype<(x)7 associating value of type
a to each node instance
of type n; on layer j
present in given mesh
destroy (MData{n,l, o)) — unit deletes attribute storage
read < MD(;Z(Zfln’l;’a>’ > -« retrieves value of at-
’ tribute  associated to
given node from given
attribute store

create

tribute associated to
given node in given
attribute store

MData(n,l, o),
write id(n, 1), — unit updates value of at-
a

Table 8. Operators defined on Mesh builder, Mesh structure and Mesh data

data structures. The second, AMDADOS [2], is an advection-diffusion code devel-
oped together with IBM Research Ireland and uses a 2-dimensional stencil operator
and adaptive grid structure. While the full implementation of these applications
is available online with an in-depth discussion available in literature [17], we only
present code excerpts of the main computation here for brevity.

6.1 iPIC3D

The iPIC3D pilot application is an iterative particle-in-cell space weather simulation
code and its main computation loop is shown in Figure Its underlying data
structure is a 3-dimensional regular equidistant Grid (line 13) where each element
is a cell representing a cuboid and maintaining a dynamically-sized list of particles
(line 8) located in this cuboid. Furthermore, each particle stores physical properties
such as location, velocity, charge, and mass.

In each iteration of the simulation, the physical effects of the particles are ag-
gregated to compute a set of induced force fields (lines 21-26). These force fields
are also represented by 3-dimensional Grid structures (lines 9 and 14). In a next
step, electromagnetic field equations are solved (lines 27-29), the forces affecting
each particle’s position and velocity are computed and the particles are updated
accordingly (lines 35-37). Particles moving beyond the boundary of a cell need to
be migrated (lines 33-35) to the respective target cell, which can be any of 26 neigh-
bor cells. Once the migration of particles is completed, the next iteration can be
computed.

The simulation is set up such that particles may never move fast enough to skip
a full cell over the duration of a single time step (= iteration step). This property is
effectively restricting communication patterns, such that e.g. regions that are n cells
apart may differ in their simulation time by up to n time steps. It also localizes
communication since particles may only be exchanged between adjacent cells.
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unsigned numSteps = ...; // number of time steps
auto zero = utils::Coordinate<3>(0); // point of origin
auto size = ...; // size of domain

namespace alg = allscale::api::user::algorithm;

namespace data = allscale::api::user::data;

struct Cell { std::vector<Particle> particles; };

struct FieldNode { ... // electric and magnetic field components };
struct DensityNode { Vector3<double> J; // current density };

// 8D grids for cells, electromagnetic field and current density

data::Grid<Cell, 3> cells = ...;
data::Grid<FieldNode,3> field = ...;
data::Grid<DensityNode,3> density = ...;

// create a grid of buffers for density projection from particles to grid nodes

data::Grid<DensityNode> densityContributions(size * 2);

// run time loop for the simulation
for(unsigned i = 0; i < numSteps; ++i) {
alg::pfor(zero, size, [&](const utils::Coordinate<3>& pos) {
//STEP 1a: collect particle density contributions and store in
buffers
particleToFieldProjector(cells[pos], pos, densityContributions); });
alg::pfor(zero, density.size(), [&](const utils::Coordinate<3>& pos) {
// STEP 1b: aggregate density in buffers to density nodes
aggregateDensity Contributions(densityContributions, pos, density|
pos|); });
alg::pfor(fieldStart, fieldEnd, [&](const utils::Coordinate<3>& pos){
// STEP 2: solve electromagnetic field equations
fieldSolver(pos, density, field); });
alg::pfor(zero, size, [&](const utils::Coordinate<3>& pos){
// STEP 3: project forces to particles and move particles
particleMover(cells[pos], pos, field, particleTransfers); });
alg::pfor(zero, size, [&](const utils::Coordinate<3>& pos){
// STEP J: transfer particles into destination cells
transferParticles(cells[pos], pos, particleTransfers); });

Figure 4. Code excerpt of main data structures and simulation loop of iPIC3D. The full
code is available online at https://github.com/allscale/allscale_ipic3d.
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These major simulation steps are all parallel update operations using higher-
dimensional variations of the pfor operator. Thus, the resulting simulation code is
structured like a list of update loops, enclosed within a single time step loop.

A crucial step for distributed memory implementations is the exchange of parti-
cles and field strength values among adjacent cells. The original iPIC3D implemen-
tation requires three synchronization steps for each time step based on explicit halo
cell updates. The AllScale Toolchain integrates those exchanges implicitly, trans-
parent to the application developer, and overlaps computation and communication
to reduce the impact of necessary synchronization steps.

6.2 AMDADOS

AMDADOS is a numerical simulation of an oil spill, with an excerpt of the main com-
putation code shown in Figure[5] It is based on a 2-dimensional stencil (lines 20-44)
and incorporates data assimilation events (line 28) using external sensor data
(line 16) in order to mitigate simulation errors. The basic data structure of this
application is a regular, Adaptive Grid (line 18). The number of refinement levels is
a compile-time constant and can be hard coded within the application (lines 4-8).
However, coarsening and refinement steps are applied dynamically during execution
based on the state of the simulation as well as data assimilation events (inside the
functions called in lines 26 and 28, not shown in detail here).

The resolution refinement follows a hierarchical pattern. On the top level, a fixed
size, regular 2D grid defines the domain of the overall simulated area. Each of
these top-level cells (also called sub-domains) may then be itself recursively sub-
divided into small regular grids, up to a statically fixed maximum resolution. The
simulation algorithm updates each sub-domain independently for a single time step
at the currently active level of resolution. This update operation may take several
iterations, yet does not necessitate the exchange of any information with neighboring
sub-domains. Once complete, boundary information is exchanged between adjacent
sub-domains. Thus, sub-domains being n top-level cell-widths apart may be n time
steps apart in their simulation time.

While this application could be implemented using the pfor operator, this would
lead to a flat parallelism structure with synchronization enforced at the end of each
time step. For this reason, it utilizes the stencil operator instead, which exposes
recursive space-time decomposition and allows multiple time steps on spatially suf-
ficiently separated sub-domains to be computed in parallel — sub-domains being
n global cell-widths apart may be n time steps apart in their simulation time. In
addition, it shows the observer functionality of the stencil operator, which allows
for time- and space-controlled output of the simulation state.

The assimilation of data (line 28) is an optional step after the completion of
an update of a sub-domain. In this case, the solution obtained for the processed
sub-domain is combined with some externally obtained measurement before the
simulation continues with the mutual exchange of information among adjacent cells
and the next simulation time step.
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namespace alg = algorithm;
namespace alg = data;

typedef data::CellConfig<2, data::layers<
data::layer<1,1>, // layer 2, size 1 x 1
data::layer<8,8>, // layer 1, size 8 z 8
data::layer<2,2> // layer 0, size 16 z 16
>> subdomain_config_t;

using subdomain_t = data::AdaptiveGridCell<double, subdomain_config_t
>3
using domain_t = data::Grid<subdomain_t, 2>;

struct Sensor { ... };

// 2D grid of sensor data
const data::Grid<Sensor, 2> sensors = ...;

const size_t Nt = ...; // number of time steps
domain_t state_field = ...; // 2D grid of sub—domains constitutes entire
domain

alg::stencil(state_field, Nt,

[&,Nt](time_t t, const point2d_t& idx, const domain_t& state)

—> const subdomain_t

{ // Computation of subdomains
subdomain_t temp_field;
if(contexts|idx].sensors.empty()) // subdomain without sensors
SubdomNoSensors(t, state, temp_field, contexts[idx], idx);
else // subdomain with sensors, assimilation occurs
SubdomKalman(sensors[idx], t, state, temp_field, contexts[idx], idx);
return temp _field;

}7

alg::observer( // Monitoring: periodically write full subdomain to file
[=](time_t t) { return (t % output_interval == 0); // time filter },
[J(const point2d_t&) { return true; // Space filter: no constraints

// Append a full field to the file of simulation results.
[&](time_t t, const point2d_t& idx, const subdomain_t& cell) {
cell.forAllActiveNodes([&](const point2d_t& loc, double val) {
point2d_t glo = computeGloballndex(loc, idx);
out_stream.atomic([=](auto& file) {
file << ... << ”\n”; // write output data

};
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41 b
42 }
13 )

44 )i

Figure 5. Code excerpt of the main stencil computation of AMDADOS. The full code is
available online at https://github.com/allscale/allscale_amdadosl|

An assimilation operation, however, is orders of magnitudes more complex than
a mere simulation time step for the same sub-domain. These trigger load imbalance
that has to be dealt with. Thus the application consists of fixed-size subdomains
with two levels of varying computational expenses:

e coarsely resolved sub-domains incur less computational workload than finer re-
solved sub-domains,

e optional data assimilation steps on sub-domains incur significantly additional,
sporadic computational costs.

6.3 FINE/Open

The FINE/Open application is a computational fluid dynamics (CFD) solver de-
veloped by NUMECA [16]. The underlying data structure is a static, unstructured
Mesh comprising objects such as cells, faces, edges, nodes, or boundary faces. The
computation is based on a vcycle, which is further detailed below.

While it is not possible to show the actual implementation of FINE/Open due to
non-disclosure concerns, Figure [f] shows a basic code example which is built on-top
of the same Mesh data structure and also performs computations using the vcycle
operator. The geometric information is covered by a list of relations connecting
cells, faces and vertices (line 3 and lines 5-9) with each other (e.g. a relation of
a cell to its faces). These relations can be easily navigated by templated member
functions (lines 45-46, 51 and 53). Note that the type system of C++ ensures
proper object navigation during compile-time (e.g., attempting to illegally access
a vertex from a face would result in a compiler error). Furthermore, for each object,
a set of properties influencing the simulation is maintained (lines 13-16). These may
comprise static information like e.g. the volume of a cell or dynamic information such
as the heat flow through a face. The latter is the state of the conducted simulation
and the result end users are interested in. Finally, to aid the effective computation
of the desired solution, multiple meshes describing the same objects in different
resolutions are combined into a hierarchy of meshes to enable the use of multi-grid
solvers (lines 39-60). The hierarchy of meshes can be navigated via hierarchical
edges (line 11).

In each simulation step, updates to the various properties associated to the mesh
objects are conducted. Updates start in the mesh layer exhibiting the finest resolu-
tion. Thereby, physical effects are propagated through the connections between the
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using namespace allscale::api::user;

// — elements —

struct Cell {}; struct Face {}; struct Vertex {};

// — edges

struct Cell2Vertex : public data::edge<Cell, Vertex> {};

struct Cell2Face In : public data::edge<Cell, Face> {};

struct Cell2Face_Out : public data::edge<Cell, Face> {};

struct Face2Cell In : public data::edge<Face, Cell> {};

struct Face2Cell_ Out : public data::edge<Face, Cell> {};

// — hierarchical edges —

struct Parent2Child : public data::hierarchy<Cell,Cell> {};

// —— property data ——

struct CellTemperature : public data::mesh_property<Cell,double> {};
struct FaceArea : public data::mesh_property<Face,value_ t> {};

struct FaceVolRatio : public data::mesh_property<Face,value_t> {};
struct FaceConductivity : public data::mesh_property<Face,double> {};
// — define the mesh and builder —

template<unsigned levels = 1>

using MeshBuilder = data::MeshBuilder<

data::nodes<Cell, Face, Vertex>,
data::edges<Cell2Vertex, Cell2Face_In, Cell2Face_Out, Face2Cell In,

Face2Cell_Out>,

data::hierarchies<Parent2Child>,

levels>;

// —— type of a mesh ——

template<unsigned levels = 1, unsigned PDepth = P.DEPTH>

using Mesh = typename MeshBuilder<levels>::template mesh_type<
PDepth>;

// —— type of the properties of a mesh ——

template<typename Mesh>

using MeshProperties = data::MeshProperties<Mesh::levels,

typename Mesh::partition_tree_type, CellTemperature, FaceConductivity,
VertexPosition>;

// V—Cycle stage

template<typename Mesh, unsigned Lvl>

struct TemperatureStage {

const Mesh& mesh; // mesh structure, properties and cell data

MeshProperties<Mesh>& properties;

attribute<Cell, value_t> temperature;

attribute<Face, value_t> fluxes;

void jacobiSolver() {
auto& fConductivity = properties.template get<FaceConductivity
; LvI>();
auto& fArea = properties.template get<FaceArea, Lvl>();
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42 auto& fVolumeRatio = properties.template get<FaceVolRatio,
Lvl>();

43

44 mesh.template pforAll<Face, Lvl>([&](auto f) { // compute per—
face flux

45 auto in = mesh.template getNeighbor<Face2Cell In>(f);

46 auto out = mesh.template getNeighbor<Face2Cell_Out>(f);

47 value_t gradTemp = temperature[in] — temperature[out];

48 fluxes][f] = fVolumeRatiolf] * fConductivity[f] * fArealf] * gradTemp;

49 Dk

50 mesh.template pforAll<Cell, Lvl>([&](auto ¢) { // update per—
cell solution

51 auto subtractingFaces = mesh.template getNeighbors<
Face2Cell_In>(c);

52 for(auto sf : subtractingFaces) { temperature[c] —= fluxes[sf]; }

53 auto addingFaces = mesh.template getNeighbors<Face2Cell_Out
>(c);

54 for(auto af : addingFaces) { temperature[c] += fluxes[af]; }

55 it

56

57 void computeFineToCoarse() { ... }

58 void computeCoarseToFine() { ... }

59 void restrictFrom(TemperatureStage<Mesh,Lvl—1>& childStage) { ... }

60 void prolongateTo(TemperatureStage<Mesh,Lvl—1>& childStage) { ... }

61 |5

Figure 6. Code excerpt of a sample application using the vcycle operator on a multi-grid
mesh. The full version is available online at https://git.io/fjBTq.

various objects on this layer. After a fixed number of iterations, the current state of
the simulated properties are aggregated and projected to the next coarser-grained
level of the hierarchical mesh. There, the same propagation and aggregation oper-
ations are repeated. After completing updates on the coarsest layer, modifications
are projected recursively down towards the finer layers and the simulation continues
with the next time step.

7 EVALUATION
7.1 Productivity

Table [ lists absolute values for code metrics collected for the AllScale and MPI
versions of iPIC3D and AMDADOS, in order to get a grasp on the productivity
of working with the AllScale API compared to MPI. P.SLOC denotes the lines of
code spent on parallelizing the application, counting only the minimal set of lines
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containing explicit interface calls. Additional code required for e.g. preparing argu-
ments is not accounted for, and hence these results present a best-case perspective
for MPI. Nevertheless, as the numbers show, AllScale clearly outperforms MPI. Fur-
thermore, we have measured the sum of the cyclomatic complexity [15] (TOT CY')
as well as the total count of non-comment lines of code (SLOC') over all translation
units. Compared to P.SLOC, these give an indication of how much of the overall
pilot application complexity is related to their manual MPI parallelization rather
than actual domain science content.

AMDADOS iPIC3D
AllScale MPI | AllScale MPI
P.SLOC 25 70 23 56
SLOC 1136 1420 1443 1717
TOT CY 154 181 204 264

Table 9. Pilot application code metrics

Note that, in addition to greatly reducing the user-facing complexity of im-
plementing distributed memory parallel programs, the AllScale versions inherently
provide the possibility of integrating advanced features such as hybrid distribut-
ed/shared memory parallelism, inter-node load balancing, overlapping of communi-
cation and computation, or high-level monitoring facilities. All these features are
not present in the MPI versions, and thus not accounted for in the comparisons
presented here.

7.2 Performance

In order to ascertain the performance of the AllScale API and the underlying AllScale
toolchain, we conducted weak scaling experiments for AMDADOS and iPIC3D on
the Vienna Scientific Cluster (VSC-3) and the Meggie cluster of the University
of Erlangen-Nuremberg. Table [I0] lists their hardware characteristics. The initial
problem size for a single node was chosen such that application throughput did not
noticeably improve when further increasing the problem size.

Name ‘Nodes ‘ CPU (Intel Xeon) ‘ RAM ‘Interconnect ‘Compiler ‘ MPI
VSC-3|  512]2x E5-2650 v2 ‘ 64GB ‘ IB QDR-80  [GCC 7.2 [OpenMPI 3.0.0

Meggie 256 | 2x E5-2630 v4 OPA 100 GBit | GCC 7.3 |Intel MPI 2018.2

Table 10. Experimental platform description. The number of nodes refers to the maxi-
mum used in this work.

Figure [7] compares the performance results of the AllScale implementations
against MPI reference implementations, with performance measured as application
throughput.

For AMDADOS the AllScale variant achieves higher performance on both the
VSC-3 and Meggie cluster. On both systems up to 160 % higher performance is
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obtained, in particular for executions involving a larger number of nodes. In case of
the 512 node run on VSC-3, the degrading scalability of the MPI reference imple-
mentation lead to exceeding the available time limit for our jobs. We defined this
limit as 30 times the execution time of a single node run.

For iPIC3D, on the other hand, the MPI implementation demonstrates nearly-
optimal scalability on both the VSC-3 and Meggie cluster. The throughput per node
remains almost constant throughout the range of evaluated system setups. The
AllScale version, however, shows varying performance characteristics. Generally,
good performance is observed for a small number of nodes. However, while on Meggie
throughput on larger scale systems remains comparable to the MPI reference version,
on VSC-3 a considerably lower throughput is observed, which remains constant
between 4 and 128 nodes. Beyond 128 nodes, performance degrades considerably
again.

These results demonstrate the feasibility of using automatically managed user-
defined data structures in large-scale high performance applications.

VSC-3 Meggle
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Figure 7. Comparison of throughput per node for AMDADOS and iPiC3D on VSC-3 and
Meggie for MPI and AllScale
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8 RELATED WORK

Conventional, low-level HPC infrastructures comprising combinations of MPI with
some per-node parallelism APIs are still the default platforms for building HPC ap-
plications, but require programmers manually implement workload decomposition.
Systems providing a higher level of abstraction, such as the AllScale API, can be
grouped into three broad categories: new general purpose languages, domain-specific
frameworks, and general purpose libraries. Note that there is a large number of par-
allelism approaches constrained to single-node shared memory hardware. We omit
these from our overview provided here as they do not address the same problem
space as the AllScale API.

In terms of languages, X10 [7] and Chapel [6] have targeted (recursive) paral-
lelism on large scale, distributed systems, but left locality and data management to
the user. Charm-++ [I3], on the other hand, is a C++ extension aiming at isolating
the user from low-level mapping activities, thus facilitating portability. Its design is
based on message-exchanging entities exposed to the user and lacks automated data
distribution management. Recently, the ANTAREX research project [19] proposed
a DSL-based approach, facilitating the separation of concerns between functional
and non-functional aspects of HPC applications. However, due to its DSL-focused
design, users require additional tools and may not rely on the experience of an
established developer community.

Several new frameworks such as Lift [20], Delite [5], or AnyDSL [I8] provide
environments for implementing DSLs. Internally, DSL constructs are encoded using
functional IR constructs like map, reduce, or zip. However, the resulting pro-
gramming interface for the domain experts remains a DSL, targeting very specific
application domains and inheriting the difficulties of DSLs noted above.

Domain-specific, C++-based libraries such as PETSc [] or TensorFlow [I] han-
dle several of the challenges addressed by our framework successfully for their re-
spective domains. However, they are tailored towards specific domains instead of
supporting a wider range of applications.

More general purpose parallel C++ library based frameworks like STAPL [3] and
Kokkos [8] are exercising control over parallel algorithms and data structures similar
to our architecture. STAPL envisions a separation of concerns strategy similar to
ours. Kokkos, on the other hand, has a strong focus on multidimensional arrays and
parallel loops, unlike the wider range of data structures and operations supported
by our architecture. Due to a lack of compiler integration, these approaches require
data dependences of code regions to be expressed explicitly as part of the API, while
this is covered implicitly in our approach.

9 CONCLUSION

This work presented the AllScale API, a novel interface for implementing distributed
memory parallel applications with the programmability of a shared memory API.
We illustrated how the distinction into the User and Core components provides
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a separation of concerns for domain experts, HPC experts and system-level ex-
perts, and discussed several constructs of the AllScale API in detail. In addi-
tion, the three use cases presented show the suitability of our approach to real-
world scientific problems, evaluated in both productiveness and parallel perfor-
mance.

Future work includes better user feedback for programming errors, additional
pre-provided operators in the User API along with new applications.
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