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Abstract. The edit distance is the measure that quantifies the difference between
two strings. It is an important concept because it has its usage in many domains
such as natural language processing, spell checking, genome matching, and pattern
recognition. Edit distance is also known as Levenshtein distance. Sequentially,
the edit distance is computed by using dynamic programming based strategy that
may not provide results in reasonable time when input strings are large. In this
work, a distributed algorithm is presented for parallel edit distance computation.
The proposed algorithm is both time and space efficient. It is evaluated on a hybrid
setup of distributed and shared memory systems. Results suggest that the proposed
algorithm achieves significant performance gain over the existing parallel approach.
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1 INTRODUCTION

Measuring the similarity between two strings helps to solve problems in many do-
mains such as spell checking, spam filtering, nucleotide sequence matching, virus
signature matching in computer security, natural language processing (NLP), speech
recognition, and pattern recognition [T}, 2, [3, . 5]. String similarity /matching comes
in two forms: approximate string matching and exact string matching [6]. In the
exact string matching, all the appearances of the pattern are required to be found
in the given string. In the approximate string matching, the difference between the
given pattern and the string is measured. Levenshtein distance is the measure that
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tells the difference between two strings. It counts the number of edit operations
(insert, replace, and delete) that are required to transform one string to another [7].
In literature, it is often referred to as edit distance [8, 9], but some other definitions
of edit distance exist as well [T0]. In this study, we would consider the Levenshtein’s
definition of the edit distance.

Sequentially, edit distance/Levenshtein distance can be computed by using dy-
namic programming based strategy but if large strings such as deoxyribonucleic acid
(DNA) sequences are compared, then it may not give result in a reasonable amount
of time. Therefore, a parallel solution is required to compute result in acceptable
time if the data size is large. This work is about design and evaluation of a dis-
tributed algorithm for parallel edit distance computation between two strings. The
proposed algorithm is evaluated on a cluster by using Message Passing Interface
(MPI). MPI is designed to work with different parallel architectures and it serves as
a standard [TT]. Tt defines certain point to point and the collective communication
protocols to program distributed parallel systems. The rest of the paper is orga-
nized as follows: Section [2] discusses some preliminary concepts. Section [ presents
the background of the edit distance. Section [g] covers the related work. Section [f]
presents a distributed algorithm for parallel edit distance computation. Section []
presents experimental evaluation of the proposed algorithm. Finally, Section [7] con-
cludes the paper and discusses the artery of future work.

2 PRELIMINARIES

This section introduces some basic terminologies and key concepts that will be used
in the rest of the paper.

2.1 Cost of Communication

While designing a distributed algorithm, computation, as well as communication
time between different nodes, is also essential. For analysis of communication time,
consider this model of communication. The time required to communicate a message
between two nodes of a distributed memory system is equal to t, + t,n where ¢, is
startup time to prepare the message for transmission, t,, is per word transfer time,
and 7 is number of words [12].

2.2 Exclusive Scan Operation

Exclusive scan operation is an important primitive in parallel computing. It oper-
ates on an ordered set [zg, 21, ..., T,—1] of n elements. It uses a binary associative
operator @. It returns the result of form: [—, zo @1, 20D 21 Dxay ..., 0BT DTy D
<@ r,_1]. In the output each j' element is cumulative result of all input elements
from 0% to 5™ element (excluding j* element itself). If all n elements are divided
among p processors then this operation requires (ts 4 t,,n) logn time on distributed

memory system [12].
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2.3 Speedup

In parallel computing, speedup is the measure of the increase of performance of
parallel algorithm compared to sequential algorithm. It is the ratio of sequential
execution time to parallel execution time.

2.4 Parallel Efficiency

Parallel efficiency is the measure of effectiveness of the resource utilization. It is the
ratio of speedup to the number of compute nodes.

3 SEQUENTIAL COMPUTATION OF THE EDIT DISTANCE

Sequentially, edit distance is computed by using dynamic programming based strat-
egy in which a table Lev of size (m + 1) x (n + 1) is built where m is size of first
string and n is size of second string [7]. Given two strings A and B of size m and
n, respectively, edit distance table can be computed with Algorithm [f]

Each cell (7, 7) in the edit distance table represents the value of the edit distance
between the first 7 characters of string A and the first j characters of string B. Cell
(m,n) in the table represents the value of the edit distance between both strings.
Figure [ shows a sample edit distance table for strings “ACER” and “CARE”.

Edit distance between “ACER” and “CARE” is 3 because to make this conver-
sion following operations are required: delete ‘A’ match ‘C’, replace ‘E’ with ‘A’,
match ‘R’, and delete ‘E’. There is no cost for matching a character. Figure [T] also
illustrates the dependence of the calculation of a single cell on other cells of the edit
distance table.

Sequential time complexity of the algorithm is O(mn) which is obvious from the
size of the edit distance table. Space complexity of the algorithm is O(n) [7].

4 RELATED WORK

To reduce the computation time of the edit distance many efforts have been made
and this section covers various such studies.

Masek and Paterson [8] presented a little restricted but fast sequential edit
distance algorithm for abstract unit-cost RAM machine. It requires the strings
to be of equal sizes. Mathies [0] presented a fast parallel algorithm for the edit
distance computation. It requires mn processors on abstract parallel random-access
machine. Apostlico et al. [I3] presented a parallel edit distance algorithm for the
abstract parallel random-access machine. A space efficient algorithm for the edit
distance is presented in [14].

A bit parallel algorithm for the problem of approximate string matching [15]
is presented in [I6]. This algorithm is serial and depends upon the word size of
machine. It allows to process only w cells at a time where w is the largest word
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Algorithm 1: Sequential computation of the edit distance [7].
Input: Strings: A[0...m — 1] and B[0...n — 1]

1 m < A.length

2 n < B.length

3 Let Lev[0...n], LevP[0...n] be new arrays

4 for j =0 tondo
5 | Lev[j] < j

6 end

7 LevP + Lev

8 fori=1tomdo

9 for j =0 ton do

10 if 7 =0 then

11 | Lev[j] +i

12 else if A[i — 1] = B[j — 1] then
13 | Lev[j] + LevP[j — 1]

14 else

15 | Lev[j] - min(LevP[j], LevP[j — 1], Lev[j — 1]) + 1
16 end

17 end

18 if i # n then

19 | Swap(Lev, LevP)

20 end
21 end

Output: Lev[n]

size on a given machine. This algorithm is later modified to compute the edit
distance and is presented in [I0]. In [I7], Myers bit parallel algorithm [I6] is also
implemented on GPUs using collaborative parallelization for large bitwise operations
and concurrent pattern matching. An implementation of Myers algorithm [16] is also
presented in [I8].

An obvious way to compute the edit distance is to use diagonal parallel approach.
It calculates the edit distance table diagonal-wise by simultaneously computing all
entries in a diagonal. Its main disadvantage is unbalanced workload among proces-
sors because sizes of the diagonals vary in each step [19]. In [20], an efficient parallel
algorithm for longest common sub-sequence problem is presented for shared mem-
ory multi-core systems and GPUs. Sadiq et al. [2I] presented a parallel algorithm
for the edit distance problem. Authors resolved the dependences in the dynamic
programming table and manage to calculate the edit distance table row-wise where
every row is computed in parallel. An additional preprocessing step is added which
helps in resolving the dependences in the dynamic programming table. Their pro-
posed algorithm is evaluated on GPUs and multi-core systems. It achieved good
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C A R E
ij 0 1 2 3 4
0 0 1 2 3 4
1
A 1 1 1 2 3
~
—_
C 2 2 1 Lev[i,j] =2 2 3
E 3 3 2 2 3 2
R 4 4 3 3 2 3

Figure 1. Edit distance table between strings: “ACER” and “CARE” and dependences
of a cell (¢,7) in the edit distance table

performance gains. Similar strategies to [21] for the problem of approximate string
matching have been proposed in [22], 23].

Another problem that is related to the edit distance is the sequence alignment
problem. In that, similar regions of two sequences are aligned together by insert-
ing gaps in the sequences. Major algorithms of the sequence alignment problem
also follow the dynamic programming. Furthermore, their solutions have similar
dependences in the dynamic programming table as in the case of edit distance.
Comprehensive studies have been made for this problem. Aluru et al. [24] presented
a distributed algorithm for various algorithms of biological sequence comparison.
It introduces the way to calculate the alignment table row-wise or column-wise by
using parallel scan operation [12), 25]. This algorithm is implemented by using MPI.
Results are presented for two type of sequences: one having complete match case
and other having complete mismatch case. This algorithm achieved good speedup
on both setups. Scalability of their algorithm is evaluated by a varying number of
processors. Authors indicated that their method can be used to parallelize other
algorithms that needed to calculate such a score table. An exact parallel space
and time optimal algorithm for the sequence alignment is proposed in [26]. It also
uses the parallel scan operation to exploit parallelism. Furthermore, it is important
to note that edit distance can also be computed using the parallel scan opera-
tion [25].

In [27] two streaming algorithms for biological sequence alignment are presented
for GPUs. These streaming algorithms are also based on diagonal parallel approach.
A parallel algorithm for local alignment is presented in [28]. It uses a master and
slave model. This algorithm is also space efficient. It is evaluated by using MPI and
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cluster of eight and sixty nodes. The authors evaluated their algorithm by using
random pair of sequences in the range of 1 KBP (Kilo Base Pairs) and 1600 KBP.

A parallel and space efficient algorithm for sequence alignment called z-align is
presented in [29]. The authors executed their algorithm in four phases:

1. distribution of input data including sequences,

2. calculation of the similarity matrix,

3. gathering of the best score and their coordinates at the master processor,
4

. obtaining actual alignment(s) in limited space using a master-slave model and
self-scheduling policy.

This algorithm is evaluated on a cluster of sixteen processors. The authors com-
pared sequences of size between 1 KB and 3 MB. A parallel algorithm for multiple
sequence alignment is proposed in [30]. It is evaluated using a cluster of systems
connected through network. Parallelism is achieved by partitioning the dynamic
programming matrix among host systems. The authors also evaluated the scalabil-
ity of the algorithm.

To summarize, the following are major principles on which parallel computation
of the edit distance has been done. Some earlier solutions are based on a parallel
random access machine model that is really fast in terms of time complexity [8,
9, 13], but due to the quadratic space complexity and resource requirements such
models are not implemented practically. Bit parallel approach [I0, T6l, I7] is quite
common, in which a couple of cells are represented as a single word and bitwise
operations are used to perform simultaneous computations. Another approach that
is quite common is diagonal based approach [19] in which edit distance table is solved
anti-diagonal-wise, while computing each anti-diagonal in parallel. There is not
dependence among the cells of anti-diagonal according to the algorithm presented
as Algorithm [Il It can be further seen in the Figure [ The number of cells in
each anti-diagonal is different, what lowers the parallelism in certain stages of the
algorithm. Furthermore, it is also not a load balanced approach. Another way of
solving the edit distance table is to use the parallel scan approach, which resolves
the dependences in the table and computes it row-wise. It increases the number of
steps for computation of each row, but it is the load balanced approach. Another
method of resolving the dependences in the dynamic programming table involves
a preprocessing step [21), 22, 23]. After changing the dependences, updated algorithm
computes entries of each row of the table in parallel.

Overall, extensive studies have been made for parallel computation of the edit
distance and related problems. Most of the studies primarily focuse on GPU-based
solution. In string comparison, problem size can be very large, therefore the scalable
solution is required for these problems. A solution for distributed memory systems is
always a good choice for scaling because there is no limit to the number of processing
nodes. To the best of our knowledge, distributed solutions exist [24], 26, 28] in
literature but those are not specific to the edit distance. Therefore, this study
focuses on designing a distributed algorithm for parallel edit distance calculation.
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5 A DISTRIBUTED ALGORITHM FOR PARALLEL EDIT
DISTANCE COMPUTATION

To compute multiple entries of the edit distance table simultaneously, dependences
for computing each cell should be investigated. Computations in the first row and
the first column of the edit distance table are independent of any cell (Algorithm .
For any cell (i,7) in i® row, where i > 0 and j > 0, there are two possibilities:
either cell (7,7) can be a match case where the character of string A matches with
the corresponding character of string B. Otherwise, it will be a non-match case.

According to Algorithm (1} to compute any cell (i, ) which is a non-match case,
three values should be known in advance: the value of left cell (i,5 — 1), the value
of upper cell (i — 1, ), and the value of diagonal cell (i — 1,7 — 1) (Figure [1)). To
compute any other cell in the edit distance table which is not a non-match case,
only the values from (i — 1)* row are required.

Yousaf at el. [31] presented a parallel algorithm for the edit distance computation
that resolves the dependences in the edit distance table. This algorithm computes
all cells in the i*' row of the edit distance table simultaneously based on the (i — 1)
row only. Yousaf at el. [31] proved that the value of a non-match case can also be
computed from (i — 1)** row with the following equation:

Lev[j] = min(LevP[j] + 1, LevP[j — 1] + 1, LevP[mp — 1] + k).

Here mp is the position of the last match case in the i*® row and k is the distance of
cell (i,7) from last match case. According to this new equation, dependences of the
cell (i,7) of the edit distance table are changed (as illustrated in Figure [2). Based
on these new dependences each cell (i, ) of an i*® row can be computed based on

(i —1)* row.

LevP (mp — 1) ’ LevP(j— 1) LevP(j)

Lev(mp) | Lev(i)

Last Match Case

Figure 2. Dependences of cell (7, j) according to parallel edit distance algorithm presented
in [37)]

Given character set ¥ having |X| number of unique characters, last match case
for each cell in an i*" row can be found by computing a Last Match Case Table
(LMT) of size (|| — 1) x n. It contains the last match positions of the unique
characters of character set ¥ against string B. It can be computed by using Algo-
rithm Bl

Table[1]shows a sample LMT for character set {A, C, G, T} and String = “ABA-

CuUs”.
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Algorithm 2: Computing LMT
Input: Character set ¥ and String B

1 |X| « X.length

2 n < B.length

3 Let LMTI[0...|X] —1,0...n] be a new table
4 fori=0to|X|—1do

5 for j =0 ton do

6 if 7 =0 then

7 | LMTTi][j] + 0

8 else if match case then

0 | LMT) « j

10 else

1 | LMT)[j] + LMT][j — 1]
12 end
13 end
14 end

oo o —
o|lo|o|l—| e
oo o|w| B w
olo|klw Q »~
o|lo|k|w|ld o
o|lo|k|w|ln o

H| Q| Q| >
o|o|o|o

Table 1. LMT for ¥ = {A,C,G, T} and String = “ABACUS”

The value of the last match position can be incorporated with the following
equation:

Lev[j] = min(LevP[j] + 1, LevP[j — 1]+ 1, Leo P[LMT[c|[j] — 1] + (j — LMT[c][5]))-

Here LMT[c][j] is the position of the last match case in an i*" row. This algorithm
computes the same edit distance score as sequential algorithm. Its proof of correct-
ness is established in [31] and [21]. Furthermore, the size of each row is the same in
the edit distance table, therefore this approach allows balanced work division among
the processing elements.

Now, let us introduce a distributed way of computing edit distance based on [31].

5.1 Distributed Algorithm

The proposed method is divided into three parts:

1. Distribution of the strings,
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2. Distributed computation of the LMT,
3. Distributed computation of edit distance table using LMT.

Assume that there are p processors having ID in the range of 0 to p — 1. For
simplicity, also assume that n (size of string B) is divisible by p. However, it can
be generalized for an arbitrary number of processors. Now, we will discuss all three
steps one by one.

5.1.1 Distribution of the Strings

Initially, strings are distributed among each computing machine as plain text files.
Only a respective part of the string is moved to main memory on which processing
is required. Edit distance table can be computed row by row by reformulating
the dependences (as shown in [21], [31]). Each row can be divided among multiple

processors. So, every processor will compute O %) part of the row. To compute

its part of the row each processor needs O (%) fraction of the string B, therefore

each processor p, gets second string from B[r(%)] to B[(r + 1)%] where r is ID of
the processor. This process is illustrated in Figure [§] which shows the distribution

of a row and string B among p processors.

String B

h n n n
it" row - — . =
p p p

Py Py . Py

Figure 3. Distribution of a row of the edit distance table and string B among p processors

In the edit distance table, computing a row requires only one character from
string A. So, string A can be obtained in chunks by each processor. Every time
processing on one chunk is completed, next chunk is obtained.

5.1.2 Distributed Computation of the LMT

The computation of the LMT is divided in equal parts of % among the p processors
(as illustrated in Figure [i).

LMT is computed row by row by modifying Algorithm [2J Each processor can
compute its part of i row of the LMT in two steps:

1. In the chunk, all values after first match case can be computed in a similar
manner to Algorithm [2 and all the values before first match case are undefined
initially.
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String B

Py Py Pyt

Figure 4. Distribution of the LMT among p processors

2. In any row of the LMT, values always increase or remain the same. So, all the
values before first match case can be found by an exclusive scan operation (with
maximum as binary associative operator) on extreme right value in the chunk
of each processor. This value can be used in the place of undefined values.

Hence with these steps, each processor has all required values of i row of the LMT.
Now consider an example of computation of the LMT where a row of the table is
computed for a character ‘A’ and string “ATACG”. The whole row is divided among
four processors in 2 chunks where the size of each chunk is two. Table |2| illustrates
both the steps to compute a row of the LMT.

0 1 2 3 4 5
Po(0) | Po(1) | P1(0) | Pi(1) | P2(0) | P»(1)
(A) A T A C G
Values computed after step 1 0 1 3
Values received after step 2 - 1 3

Table 2. Steps to compute LMT (for a character ‘A’ and string “ATACG”)

Similarly, all rows of the LM T can be computed. At one time, all the processors
will be computing their chunk of one specific row. After computation of a row, all
processors are synchronized. Then next row is computed. The procedure to compute
the LMT for an arbitrary process p, is presented as Algorithm [3] Algorithm [3] takes
string B and character set as input and computes the LMT.

5.1.3 Distributed Computation of the Edit Distance Table

The computation of the edit distance table is also divided in equal parts of %
among p processors (as illustrated in Figure [5)).

Each processor will compute ™* part of the edit distance table. Edit distance
table is computed row by row, therefore to store current and previous row of the edit
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Algorithm 3: Computation of the LMT at processor p, where r is
a unique identifier for the process between [0...p — 1]

Input: Character set ¥ and String B

|Z| « X.length

n < B.length

B, + B[rﬂ . ,.r(ﬂ +1)]

Let LMT[0...(|¥] —1),0... 7] be a new table

[SI I

IS

5 fori=0to|X|—1do
6 jc < initial index of a row in p,’s chunk
7 for j =0 L‘o do
8 if je=0 then
9 | LMTYi][j] + 0
10 else if B,[j] # X[i] and j = 0 then
11 | LMTYi][j] < undef
12 else if B,[j] == X[i] then
13 | LMTTi][j]  jc
14 else
15 | LMTYi][j] « LMT[j — 1]
16 end
17 je++
18 end
19 Values before first match case <— Exclusive Scan (Max) on
LMTS| - 1)[2 - 1]
20 end
String B
<
g
5
Py Py Pp1

Figure 5. Distribution of the edit distance table among p processors
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P
all processors will be computing their part of one specific row. After computation of
the row, all processors are synchronized. Then the next row is computed, and the
same process follows. Computation of an i*" row of the edit distance table is done

in similar manner to Algorithm [I] but the following two cases must be delt with.

distance table, each process will allocate O ( ) space for both rows. At one time,

1. To compute the extreme left value in chunk of each processor, the value of its
diagonal cell is required (Figure , which is not available locally. It can be
found from the preceding processor.

2. It is possible that for some initial cells in the chunk of a processor, the value
of the last match case lies in the chunk of the preceding processor/s (Figure [2)).

Therefore, that value must be obtained before computation of the it" row.

These both cases can be managed by two communication steps. The first case
can be handled as follows: Before computation of an i™ row, every p™ processor
communicates its extreme right value of the (i — 1)** row with (p + 1)* processor.
To handle the second case, an exclusive scan operation (with maximum as binary
associative operator) is performed with the value at very last match case in each
processor’s chunk (as there can be more than one match cases in each processor’s

chunk).

Now, each processor has every value to compute its part in i*" row of the edit
distance table. Furthermore, all the values in the chunk of each processor can also be
computed in parallel as their computation is dependent only on (i —1)* row [31]. In
multi-core system, we can divide this computation further among multiple threads.
Similarly, all the rows can be computed. The procedure to compute the edit distance
table is presented as Algorithm [] which shows working of an arbitrary process p,.
This algorithm takes strings A and B as input and computes the value of the edit
distance.

h

5.2 Analysis of the Algorithm

5.2.1 Computational Complexity

LMT and the edit distance table are computed row by row and each row is equally
divided among processors. Therefore, each processor computes O(%) part of the
LMT and O(%) part of the edit distance table. So, total computational complexity

is O("*) because % < . Edit distance table is further divided among the avail-

able threads in case of hybrid implementation. If number of available threads is t,
then computation time is reduced to O(%) because chunk of row for each process
is further divided among the cores of a multi-core system. Hence, the computation
of a row would take O(7;) time.
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Algorithm 4: Computation of edit distance table at processor p,

Input: Strings: A and B, and LMT

© 00N O U W

[
(=]

end

-
N =

m < A.length
n < B.length
B, + B[r% .. r(% +1)]
Ac <+ AJ0... %]
Let Lev[0... 7], LevP[0... 2] be new arrays
j_initial < initial index of a row in p,’s chunk
je «+ j_initial
forijto%fldo
Lev[j] + jc
Jje++

LevP < Lev

13 for : =1 to m do

14 Get next chunk of A if required

15 ch < next character in A

16 je + j_initial

17 forjz(]to%fldo

18 if jc = 0 then

19 | Lev[j] i

20 else if Ac[i] = B,[j] then

21 if j == 0 then

22 | Lev[j] + pre_end_value

23 else

24 | Lev[j] + LevP[j —1]

25 end

26 else

27 ¢ + row index of character Aci] in LM I
28 Imp < LM I|[c][j]

29 Imv < Value at last match case according to Imp
30 Lev[j] < min(LevP[j] + 1, LevP[j — 1] + 1, (jc — Imp) + Imv)
31 end

32 je++

33 end

34 if i # n then

35 if r # p—1 then

36 end_value < Lev[? — 1]

37 Send end_value to processor p,41

38 end

39 if » # 0 then

40 ‘ Receive pre_end_value from processor p,_1
41 end

42 Imv + Exclusive Scan (Max) on very last match case in p,’s chunk
43 Swap(Lev, LevP)

44 end

45 end

Output: Lev[% —1]if (r==p-1)
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5.2.2 Communication Time

Total communication required for the LMT is |Z|(t; +t,7) log n because to compute
one row of the LMT, one exclusive scan operation is required. In the edit distance
table, one exclusive scan operation per row is required. Furthermore, for each row
one extreme right value in the chunk of the processor should also be communicated.
Its communication time is m(ts +t,n)(logn +1). So, the total communication time
for this algorithm is |Z|(ts + t,n) logn + m(ts + t,n)(logn + 1).

5.2.3 Space Complexity

Space requirement for string B is O (%) LMT requires O (%) space. Edit
distance table requires O (%) space. String A can be obtained by processors in

arbitrary sized multiple chunks, but if the chunk size taken is less than O ( ) then

n
P
space complexity would be optimal. Hence, the total space complexity would be
O (%) +0 (%) Here |X] is constant. So, the overall space complexity is O (%)

5.2.4 Comparison with the Existing Algorithms

Table B shows the time and space complexity of algorithms that are closely related to
the edit distance. Although some of them are not proposed for the distributed mem-
ory environment, this comparison suggests that our proposed algorithm is equally
efficient as most of the state-of-the-art algorithms in terms of time and space com-
plexity.

Algorithm Time Complexity | Space Complexity
Huang [14] W mT-M
Myers [16], Chacén et al. [17] o mn

Sosi¢ and Siki¢ [I8] e m+n
Sadiq et al. [21] o m+n
Aluru et al. [24] o m+ 7
Rajko and Aluru [26] o e

Table 3. Space and time complexity of the existing algorithms related to the edit distance

Here m and n are lengths of string A and string B, respectively, w is the max-
imum word size that a machine can process, and p is the number of processing
units. Faster algorithms [9] [13] are proposed for the parallel random access machine
(PRAM) model but they are never implemented practically. Their space complexity
is also quadratic.
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6 EXPERIMENTS AND RESULTS

We have used five-nodes cluster with a minimum specification of one node: Intel
Core-i5-3570K 3.40 GHz CPU having 4 physical cores, 4 logical processors, and
8 GB of main memory. All nodes in the cluster are interconnected to centralized
hub by using fast ethernet cables. Furthermore, we used MPI (mpich version 3.2)
for implementation of the algorithms. Four processes are launched at each node of
the cluster for the pure MPI implementation (twenty processes in total for all nodes
in the cluster). We have also used OpenMP for parallelism on one node. In the
OpenMP implementation, computation inside the chunk of a row of each process
is divided among multiple threads. Those threads are mapped into multiple cores.
We have used OpenMP pragmas for static division of the work among the multiple
threads. In the hybrid experiments using MPI + OpenMP, total five processes are
launched (one for the each node of the cluster), where each process launches four
threads to completely utilize all the cores of one node in the cluster.

We compared the proposed algorithm with an existing parallel scan approach [24]
that involves a higher number of steps than the proposed algorithm. Experiments
are performed for two types of datasets:

e Random strings

e Real DNA strings obtained from the National Center for Biotechnology Infor-
mation website (NCBI) [32]

6.1 Experiments with Random Strings

In the first set of experiments, we have used strings in the range of 100000 to
1000000. Strings are generated randomly from twenty-six letters in the Latin al-
phabets. In each experiment, strings of equal size are compared.

6.1.1 Distributed Memory Setup (MPI)

Results for the MPI by using randomly generated strings show that the proposed
algorithm achieved speedup up to 5.90x and the existing parallel scan approach [24]
achieved speedup up to 4.33x. It is evident from the results that with increase in
the problem size, the performance gain of the proposed algorithm is larger than
the existing parallel scan approach. Figure [f] shows the scaled execution time and
speedup for different sizes of problem with randomly generated strings.

6.1.2 Hybrid Setup (MPI 4+ OpenMP)

Results show that the proposed algorithm achieved speedup up to 9.93x and the
existing parallel scan approach [24] achieved speedup up to 7.04x. Figure |f| shows
the results for hybrid setup of MPI and OpenMP.

Results show that by using hybrid solution maximum attained speedup of the
proposed algorithm is improved from 5.90x to 9.93x. In the existing parallel scan
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Figure 7. Results and comparisons for hybrid (MPI 4+ OpenMP) setup with randomly
generated strings

approach, maximum attained speedup is improved from 4.33x to 7.04x. Hence, in
the MPI-only implementation the performance is slower because explicit inter-node
communication is required among the processes running on one node of the cluster.

6.2 Experiments with DNA Strings

In the next set of experiments real DNA strings are also compared. DNA strings are
taken from NCBI website [32] which maintains a database of many DNA strings.
Information of the DNA strings which are compared is presented in Table @ This
table also shows the value of edit distance between each two DNA strings.

Size of the LMT is reduced in DNA strings because the number of characters
in character set of the DNA strings is four ({4, C, G, T}) which is smaller than the
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Experiment ID NameStrlng 4 Size | Namo String B Size Edit Distance
Expl gbgss201 | 156931 | gbplnl04 79314 91590
Exp2 gbgss201 | 156931 | gbhtgll 606 452 450982
Exp3 gbhtgll | 606452 | gbgss116 | 1517819 969 770
Exp4 gbunal 308453 | ghinv32 3424429 3116517

Table 4. The list of experiments for DNA strings comparison

character set of randomly generated strings of latin letters. Hence, in this case, less
time is required for the processing of the LMT.

6.2.1 Distributed Memory Setup (MPI)

Results on the MPI show that the proposed algorithm achieved speedup up to 11.05x
and the existing parallel scan approach [24] achieved speedup up to 5.44x.
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Figure 8. Results and comparisons for MPI-only setup with DNA strings

Figure[§shows scaled execution time and speedup for the experiments mentioned
in Table @ for MPI.

6.2.2 Hybrid Setup (MPI+ OpenMP)

Results on hybrid setup of MPI and OpenMP show that the proposed algorithm
achieved speedup up to 12.49x and the existing parallel scan approach [24] achieved
speedup up to 5.68x. Speedup is improved compared to the MPI-only results (where
maximum obtained speed up is 11.05x and 5.44x for the proposed algorithm and
the existing parallel scan approach, respectively). In the MPI-only implementation,
explicit inter-node and intra-node communication is required, while in the hybrid
implementation, explicit inter-node communication is avoided. Performance gain
for the proposed algorithm (by using OpenMP with MPT) is larger compared to the
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existing parallel scan approach where proposed method gained added speedup of up
to 1.43x and the existing parallel scan method boosted up to 0.24 times. Hence,
parallel scan method requires more communication than the proposed algorithm.
Figure [9] shows the experimental results on hybrid setup of MPI and OpenMP by
using DNA strings.
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Figure 9. Results and comparisons for hybrid (MPI 4 OpenMP) setup with DNA strings

Since the computation as well as communication time plays its role in the overall
running time of the algorithm, both are equally important. Furthermore, in the pro-
posed method an additional table (LMT) is also computed, therefore it is essential
to analyze its running time as well. In the Table [f] and Table [6] detailed commu-
nication and computation time is presented (for the proposed algorithm) for the
LMT and edit distance table. Results show that time required for the processing of
the LMT is negligible compared to the edit distance table. Overall communication
time is less than computation time and total running time increases with increase
in problem size. Furthermore, it can be observed that communication time for
MPI-only experiments is significantly larger than for the hybrid experiments due to
added explicit inter-node communication among the processes in case of MPI-only
implementation.

An interesting case can be seen in the results of Exp3 and Exp4. For the proposed
algorithm, running time of Exp4 is smaller than Exp3 despite the size of the edit
distance table being approximately the same in both cases (9.20x 10 and 1.05x 10!2
respectively for Exp3 and Exp4). This is due to the fact that in the approximately
same sized problems, overall running time would be smaller for the tables having
small number of large sized rows (where the size of string A determines the number
of rows and the size of string B determines the size of a row). Exp4 has larger
sized rows than Exp3, therefore in the one row more parallelism is achieved. It
also has a small number of rows which reduces communication and synchronization
overhead required after the computation of a row. This observation indicates that
running time is small if the computation required is larger than communication,
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i.e., the size of a row is large and the number of the rows is small. This indicates
that communication and synchronization are more expensive operations than the
computation.

Exp. ID LMT Edit Distance Table Total

Comp. | Comm. Comp. Comm. Comp. | Comm. All
Expl 0.006 0.015 67.437 93.214 67.444 93.229 | 160.673
Exp2 0.003 0.021 92.653 103.947 92.656 | 103.967 | 196.623
Exp3 0.004 0.023 | 493.335 426.950 | 493.339 | 426.973 | 920.311
Exp4 0.005 0.021 | 411.978 212.800 | 411.983 | 212.822 | 624.804

Table 5. Detailed communication and computation time (in seconds) for the proposed
algorithm using MPI-only implementation

Exp. ID LMT Edit Distance Table Total

Comp. | Comm. | Comp. Comm. | Comp. | Comm. All
Expl 0.002 0.002 20.054 22.389 20.056 22.391 42.447
Exp2 0.003 0.001 67.764 15.678 | 67.767 | 15.678 | 83.446
Exp3 0.007 0.002 | 534.848 71.853 | 534.856 | 71.855 | 606.711
Exp4 0.015 0.001 | 505.576 47.455 | 505.591 | 47.456 | 553.047

Table 6. Detailed communication and computation time (in seconds) for the proposed
algorithm using hybrid setup of MPI and OpenMP

6.3 Summary of the Results

These results suggest that the proposed algorithm significantly outperforms the
existing parallel scan approach [24]. Tt is up to 12.49x faster than a sequential al-
gorithm. Tt also utilizes given resources effectively compared to the existing parallel
scan approach. For the small problem sizes, the sequential algorithm performs better
compared to the parallel solutions because of the communication and synchroniza-
tion overheads of parallel solutions. In the proposed algorithm, time required for
the processing of the LM T is negligible compared to the edit distance table. Size of
the LMT is smaller for the DNA strings compared to randomly generated strings
(as there are only four characters in character set of DNA strings), therefore pro-
cessing time of the LMT is smaller for DNA strings. Furthermore, in the proposed
approach, the overall communication time is smaller compared to the computation
time which is always desired because the communication is expensive compared to
the computation.

Another important factor that should be considered is parallel efficiency of both
algorithms. It is the ratio of speedup and number of compute nodes. Total com-
pute nodes are twenty. Maximum speedup attained for the proposed algorithm
is 12.49x and 7.04x for parallel scan approach. Hence, maximum parallel effi-
ciency of the proposed algorithm is 0.62 and it is 0.35 for parallel scan approach.
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The reason for this low parallel efficiency is that the explicit synchronization and
communication is required at the end of computation of each row. Due to these
overheads the parallel efficiency is decreased. In case of the parallel scan approach,
parallel efficiency is even lower because it involves more steps which add more par-
allel overheads. These overheads are unavoidable because of the nature of the al-
gorithm. Moreover, in general, these trade-offs exist when designing the parallel
algorithm.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced a distributed algorithm for the parallel edit distance
computation. The proposed algorithm ensures a balanced workload among the
processors. To the best of our knowledge, this is the first time when a distributed
algorithm of the edit distance is presented. Earlier studies [14} 24] have a mention
about distributed computation of edit distance, but its practical implementation is
not proposed.

We have presented results for random and real DNA strings. Evaluation on hy-
brid setup of OpenMP and MPI shows that the proposed algorithm achieved 12.49x
speedup compared to the sequential version of the algorithm. Furthermore, it also
outperforms the parallel scan approach [24] significantly. There are many other
problems that are related to edit distance. Damerau—Levenshtein distance, approx-
imate string matching, longest common sub-sequence, and sequence alignments are
an example of such problems. It is good challenge to design their solutions for dis-
tributed memory systems. Furthermore, in future we intend to design a distributed
memory solution that could exploit parallelism by using GPU on its each node.
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