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Abstract. With the advent of big data age, data volume has been changed from
trillionbyte to petabyte with incredible speed. Owing to the fact that cloud storage
offers the vision of a virtually infinite pool of storage resources, data can be stored
and accessed with high scalability and availability. But a single cloud-based data
storage has risks like vendor lock-in, privacy leakage, and unavailability. Multi-
cloud storage can mitigate these risks with geographically located cloud storage
providers. In this storage scheme, one important challenge is how to place a user’s
data cost-effectively with high availability. In this paper, an architecture for multi-
cloud storage is presented. Next, a multi-objective optimization problem is defined
to minimize total cost and maximize data availability simultaneously, which can
be solved by an approach based on the non-dominated sorting genetic algorithm II
(NSGA-II) and obtain a set of non-dominated solutions called the Pareto-optimal
set. Then, a method is proposed which is based on the entropy method to determine
the most suitable solution for users who cannot choose one from the Pareto-optimal
set directly. Finally, the performance of the proposed algorithm is validated by
extensive experiments based on real-world multiple cloud storage scenarios.
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1 INTRODUCTION

With the rapid development of Internet, mobile Internet, IoT and other related
technologies [1, 2, 3], the explosive growth of data volume has become an important
and challenging issue. From the statistical result, 8×105 PB of data were generated
and replicated in the world by the year of 2000 and it is expected that this number
will increase to 35 ZB by 2020 [4]. Storing such data volume has been an important
and challenging issue for enterprises.

In recent year, cloud computing has become a popular computing paradigm for
hosting and delivering services over the Internet [5, 6]. Cloud storage, the promi-
nent service in cloud computing, is synonymous with pay-for-use pricing structures.
Compared with the traditional storage mode, cloud-based data storage offers high
availability, durability, and scalability. However, a single cloud-based data storage
comes with the following risks.

Data unavailability. The first obstacle to the growth of Cloud Computing is the
availability of a service [7]. The availability of data is also an indicator that users
are most concerned about. Although cloud service providers (CSPs) have strict
Service Level Agreement (SLA) for their services, some unpredictable events
may cause services to be unavailable. These unpredictable events include server
downtime, natural disasters, power failures, and so on. On August 8th, 2016,
Google Cloud Storage and File Backup Server service terminals crashed, which
brought huge economic losses to users. Coincidentally, in the afternoon of De-
cember 7th, 2017, Alibaba Cloud’s domain name resolution failed due to sudden
large-scale traffic attacks. Unavailability of services can bring huge economic
losses to users.

Vendor lock-in. Vendor lock-in is a major barrier to the adoption of cloud com-
puting, due to the lack of standardization [8]. The vendor lock-in problem in
cloud storage is the situation where users are vulnerable to price hike, availabil-
ity decrement, or even to provider bankruptcy [7]. The reason why users give
up migrating their data to a new provider who provides better service or lower
price is the expensive bandwidth cost. Consequently, once a provider adjusts
price, users are on the horns of a dilemma [27]. Moreover, the time it takes to
migrate large amounts of data from one CSP to another is also huge [9].

Data privacy leakage. As data is stored with a third party, users want to avoid
an untrusted CSP. If users put their data into a single cloud provider, their data
is completely exposed to CSP, easily causing data privacy leakage. Data privacy
leakage mainly includes cases where some untrusted CSP steal data without user
permission. Malicious insiders of CSP can steal or corrupt the data and external
attacks may also lead to data privacy leakage [10].

Recently, multi-cloud storage can mitigate the abovementioned risks with geo-
graphical providers and also provide benefits including adequate responsiveness,
better load balance, and quick data recovery [11]. In multi-cloud storage, there
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Symbols Descriptions

C List of cloud providers
N Total number of cloud service
m Number of the data splitting into
n Number of the data storing
i i = 1, 2, . . . , N
S Size of the file
P Total cost of the data hosting scheme
Pstor Total price of storage in scheme
Pnet Total out of out-bandwidth in scheme
Pop Total price of operation in scheme
τt Number of users access to the file
CT Total cost of a data file
Ci Total cost of the ith cloud service
Psi Storage price of the ith cloud service
Pbi Out-bandwidth price of the ith cloud service
Poi Operation price of the ith cloud service
Ai Availability of the ith cloud service
Areq Lowest limit of the data availability

Table 1. Symbol table

are many metrics with which users are concerned, especially low cost and high
availability. The price of the same service across providers is different, and a provider
offers different service with the same functionality while performance is directly
proportional to price [11]. If users desire to enhance data availability, the more cost
is incurred.

In multi-cloud storage, two main redundant strategies to categorize data dis-
tributed storage are replication and erasure coding [27]. For erasure coding, a data
object is divided into m equal-size chunks and these chunks are used to generate
(n − m) encoded data chunks. Users can retrieve the original data through any
m data chunks of these n chunks and tolerate any 0 ∼ (n − m) cloud providers’
shutdown at the same time. This strategy can reduce storage cost compared with
data replication.

From a user’s perspective, the key issue is to maximize data availability by
minimizing data management cost that consists of storage cost and network cost
(i.e., operation cost and out-bandwidth cost) [4]. The goal of optimizing multi-
objective functions is to obtain the optimal data placement given cloud storage
providers. In other word, the optimization problem is: How to choose CSPs so
as to minimize data management cost and maximize data availability?

In this paper, an architecture in multi-cloud storage is presented at first. Next,
a multi-objective optimization problem is defined to minimize monetary cost and
maximize data availability. Then, an approach based on the non-dominated sorting
genetic algorithm II (NSGA-II) [31] is given, whose goal is to effectively solve a multi-
objective optimization problem and obtain a set of non-dominated solutions (i.e.,
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list of cloud storage providers) and erasure coding parameters. Since CSPs with
low (resp. high) storage cost may have low (resp. high) availability and high (resp.
low) network cost, it is nontrivial to trade off data management cost and data
availability. Some users can choose the data placement solution from the Pareto-
optimal set directly. However, most users are still confused when they face the
Pareto-optimal set. In order to recommend a suitable solution for such users, a
method based on the entropy method is proposed. Finally, we demonstrate the
performance of the proposed algorithm dealing with the real-world cloud storage
providers from CloudHarmony, cloudharmony in a simulation.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 presents a cloud storage scenario to show the risks of reliance on
a single cloud and discuss the benefits of multi-cloud storage. Section 4 formulates
a data placement problem. The proposed algorithm is presented in Section 5. The
performance of our proposed algorithms is shown via extensive experiments by using
real-world cloud information in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

More and more users are hosting their data into multi-cloud not only to overcome
the risks arising from reliance on a single cloud, but also to obtain higher availability,
lower latency, and lower monetary cost [11]. Reducing monetary cost and enhancing
data availability are two most important driving forces for users to host their data
into the cloud. According to the optimized metrics, the existing studies can be
divided into three categories, i.e., monetary cost optimization based on QoS metrics,
data availability optimization based on QoS metrics, and cost-availability trade-off.
In the following, we review and discuss them, respectively.

2.1 Monetary Cost Optimization Based on QoS Metrics

In this category, minimizing the monetary cost based on some QoS metrics is full or
part of the work in the studies. Abu-Libdeh et al. [13] propose Redundant Array of
Cloud Storage (RACS), a proxy striping user data across multiple providers to reduce
the cost of switching providers. However, it does not propose a method to solve the
data placement problem to meet any optimization goal. Papaioannou et al. [14]
propose Scalia as inspired by RACS. It is a cloud storage brokerage solution for
adaptive data placement, which minimizes the storage cost. Furthermore, Mansouri
et al. [9] present an algorithm to find subsets of data centers to store original data and
their replicas such that the storage cost is minimized while the expected availability
is guaranteed.

But the above two tasks only consider a part of the monetary cost optimization:
the cost of switching providers and storage cost. The cost of data storage man-
agement in the cloud should consist of residential cost (i.e. storage and data access
operations), and network cost resulting from data transfer from CSP [4].



Optimizing Data Placement for Cost Effective and High Available Multi-Cloud Storage55

In [15], Hadji proposes a commodity flow solution to minimize the cost of storing
data and latency to access data centers. However, the network and operation costs
are ignored when users access their data. Ma et al. [16] adopt the ensemble of repli-
cation and erasure coding leading to low bandwidth cost, low storage cost, and low
latency, but ignore the proper selection of CSPs. One function in CHARM, proposed
by Zhang et al. [17], is to select the data placement configuration which contains
several suitable clouds and an appropriate redundancy strategy to store their data
with minimized data storage management cost and guaranteed availability. But the
proposed algorithm to solve the minimization problem is a simple heuristic solution
and cannot obtain the global optimal one. The studies in [15] and [17] only minimize
the monetary cost at a certain point in the time slot. Mansouri et al. [18] propose the
optimal offline algorithm to minimize the residential and migration costs in a time
slot where the exact and known future workload is assumed.

There are also several studies to minimize the monetary cost based on QoS met-
rics for a geographical distributed cloud storage. Wu et al. [19] present a unified
view of storage services in geographically distributed data centers called SPANStore.
It aims to minimize the monetary cost and compute resources with the constraints
of GET/PUT latencies, flexible consistency, and tolerate failures. Liu et al. [20]
propose a multi-cloud service to minimize the payment cost while providing Service
Level Objective (SLO) guarantee to customers. In order to minimize the payment
cost, the authors propose a heuristic solution based on genetic algorithm to max-
imize the reservation benefit. However, these studies mainly focus on GET/PUT
latency, this paper focuses on the optimization of data availability and monetary
cost.

2.2 Data Availability Optimization Based on QoS Metrics

In addition to optimizing cost, increasing data availability is also an optimization
objective in recent studies. As mentioned above, data replication and erasure coding
are two main data redundancy strategies to improve data availability [11]. In [21, 22],
the authors compare them. Here, we briefly introduce them.

Data Replication. Wei et al. [23] propose a novel model to capture the relation-
ship between availability and the number of replica. It only calculates the
minimal replica count for a given availability requirement instead of improv-
ing availability. DEPSKY, proposed by Bessani et al. [24], is a system that
stores critical data with high availability through replication of the data on di-
verse clouds. Another algorithm in [9] is to provide the optimal data placement
for chunks of an object across CSPs such that data availability is maximized
under a given budget. It also prevents vendor lock-in through splitting a data
object into multiple CSPs, but neglects how to determine the replica count. In
[15], Hadji discusses the rational the number of chunks to be used to split the
original data according to data center failure probabilities, number of replicas
of each chunk, and expected data availability.
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Erasure Coding. Mu et al. [25] introduce µLibCloud, a client-side library based
on Apache libCloud to improve the data availability through erasure coding.
But it cannot give any optimization model to provide an optimal data place-
ment. In [13] and [14], the authors also choose erasure coding to enhance data
availability and avoid vendor lock-in, but fail to provide the specific mathemat-
ical expressions. Zhang et al. [17] use erasure coding to store a data object and
calculate data availability. Yet it is only a constraint in the optimization model.
Similarly, Wang et al. [27] optimize the data availability through erasure coding.

2.3 Cost-Availability Trade-Off

The studies in the above two categories only minimize the monetary cost or maximize
data availability based on some QoS metrics, but fail to optimize both at the same
time.

Singh et al. [26] propose a secured cost-effective multi-cloud storage model to
minimize the total cost of storing data, while maximizing QoS, but give many un-
reasonable assumptions and use cost minus QoS as the final optimization goal. Its
experimental results are not convincing. Wang et al. [27] propose an ant colony
algorithm-based approach to minimize the monetary costs and maximize data avail-
ability. However, for simplicity, the authors use the weights to calculate the inte-
grated QoS value, which is the final optimization goal. This is not a true multi-
objective optimization. Su et al. [28] propose a systematic model to formally for-
mulate data placement in multi-cloud storage by using erasure coding. It can solve
the data placement under complex requirements. However, in order to solve multi-
objective optimization problem, the authors adopt Euclidean distance to obtain the
best solution, in which the optimization weight for each objective is subjectively
determined.

3 MOTIVATION

3.1 Cloud Storage Scenario

There are a large number of cloud service providers now providing storage services,
and we select five most popular CSPs to obtain their pricing: Amazon S3, Microsoft
Azure Cloud Storage, Alibaba Cloud Object Storage, Google Cloud Storage, and
Century Cloud Object Storage, as shown in Table 2. We can see that there is
heterogeneousness in the price of the same functional storage service provided by
the same CSP in different regions. For example, Eastern Australia Microsoft Azure
Cloud Storage has lower storage price but higher out-bandwidth price than that
in Eastern USA and Northern Europe. The price models of the same functional
storage service across CSPs are different. For instance, Amazon S3 in Oregon, USA,
has lower storage price but higher GET request price than CenturyLink Cloud in
Eastern USA.
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Figure 1. Cloud storage scenario

Today, more and more users are hosting their data into cloud to reduce the
maintenance cost and improve data availability. Here, for clarity and conciseness,
we abstract and simplify scenarios that users put their data into the cloud, as shown
in Figure 1. It depicts that users store their data objects in the cloud with a series
of requirement, which includes data access frequency, low monetary cost, high avail-
ability, and so on. Since users’ data may contain common files, the user demands
also include the data access frequency (DAF) to the data, that is, the number of
times the data is retrieved within a unit period.

For example, users need to store 200 G files in the cloud, and require data avail-
ability not less than 99.99 %, and retrieve their data 0.3 times during a month. How-
ever, facing the complex cloud market, this user may choose a CSP with a lower
storage cost and the availability greater than 99.99 %, i.e., Amazon S3 Paris. How-
ever, this choice is subject to higher out-bandwidth price than other CSPs when
users retrieve their data, and also has risks like vendor lock-in, data unavailability,
data privacy leakage, and so on.

3.2 Discussions

From the scenario, reliance on a single cloud has the abovementioned risks. Multi-
cloud storage can mitigate these risks through distributing user data across multiple
CSPs. Then, we discuss in detail the benefits if users in the above scenario put their
data into multi-cloud.

Achieving high data availability. In the above scenario, users require data avail-
ability not less than 99.99 %. The availability of SLA in many CSPs is much
greater than this value. However, it is common to hear that some well-known
CSPs have experienced crash down at their data centers. As mentioned in the
introduction, erasure coding and replication are two common data dispersion
schemes in multi-cloud storage. Although replication can achieve higher avail-
ability than erasure coding, it also generates high storage cost. So in our paper,
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Figure 2. Erasure coding (6, 8)

we use erasure coding to improve data availability. As shown in Figure 2, users
cannot tolerate more than 2 CSPs crash at the same time. We assume that
the availability of CSPs in (6, 8)-erasure coding is to 99.99 %. According to the
availability calculation method using erasure coding to propose in next section,
the overall availability is 99.99997 %, which is larger than 99.99 % that is the
availability of a single cloud.

Lowering data retrieving cost and avoiding vendor lock-in. The data re-
trieving cost consists of GET request cost and out-bandwidth cost. Due to
the use of erasure coding, users can retrieve their data through the lowest re-
quest price and out-bandwidth price CSPs. For instance, assume that the above
user puts their data into Amazon S3 in Oregon because of the low storage
price, and out-bandwidth cost is $ 3. If the user puts their data into multi-
cloud with a (2, 3)-erasure coding and CSPs are at Amazon S3 in Oregon,
Azure in Eastern USA and Northern Europe, the data access can be satis-
fied by Azure in Eastern USA and Northern Europe and the out-bandwidth
cost is $ 1.2. Apart from this, the most important phenomenon in the vendor
lock-in is the high bandwidth costs brought by data migration when users face
the bankruptcy of CSP or the emergence of a CSP with lower price and high
availability or price hike of CSP. When such conditions emerge, users only need
to pay for part of the entire data migration cost but are no longer subject to
vendors.
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Figure 3. Multi-cloud storage framework

Protecting data privacy. As a result of erasure coding, each CSP only stores
a chunk of user’s original data object. Even if the cloud provider has malicious
insiders or suffers external attacks, the attacker cannot recover user’s original
data object with a data chunk. To a certain extent, multi-cloud storage with
erasure coding guarantees the privacy of user data.

Although multi-cloud storage has the abovementioned benefits, the trade-off
between storage cost and retrieval cost and data availability brings a considerable
challenge. Since high-availability CSPs impose enormous storage cost and retrieval
cost on the user, it is a critical problem. Its solution answers how to choose suitable
cloud storage providers and erasure coding parameters so as to minimize storage
and retrieval cost while maximizing data availability.



60 P. Wang, C. Zhao, W. Liu, Z. Chen, Z. Zhang

CSP Amazon Microsoft Azure Alibaba Cloud CenturyLink Google Cloud
S3 Cloud Storage Object Storage Cloud Storage

Oregon Seoul Paris USA Europe Australia China USA Australia USA USA Asia
East North East West East Pacific

Storage price 0.0125 0.018 0.0131 0.0208 0.022 0.02 0.0226 0.02 0.0209 0.04 0.14 0.026
Out-bandwidth
price 0.05 0.108 0.05 0.02 0.02 0.12 0.117 0.076 0.13 0.05 0.06 0.2
Get request
price 0.004 0.0035 0.0042 0.004 0.0044 0.004 0.001 0.001 0.002 0.0 0.0 0.004

Table 2. Pricing of storage (in $/GB/month), out-bandwidth (in $/GB, and GET requests
(in $/10K) of each CSP

4 SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we briefly discuss problem statement, and then based on that, we
formulate a data management model. Afterwards, we define a multi-objective opti-
mization problem based on data management formulation.

4.1 Problem Statement

Figure 3 shows a scenario of how users put their data into multi-cloud storage.
There are four components: User Demand Statistic, Cloud Storage Information
Collection, Data Retrieving and Hosting. Data Demand Statistic collects user needs,
which includes data size, required availability of data, and data access frequency.
Cloud Storage Information Collection is used to collect the information of cloud
providers from CloudHarmony, which is a third party website for collecting and
monitoring cloud service information including the charges of services, attributes,
services status, and so on.

Data Hosting and Data Retrieving are two core components in the framework.
Data Hosting determines clouds in which the data should be deployed. Data Re-
trieving decides the clouds where the data of a user is to be retrieved from. These
two components rely on the erasure coding which has been widely used in storage
systems to provide high availability[17]. With the aid of (m, n)-erasure coding, the
data object can be divided into m equal size chunks, and (n − m) chunks can be
encoded through m data chunks. The key property of erasure coding is that the
original data can be recovered from any m data chunks [21]. In Figure 2, data is
splitted and stored by (6, 8)-erasure coding, where any 6 of the 8 CSPs’ data chunks
can be used to recover the original data.

The primary objective of the above scenario is the optimization of data place-
ment based on user needs, which is to choose CSPs and erasure coding parameters.

4.2 Problem Definition

To well describe a data management model, we introduce the following definitions.
The symbols used in this article are listed in Table 1.

Definition 1 (Cloud Service Provider). The data management model is represen-
ted as a set of independent cloud service providers C = {SP1, SP2, . . . , SPN} where
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each cloud service provider supplies the storage service. Each CSP has tuple:
CSP = {Psi, Pbi, Poi, ai}, where:

1. Psi denotes the storage cost per unit size in CSP i;

2. Pbi is the out-bandwidth cost per unit size in CSP i;

3. Poi defines the cost for GET requests in CSP i; and

4. ai represents the probability of CSP i being available (i.e. availability).

Definition 2 (Data File). We assume that a data file is related with a triples:
DF = {S, τ, Areq}, where:

1. S is the size of a data file that user stores;

2. τ denotes user data access frequency, which is equal the data access count during
a time period; and

3. Areq defines user’s required data file availability.

The objective is to choose CSP and erasure coding parameters (m,n) such that
the total cost including storage and GET costs for data as well as the network cost
is minimized; while the data availability is maximized. For simplicity, we assume
that each CSP only stores one data chunk. It is worth noting that the following
definition for availability and cost are similar to that in [17, 28], which is a universal
way to define them for data hosting in erasure coding mode.

Definition 3 (Erasure Coding Parameters). An (m,n)-erasure coding divides
a data file into m equal size chunks, and encodes the m chunks into n (n ≥ m) chunks
which contain the m original equalized chunks and the (n−m) parity chunks. Users
can tolerate any 0∼(n−m) clouds simultaneously shut down.

Definition 4 (Data Availability). Based on erasure coding, data availability is the
sum of all cases that k CSPs are simultaneously available, where k ∈ [m,n]. This
depends on the fact that outage occurrences are independent among CSPs [29]. We
define C ′ = {SP1×µ1, SP2×µ2, . . . , SPN ×µN} (|C ′| = n) as the service list of the
n block choices, where {µi ∈ {0, 1} |i = 1, 2, . . . , N}, and µi is used to mark whether

the ith SP is chosen. Ω =
(|C′|

k

)
means the number of cases that k cloud service

providers are available, SΩ
j denotes the jth cloud services collection in Ω cases. The

availability of the data file, denoted as A, can be calculated as follows:

A =
n∑

k=m

Ω∑
j=1

∏
i∈SΩ

j

ai
∏

i∈C′\SΩ
j

(1− ai)

 (1)

where C ′ \ SΩ
j represents the CSPs that are not in SΩ

j .

Definition 5 (Storage Cost). The storage cost of a data file is equal to the storage
cost of all data chunks in n CSPs. Since each CSP stores the data chunk of size



62 P. Wang, C. Zhao, W. Liu, Z. Chen, Z. Zhang

S/m, it can be defined as follows:

Pstor =
∑
i∈C′

S

m
Psi. (2)

In fact, some CSPs use a tiered pricing scheme for storage. Taking AWS S3 in
USA East as an example, the storage price is $ 0.023 if the data size is less than
50 TB, and when the data size is between 50 TB and 450 TB, the storage price is
$ 0.022 [30]. Since we adopt erasure coding to divide data object in this work, the
size of each data chunk is not too large. However, in the case that the data size is
very large, we can use the threshold of each tier to calculate the storage cost, which
is similar to the piecewise functions.

Definition 6 (Network Cost). Due to erasure coding, users can retrieve the data
file through any m data chunks from n clouds. In order to minimize the total
network cost, we choose the m-cheapest clouds for data retrieving. It can be solved
as follows:

Pnet = min
j∈[1,Ω]

∑
i∈SΩ

j

S

m
τtPbi

 . (3)

Definition 7 (Operation Cost). The operation cost is the cost of users’ GET re-
quests for retrieving the data file from the cheapest m CSPs. Thus, it can be
calculated as follows:

Pop = min
j∈[1,Ω]

∑
i∈SΩ

j

τtPoi

 . (4)

It is worth noting that the value of j in Equation (3) is equal with that in
Equation (4).

Definition 8 (Total Cost). The total cost of a data file CT is the sum of storage
cost, operation cost, and network cost and is defined as follows:

CT = Pstor + Pnet + Pop. (5)

4.3 Optimization Problem

Given a data management model, we formalize a data placement optimization prob-
lem. It aims to maximize the availability of a data file and minimize the total cost.
The overall optimization problem can be defined as follows:{

Maximize A,

Minimize CT .
(6)
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Subject to:
A ≥ Areq.

In the above optimization problem, constraint 1) guarantees that the availability
of a data file is not less than a user’s required availability.

5 SOLUTION

In this section, we present a multi-objective optimization algorithm based on NSGA-
II [31] to solve the multi-objective optimization problem defined in the previous
section firstly. Then we use the entropy weight method to determine the weights of
cost and availability, and find the most suitable data placement solution for users
in the Pareto-optimal set.

5.1 Multi-Objective Optimization Algorithm

The proposed algorithm used to solve the optimization problem formulated above
is mainly based on NSGA-II [31]. NSGA-II algorithm is one of the most popular
multi-objective optimization algorithms. [2]. It has the advantages of fast running
speed and good convergence of the solution set. Compared with NSGA, the pre-
vious generation algorithm, it uses a fast non-dominated sorting algorithm, which
greatly reduces the computational complexity. The introduction of the elite strategy
ensures that the individuals of the excellent population are not discarded in the iter-
ative process, which can improve the accuracy of the optimization results. By using
congestion degree, we not only overcome the defect of artificially specifying shared
parameters, but also can take the congestion degree as the comparison standard
among individuals in the population, so that the individuals can be evenly extended
to the whole Pareto domain, which will ensure the diversity of the population. As
mentioned before, how to place a user’s data cost-effectively with high availability in
multi-cloud environments is a hot and challenging multi-objective optimization prob-
lem. So we propose an NSGA-II-based algorithm NDP to solve this problem, which
has been fully defined in Section 4. The NDP algorithm depicted in the pseudocode
Algorithm NDP includes population initialization, individual fitness calculation,
genetic operators (i.e. selection, crossover, and mutation), non-dominated sorting
approach, and making new population based on an elitism approach.

Initialize Population. The first step of NDP is to generate an initial population.
In our problem, the combination of CSPs is converted to the individual in the
population. It is encoded in a binary array [x1, x2, . . . , xN ], where ith CSP is
chosen if xi = 1. Specific to this optimization problem, each gene represents
a CSP and the number of the genes whose value equals 1 is n (i.e. erasure
coding parameter (m,n)). The algorithm GenInd presents how to generate an
individual of the population. Firstly, it generates an integer array of length n
randomly, whose elements are integers between 0–35 (lines 3–13). Then, the
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Algorithm 1

Algorithm NDP: Getting the Pareto-optimal set

Require: The set of CSPs, C, the upper limit of n, ξ, and a user request DF =
{S, τ, Arequired}

Ensure: A series of Pareto-optimal set, P
1: Initialize the parameters, Np (population size), Ng (number of generation), pc

(cross probability), pm (mutation probability);
2: Initialize P as empty;
3: Initialize population through PopInitEQ or PopInitDC;
4: g = 0;
5: Q0 = Cpoy(P0);
6: while g ≤ Ng do
7: Cross the population Pg;
8: Mutate the population Pg;
9: for i = 0 to Np do

10: fitness = {0, 0}
11: Calculate total cost (totalCost) and data file availability (availability) of

data placement scheme represented by individual Pg[i];
12: fitness = {totalCost, availability}
13: Pg[i] = fitness
14: end for
15: F = Nondominated(Pg ∪Qg);
16: Calculate the crowding distance for each Pareto set in F ;
17: Pg+1 = [];
18: for i = 0 to (|F | − 1) do
19: if |Pg+1|+ |Fi| ≤ Np then
20: Pg+1 = Pg+1 ∪ Fi;
21: else
22: Pg+1 = Pg+1 ∪ Fi [1 : (Np − |Pg+1|)]
23: end if
24: end for
25: Qg+1 = Copy(Pg+1)
26: g = g + 1;
27: end while
28: paretoFront = [];
29: for i = 0 to Np do
30: if Qg [i] .rank == 1 then
31: paretoFront = paretoFront ∪Qg [i];
32: end if
33: end for
34: P = P ∪ paretoFront;
35: return P ;
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Algorithm 2

Algorithm GenInd: Generating an individual

Require: The erasure coding parameter, m, n, the number of CSP, length, and the
population size, Np

Ensure: An individual, P0

1: Initialize empty arrays index[n], P0;
2: i = 0, j = 0;
3: for i = 0 to n do
4: index[i] = Generate an integer (0− length) randomly;
5: for j = 0 to i do
6: if index[i] == index[j] then
7: break;
8: end if
9: end for

10: if j == i then
11: i++;
12: end if
13: end for
14: for i = 0 to n do
15: P0[index[i]] = 1;
16: end for
17: return P0;

corresponding position of the array representing the individual is modified to 1
(lines 14–16). In this optimization problem, the optimal data placement solution
includes not only a list of CSPs but also erasure coding parameters. Based on
the characteristic of our optimization problem, we propose two strategies for
initializing population, as follows:

1. The idea of this strategy called EQ is to initialize an equal number of indi-
viduals for each erasure coding parameter. The procedure PopInitEQ is the
pseudo code for this strategy. The individuals corresponding to all erasure
coding parameters make up the entire population.

2. The second strategy called DC is inspired by the “divide-and-conquer” idea.
The procedure PopInitDC is the pseudo code for this strategy. We run
multiple NDP for different erasure coding parameter and the population
belongs to a parameter in each run. Finally, we choose the best one from the
results of all erasure coding parameters as the final data placement solution.

Crossover Operation and Mutation Operation. A crossover operation is used
to generate new individuals through single-point or multi-point intersection. In
our paper, we use a single-point crossover operator. Firstly, the algorithm pairs
individuals in the population randomly. Then, it generates a point randomly and
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two individuals exchange part of their genes at the mating point with crossover
probability. The mutation operation is to avoid premature convergence of the
population during the later iterations of the algorithm. In our paper, due to
the binary encoding, the algorithm first generates a point randomly. Then, the
individual’s value at this point is modified to 1 if it is 0, and vice versa.

Calculate Fitness. In a genetic algorithm, calculating the fitness of individuals
in the population is one of the important steps. In terms of our problem, each
individual’s fitness is a two-dimensional array, which contains cost and data
availability of a data placement scheme represented by this individual. We first
transform the individual into its corresponding data placement scheme. Then,
data file availability and total cost are calculated through Equations (1), (2),
(3), (4) and (5).

Make New Population. In order to maintain population distribution and di-
versity, the algorithm NDP first merges two generations of populations and
the non-dominated set is constructed through a fast non-dominated sorting
approach. An individual is a non-dominated one when no individual in the
population is superior to this individual in all objective functions. These non-
dominated individuals constitute a non-dominated set. Then, it calculates the
crowding distance for each pareto set in a non-dominated set and sorts it in de-
scending order. Finally, the algorithm selects individuals into new populations
in turn from a non-dominant set.

When iterations end, NDP facilitates all individuals and selects individuals with
a pareto rank of 1 to compose the optimal data hosting solutions.

Algorithm 3

Algorithm PopInitEQ: initializing the population according the first strat-
egy

Require: The population size, Np

Ensure: The Population, Population
1: Population = [];
2: for n = 2 to ξ do
3: for m = 1 to n do
4: for i = 1 to Np do
5: Population[i] = GenInd;
6: end for
7: end for
8: end for
9: return Population;
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Algorithm 4

Algorithm PopInitDC: initializing the population according the second strat-
egy

Require: The population size, Np

Ensure: The Population, Population
1: Population = [];
2: for i = 1 to Np do
3: Population[i] = GenInd;
4: end for
5: return Population;

5.2 Approach to Determine the Most Suitable Solution

We get a Pareto-optimal set solution through NDP. For users who have very specific
preferences and the ability to make choice, they can choose the data placement solu-
tion directly from the Pareto-optimal set. For example, one user wants to choose the
solution with highest availability from the Pareto-optimal set, and would rather pay
more cost. Another user wants to choose the solution with lowest cost, and accept
a lower availability. However, most of users are still confused and to choose a solution
from the Pareto-optimal set is difficult for them. In fact, regarding cloud storage,
most users tend to choose the solutions that are more compromised on each metric,
especially for cost and availability. However, there are many extreme solutions in the
resulted Pareto-optimal set. For example, there always exist such solutions in the
Pareto-optimal set: A [99.9999 %, $ 10] and B [99.1 %, $ 3], respectively. Although A
has higher availability, its cost is also more expensive, and solution B is the opposite.
Therefore, in order to recommend suitable data placement solutions for the users
who cannot make choice from the Pareto-optimal set directly, the entropy based
method is proposed. We calculate the QoS of each solution in the resulted Pareto-
optimal set by determining the weights of the two metrics of cost and availability,
and recommend the solution with the maximum QoS to the user.

There are many ways to determine the weights, which can be classified as subjec-
tive and objective weighting methods [32]. The former determine weight methods
are based on the subjective value judgment of indices, including Delphi method,
Analytic Hierarchy Process (AHP) method, least square method, and binomial co-
efficient method. The objective methods are based on the objective information (e.g.
decision matrix), which includes principal component analysis, entropy method, de-
viation and mean square method, and multiple objective programming model [32].

Since the subjective weighting methods have strong subjective randomness and
poor objectivity, in our paper, we use the entropy method to determine the weights
of cost and availability, which is one of the most common objective methods. In
the information theory, entropy is a measure of uncertainty [33]. The greater the
amount of information, the less uncertainty and the smaller entropy, and vice versa.
According to the characteristics of entropy, we can use it to judge the degree of
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dispersion of an index. The greater the entropy, the higher the degree of dispersion
of the index, and the greater the influence of the index on comprehensive evaluation.

Before introducing the application of an entropy method in our paper, we present
the definition of the element in Pareto-optimal set:

Definition 9 (The Element in Pareto-Optimal Set). The Pareto-optimal set is ob-
tained through NDP, and it is represented as P = {P1, P2, · · · , PN}. Each element
of Pareto-optimal set has triples: Pi = {P ep

i , P
c
i , P

a
i }, where:

1. P ep
i is the erasure parameter of the ith element in Pareto-optimal set;

2. P c
i denotes the ith data placement solution’s cost; and

3. P a
i defines the ith data placement solution’s availability.

There are many studies using entropy to calculate weights [34, 35, 36], and the
process of calculating weights based on entropy is very mature. In our paper, we
calculate the weights of cost and availability through the following steps:

Step 1. Normalize cost and availability.

Owing to the fact that the availability (resp. cost) index is a positive (resp.
negative) index, we use different normalization functions for them:

f1 (P c
i ) =


P c
max−P c

i

P c
max−P c

min
, if P c

max 6= P c
min,

1, if P c
max = P c

min,
(7)

where P c
max (resp. P c

min) means the maximum (resp. minimum) cost of all solu-
tions in Pareto-optimal set P .

f2 (P a
i ) =


Pa
i −Pa

min

Pa
max−Pa

min
, if P a

max 6= P a
min,

1, if P a
max = P a

min,
(8)

where P a
max (resp. P a

min) means the maximum (resp. minimum) availability of
all solutions in Pareto-optimal set P .

For simplicity, we combine the normalized cost and availability into an N × 2
matrix A, and Aij denotes ith element’s jth index’s value in the Pareto-optimal
set, where i ∈ {1, 2, · · ·N} and j ∈ {1, 2}.

Step 2. Calculate the proportion of the jth index of the ith element to this index
as:

pij =
Aij∑N
i=1 Aij

. (9)

Step 3. Calculate the entropy value of the jth index as follows:

ej = −k
N∑
i=1

pij ln(pij) (10)
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where k = 1
ln(N)

.

Step 4. Calculate the divergence of entropy as follows:

dj = 1− ej. (11)

Step 5. Calculate the weight of each index through:

wj =
dj∑2
j=1 dj

. (12)

Step 6. Calculate the integrated QoS value of each data placement solution accord-
ing to the weights which are defined by step 5, as follows:

qi =
2∑

j=1

wjpij. (13)

5.3 Discussion

In this section, we propose a solution to provide a data placement with low monetary
cost and high availability for users. High data availability and low monetary cost
are the two most important driving forces for users to host their data into cloud
instead of the traditional storage mode. In fact, there are many metrics needed to
be considered in cloud storage, such as availability, monetary cost, durability, data
lock-in level, latency, and security. The proposed method can be easily extended to
consider these metrics. Taking latency as an example, whether it is an optimization
objective or a constraint, the algorithm NDP based on NSGA-II can well solve the
optimization problem. Once the Pareto-optimal set is obtained, the entropy method
can determine the most suitable data placement for the user who cannot make choice
from the Pareto-optimal set.

6 PERFORMANCE EVALUATION

We implement the proposed data placement algorithms and carry out simulations
by using real-world CSP information to evaluate its performance. In this section
the goal is threefold. The first is to discuss the experimental setup in terms of CSP
information dataset and parameter settings of algorithms. Second, to study the
performance of the proposed algorithms through several scenarios. Although multi-
cloud has become a research hotspot in recent years, there are not many studies on
data storage optimization in multi-cloud environments. CHARM [17] and ACO [27]
are two representative ones, which are the closest to this work. Thus, we compare
the proposed method to them in this section.
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Provider Location Specific Location

Amazon S3 (AM), Mi-
crosoft Azure (AZ), Google
(GO), Alibaba (AL), Cen-
turyLink (CL), and Soft-
Layer (SL)

USA (US), Europe (EU),
Asia Pacific (AP), Aus-
tralia (AU)

South (S), North (N), West
(W), East (E), center (C),
Mumbai (M), Seoul (S),
Tokyo (T), Frankfurt (F),
Ireland (I), Paris (P), Lon-
don (L), Sydney (Sy), and
so on.

Table 3. Element in CSP name

6.1 Experimental Setup

The real-world cloud providers’ information is collected from CloudHarmony [12],
which is a third-party platform to simplify the comparison of cloud services by
providing reliable and objective performance analysis, reports, commentary, metrics,
and tools. We use 35 CSPs in the experiments and among these, including 12 by
Amazon S3 (AM), 4 by Microsoft Azure (AZ), 3 by Google (GO), 7 by Alibaba
(AL), 5 by CenturyLink (CL), and 4 SoftLayer (SL). Each CSP has a name that
consists of the element in Table 3 [4]. For example, the CSP with name AZ-EUN
refers to the cloud provider of Microsoft Azure in the North of Europe. In our
dataset, it is noted that Amazon S3 has two data centers in USA-West (i.e. Northern
California (N), Oregon (O)) and USA-East (i.e., N. Virginia (N), Ohio (O)) region,
respectively. For instance, AWS-USW-N denotes that the CSP of Amazon S3 is in
Northern California in Eastern USA. Each CSP is also referred by a specification
that consists of storage, out-going bandwidth and operation (i.e., GET requests)
prices. Since the availability of SLA for each cloud provider is just what they claim,
we also simulate the values of availability of each CSP in the interval of [95.0 %,
99.9 %].

The programs for the proposed algorithm are coded in the Java language and
run on an Intel CoreTM i7-6700 processor with 3.40 GHz CPU and 16 GB RAM. The
settings for various parameters have a direct influence on the algorithm performance.
Appropriate parameter values are determined by multiple experiments. Since we
have two strategies for initializing the population, there are two final parameter
settings, as shown in Table 4. The algorithm based on the first strategy is called
EQ, the other is DC.

Algorithms EQ DC

Population Size 1 500 300
Generation Count 3 000 600

Mutation Rate 0.1
Crossover Rate 0.9

Table 4. The parameters of algorithms EQ and DC
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Parameters Setting Default Range

Data size 200 GB 100–1 000 GB
DAF 0.3 0.0–1.0

Erasure coding (m,n) 2 < n < 7, 0 < m < n

Table 5. Settings of simulation parameters

a) EQ b) DC with (3, 5)-erasure coding

Figure 4. Pareto-optimal set of two algorithms with data size 200 GB and DAF 0.3

6.2 Performance of the Proposed Algorithm

Before describing the performance of the proposed method, we first discuss the
correctness of the model in this paper. In multi-cloud storage, providing a cost-
effective and high-availability data placement for users is a research hotspot. In
this paper, we first define the multi-objective optimization problem, which is to
maximize data availability and to minimize the monetary cost, under the erasure
coding mode in multi-cloud storage. Erasure coding is used to reduce storage cost
and to improve availability, as compared to data replication. The definitions for data
availability and cost are similar to that in [17, 28], which has become a common way
to define them for data hosting in erasure coding mode. Then, in order to solve the
multi-objective optimization problem, we propose a method based on NSGA-II.
This algorithm is widely used to solve multi-objective optimization problems and
can achieve good results. Since the resulted Pareto-optimal set usually contains
many solutions, which makes users still confused and difficult to make choices, we
adopt the entropy method to determine the most suitable solution for user from
this set. The entropy method is a common method to objectively determine weight
of each index based on the characteristics of the solution space. From the final
results, the data placement solutions obtained by the entropy method can satisfy
the user’s requirement for compromise on all objectives. Furthermore, we compare
our model with two representative studies. All the results show the effectiveness of
our proposed model.
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Due to different strategies for initializing the population, the results of EQ and
DC are different. So we discuss the results gained by them in the following aspects.

6.2.1 Pareto Optimal Solution

The data placement problem is a dual-objective optimization problem in our pa-
per. In general, there is no absolute or unique optimal solution in multi-objective
problems. In this section, we study the Pareto optimal solutions of the proposed
algorithms for our dataset with the default parameters in Table 5, as shown in Fig-
ure 4. Figure 4 a) shows the result of EQ. Since the algorithm DC separately solves
Pareto optimal solutions under different erasure coding parameters, there are 15
Pareto optimal solutions. Due to the space limitation, we only depict the Pareto
optimal solution under the (3, 5)-erasure coding, as shown in Figure 4 b).

An optimal data placement solution can be obtained through the method in
Section 5.2. For EQ, this method can find the most suitable solution with maximum
QoS value in Pareto optimal solution, which is marked in Figure 4 a). The data
placement scheme represented by this point contains the chosen CSPs {AZ-USAE,
AZ-EUN, AWS-USE-O, AWS-USW-O, AWS-EU-I} and erasure coding (3, 5). The
total cost and availability of this placement are $ 7.1533 and 99.9961 % respectively.
Each CSP in the result stores the size of 40 GB data, and 3 CSPs with the cheapest
out-bandwidth price for GET requests.

For DC, the point marked in Figure 4 b) only represents the best solution under
the (3, 5)-erasure coding. Intuitively, we have 15 solutions under this. We need to
run the method in Section 5.2 again to gain the most suitable data placement scheme
and results for all erasure coding parameters. The best data placement consists of:

1. the chosen CSPs {AZ-USAE, AZ-EUN, GO-AS, AWS-USE-O, AWS-EU-I, AL-
USE};

2. total cost $ 7.715 and availability 99.997 %; and

3. the (4, 6)-erasure coding.

6.2.2 Storage Mode Change

In fact, the DAF of a data object is time-varying in the cloud. In this section,
we study the impact on data placement scheme with DAF varying from 0.0 to 1.0
with 0.05 interval. For clarity, Table 6 in Appendix summarizes the erasure coding
parameters (i.e., storage mode) change with varying DAF. Whether EQ or DC, the
data storage mode becomes the special erasure coding when DAF is greater than
a certain value (i.e., the value of n is an integer multiple of m). For EQ, the storage
mode is (2, 4)-erasure coding when DAF is greater than 0.55. For DC, the storage
mode is (1, 2)-erasure coding (i.e., replication) when DAF is beyond 0.60.

The reason for this phenomenon is that high DAF requires expensive operation
cost, especially network cost, and it accounts for a large proportion of the total
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Figure 5. Cost and availability vs. erasure coding

DAF EQ DC

0.0 (3, 5) (2, 4)
0.05 (3, 5) (4, 5)
0.10 (3, 5) (4, 5)
0.15 (3, 5) (4, 5)
0.20 (4, 6) (4, 6)
0.25 (4, 6) (4, 6)
0.30 (3, 5) (4, 6)
0.35 (3, 5) (4, 6)
0.40 (3, 5) (4, 6)
0.45 (3, 5) (4, 6)
0.50 (3, 5) (4, 6)
0.55 (2, 4) (4, 6)
0.60 (2, 4) (1, 2)
0.65 (2, 4) (1, 2)
0.70 (2, 4) (1, 2)
0.75 (2, 4) (1, 2)
0.80 (2, 4) (1, 2)
0.85 (2, 4) (1, 2)
0.90 (2, 4) (1, 2)
0.95 (2, 4) (1, 2)
1.0 (2, 4) (1, 2)

Table 6. Erasure coding parameter (m,n) changing with varying DAF
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a) Cost vs. varying DAF b) Cost vs. varying data size

Figure 6. Total cost of data placement scheme of EQ and DC when the DAF and data
size are varied

a) Availability vs. DAF b) Availability vs. data size

c) Total cost vs. DAF d) Total cost vs. data size

Figure 7. The total cost and availability comparison of data placement schemes from our
proposed algorithms and ACO
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cost. For example, in EQ, the network cost is $ 1.8 which is 25.16 % of the total
when DAF is 0.3, and the ratio increases by 6.9 % compared to the former when
DAF equals 0.8. When DAF is high, the proposed algorithms explore CSPs with
the cheaper out-going bandwidth price to handle high DAF. Therefore, it is really
necessary to timely adjust the data placement scheme according to varying DAF.
Data migration of varying DAF is beyond the scope of our paper, and we leave it
as the future work.

6.2.3 Cost and Availability Performance

In this section, we evaluate the cost and availability performance of the proposed
algorithms. Since each erasure coding has an optimal result for DC, we study the
impact of erasure coding on cost and availability by varying it from (1, 2) to (1, 6)
with data size 200 GB and DAF 0.3. As shown in Figure 5, as n increases as an
erasure coding parameter, the availability gradually approaches 1. The reason is
that the overall availability of a data object is equal to the probability that not
more than (n−m) CSPs crash at the same time. When n becomes larger, the data
placement scheme can tolerate the simultaneous failure of more CSPs, and so the
availability can be enhanced. At the same time, the total cost is higher with n. This
is because of the storage cost of a data object growing with the number of replicas.

Figure 6 shows the impact of DAF and data size on the total cost of the optimal
data placement scheme of the proposed algorithms. In Figure 6 a), the total cost
only contains the storage cost and EQ can save approximately 18.6 % than DC
when DAF is 0. It is worth noting that the polyline in Figure 6 a) is composed
of several straight lines. It is because of the data placement scheme varying with
DAF. For instance, the black polyline consists of four parts and the change points
are 0.15, 0.30, and 0.55. This result can correspond to the change of the storage
mode in Table 6 in Appendix.

We also explore the impact of data size on the total cost by varying it from
100 GB to 1 000 GB with the step size of 100 GB. As shown in Figure 6 b), the
results of the proposed algorithms show the positive correlation between cost and
data size. The reason why the result is a straight line is that the data placement
scheme does not change as data size increases. The total cost of a resultant data
placement scheme through EQ can save about $ 2.8 comparing with that of DC.

6.3 Performance Comparison with Other Algorithms

There are many previous studies on data storage in multi-cloud environments. In
this section, we compare the cost and availability performance of the proposed al-
gorithms with two recently solutions ACO and CHARM.

The optimization objective of ACO contains the total cost and availability,
which is the same as ours. We evaluate their performance, as shown in Figure 7.
Figures 7 a) and 7 b) respectively depict the impact of DAF and data size on the
availability of obtained data placement schemes. In Figure 7 a), it is obvious that
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a) Availability b) Total cost

Figure 8. The availability and total cost of data placement scheme from our proposed
algorithms and CHARM under the varying DAF

the result of DC is better than its two peers when DAF is less than 0.3. EQ can
achieve higher availability than DC when DAF is grater than 0.55. The reason for
this result is that data placement can tolerate the crash of more CSP at the same
time than DC, which is shown in Table 6. EQ can tolerate the simultaneous crash
of 2 CSPs, while DC can tolerate only one CSP’s crash when DAF is greater than
0.55. Figure 7 b) shows the availability change under varying data size. It is evident
that the performance of our proposed algorithms is superior to that of ACO. The
results of the proposed algorithms are relatively more stable than those of ACO.

Data Size Availability Cost
CHARM EQ CHARM EQ

100 0.9992856 0.9994588 3.38693 3.34
200 0.9992856 0.9994588 6.77027 6.68
300 0.9992856 0.9994588 10.1536 10.02
400 0.9992856 0.9994588 13.53693 13.36
500 0.9992856 0.9994588 16.92027 16.7
600 0.9992856 0.9994588 20.3036 20.04
700 0.9992856 0.9994588 23.68693 23.38
800 0.9992856 0.9994588 27.07027 26.72
900 0.9992856 0.9994588 30.4536 30.06

1 000 0.9992856 0.9994588 33.83693 33.4

Table 7. Availability and total cost ($) comparison of CHARM and EQ with the varying
data size (GB)

We also explore the comparison of total cost by the varying DAF and data
size. As shown in Figure 7 c), the proposed algorithms EQ and DC can approxi-
mately save $ 3.56 and $ 3.44, respectively, comparing to ACO when DAF equals
0.6. Figure 7 d) presents the total cost change by varying the data size from 100 GB
to 1 000 GB with the interval of 100 GB. It is clear that the total cost of the data



Optimizing Data Placement for Cost Effective and High Available Multi-Cloud Storage77

placement schemes, obtained with the proposed algorithms is lower than ACO.
Our proposed algorithms can save more than $ 10 than ACO when data size is
800 GB.

Finally, we compare the proposed algorithm EQ with CHARM through two
scenarios including the varying DAF and data size. Since the optimization objective
of CHARM is to minimize the total cost under the guaranteed availability, we se-
lect the data placement scheme from the Pareto solution of EQ, whose availability
is not lesser than that of CHARM. Figure 8 a) depicts the availability of these two
algorithms. It is obvious that the availability of EQ is larger than CHARM. Fig-
ure 8 b) presents the comparison of the total cost between them by varying DAF from
0.0 to 1.0. Our algorithm can clearly obtain the lower total cost than CHARM.
Another scenario is to compare two algorithms through the varying data size, whose
result is shown in Table 7. Our algorithm can save 1.29 % when data size is 1 000 GB.
Although the advantages of our proposed algorithm are not obvious in total cost,
its resulting availability of our algorithm is better than CHARM’s.

7 CONCLUSION

There are some risks such as vendor lock-in, low data availability and data privacy
leakage if users put their data into a single cloud. Data hosting based on multi-
cloud is becoming a new development trend. How to strike a trade-off between
various factors and realize multi-objective optimization becomes one of the most
important concerns in multi-cloud environments. So, in this paper, an architecture
in multi-cloud storage is presented at first. Next, a multi-objective optimization
problem is defined to minimize total cost and maximize data availability. Then,
an approach based on NSGA-II is given with its goal to effectively solve a multi-
objective optimization problem and obtain a set of non-dominated solutions (i.e.,
a list of cloud storage providers) and erasure coding parameters. Then, we use
a method based on the entropy to recommend the most suitable solution for users
who cannot choose one from the resulted Pareto-optimal set directly. Finally, the
performance of this algorithm is examined through extensive experiments which are
driven by real-world multiple cloud storage providers’ information.

In the future, we intend to improve this work in two directions:

1. The SLA is important for users, and it directly affects the user experience.
Thus, we will consider more SLAs in exploring a data hosting scheme, such as
the overall security, latency and durability of cloud services [37].

2. Since the data placement varies with the change of user’s DAF, it is necessary
to propose solutions for dynamic data placement based on the varying DAF.
Especially, for the absence of user’s future DAF, we will predict it according to
the historical data [38, 39, 40].

3. We will consider to optimize with the choice of cloud instance type [41, 42, 43].
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