
Computing and Informatics, Vol. 39, 2020, 264–297, doi: 10.31577/cai 2020 1-2 264

A LOGIC PETRI NET-BASED REPAIR METHOD
OF PROCESS MODELS WITH INCOMPLETE CHOICE
AND CONCURRENT STRUCTURES

Yuanxiu Teng, Liang Qi∗, Yuyue Du

The College of Computer Science and Engineering
Shandong University of Science and Technology, Qingdao 266590, China
e-mail: 392828580@qq.com, {qiliangsdkd, yydu001}@163.com

Abstract. Current model repair methods cannot repair incomplete choice and con-
current structures precisely and simply. This paper presents a repair method of
process models with incomplete choice and concurrent structures via logic Petri
nets. The relation sets are constructed based on process trees, including branch
sets, choice activity sets and concurrent activity sets. The deviations are deter-
mined by analyzing the relation between relation sets and activities in the optimal
alignment. The model repair method is proposed for models with incomplete choice
and concurrent structures via logic Petri nets according to different deviation posi-
tions. Finally, the correctness and effectiveness of the logic Petri net-based repair
method are illustrated by simulation experiments.

Keywords: Process model, model repair, process tree, alignment, logic Petri net

1 INTRODUCTION

Process mining builds a bridge between data mining and process modeling and
analysis. It extracts effective information from the data and resources of the real
business process system, and builds the process model based on different algorithms
according to the required information. Process mining is widely used in the design,
analysis, implementation and adjustment of the system process [1]. The three types
of applications for process mining is process discovery, conformance checking, and
process improvement. The process discovery algorithm is a function that maps the

∗ Corresponding author

A Logic Petri Net-Based Repair Method of Models 265

event log to a process model, which can be a BPMN [2], YAWL [3], Petri net [4, 5]
and so on. α algorithm takes an event log as the input, finds out the possible causal
dependence according to the sequence of activities, and outputs a Petri net with
the initial identification [6]. Heuristic mining builds models with the use of repre-
sentation preference and frequency of causal networks. The basic idea of heuristic
mining algorithm is that infrequent paths should not be included in the model [7].
Conformance checking is used to compare the behaviors of process models with the
behaviors recorded in the event logs, and it looks for their commonality and hetero-
geneity, so as to ensure that the information system and the actual business process
keep a good compliance. The classic conformance checking contains token replay
and alignments [8]. Besides, the method proposed by [9] projects both systems and
system models or logs onto sub-sets of activities to determine their performance, and
is applicable to both log–model and model–model conformance checking. The liter-
ature [10] can analyze and classify deviations with respect to the intended purpose
of data, and provides an algorithm to identify wide range of deviations.

Conformance checking can also be used to improve business processes, repair
models, and evaluate process discovery algorithms [11]. When the process model and
event logs do not match on the process, the process model needs to be repaired, which
is the process improvement. The aim of process improvement is to make the process
model better reflect the real business system and improve the performance of the
model. Fitness, simplicity, precision, and generalization are four main types of model
performance, and those four performances are used to evaluate the quality of process
models. A new genetic process mining algorithm is proposed to discover a process
model from event logs, and it uses the tree representation to ensure the soundness
of the model [12]. To improve the quality of process models, many approaches of
process improvement are proposed. The Fahland’s approach uses alignments to align
the runs of the given process models to the traces in the logs [13]. It mines loops
that can replay sub-logs of non-fitting sub-traces. The Goldratt’s approach and
Knapsack’s approach are proposed to improve the correspondence between a model
and event logs, and speed up the repair [14]. The work in [15] presents a judgment
to mine the sub-process as the branch of choice structures, instead of inserting the
sub-process directly into the original model.

Logic Petri net is the further abstraction and extension of the Petri net with
inhibitor arcs [16, 17]. It is more concise and can describe a large number of logic
relations among complex activities. From the perspective of analyzing business
process operation and resources, logic Petri nets can better analyze batch processing
function and the uncertainty of activity enablement of business process systems.
The work in [16] proposes a vector matching method, and analyzes the reachability,
liveness, conservativeness, and reversibility of logic Petri nets based on reachability
trees and the state equations. The precursor and successor of activities in the traces
are defined in [17], and an extended log-based ordering relationship is proposed.
The work in [18] is based on alignments to repair unfitting transitions in concurrent
blocks and generates a new branch containing new activities. In some real business
processes, concurrency and choice exist at the same time, we call this structure is an

266 Y. Teng, L. Qi, Y. Du

incomplete choice structure or incomplete concurrent structure. The current model
repair methods based on Petri nets consider to improve the fitness of models, often
ignore the precison and simplicity, and cannot correctly describe the logic relation
among activities.

Therefore, we present a logic Petri net-based repair method. This work has the
following contributions:

1. Relation sets are constructed based on process trees, including choice and con-
current activity sets, and branch sets. These relation sets can precisely locate
deviations for concurrent and choice structures combining with optimal align-
ments.

2. The algorithms of determining deviations are presented based on relation sets
and event logs. The model repair method is proposed for models with incomplete
choice and concurrent structures via logic Petri nets.

3. Experimental results illustrate the correctness and effectiveness of the repair
method presented in the paper.

The rest of the paper is organized as follows. The background in relevant fields
is introduced in Section 2. Section 3 presents an approach to repair models with
incomplete choice structures. The method of repairing models with incomplete
concurrent structures is proposed in Section 4. The results and performance analysis
of simulation experiments are given in Section 5. Section 6 concludes our work and
draws the future work.

2 PRELIMINARIES

This section introduces some basic notions, mainly including Petri nets [4], logic
Petri nets [16], alignments [11], process trees [14], and the precursor and suc-
cessor [17]. In the following content, N represents a natural number set, i.e.,
N = {0, 1, 2, . . . }.

Definition 1 (Trace, event log). Let A ⊆ A be a set, and A is all sets of activities.
σ ∈ A∗ is called a trace that denotes a sequence of activities. An event log is
a multi-set of traces denoted as L ∈ B(A∗).

Definition 2 (Tuple). Let A be a set and a tuple with n elements is denoted by
r = (b1, b2, . . . , bn) ∈ A× A× · · · × A. The ith element of r is denoted as πi(r).

For example, there is a tuple r = (x, y, z) ∈ A×A×A with 3 elements, π1(r) = x,
π2(r) = y, and π3(r) = z.

Definition 3 (Pre-set, post-set). Let N = (P, T ;F) be a net. P denotes a finite
set of places, T denotes a finite set of transitions. F ⊆ (P × T) ∪ (T × P) denotes
a finite set of directed arcs with each one from p to t or from t to p, where p ∈ P

A Logic Petri Net-Based Repair Method of Models 267

and t ∈ T . x is a node in N and ∀x ∈ P ∪ T , we have

•x = {y|y ∈ (P ∪ T) ∧ (y, x) ∈ F},

x• = {y|y ∈ (P ∪ T) ∧ (x, y) ∈ F}

where •x and x• represent the pre-set and post-set of x, respectively.

Definition 4 (Petri net). A four-tuple PN = (P, T ;F,M) is a Petri net, where

1. N = (P, T ;F) is a net;

2. M : P → N is a marking, M(p) denotes the number of tokens in p, where p ∈ P ;
and

3. PN has the following transition firing rules:

(a) for t ∈ T , if ∀p ∈• t : M(p) ≥ 1, then t is enabled under M , denoted as
M [t >; and

(b) if M [t >, then t can fire, and a new marking M ′ is generated, denoted as
M [t > M ′, and for ∀p ∈ P , we have

M(P)′ =

 M(P)− 1, p ∈• t− t•,
M(P) + 1, p ∈ t• −• t,
M(P), otherwise.

Definition 5 (Logic Petri net). A six-tuple LPN = (P, T ;F, I, O,M) is called
a logic Petri net, where

1. P denotes a finite set of places;

2. T = TD ∪ TI ∪ TO denotes a finite set of transitions, and T ∩ P = φ, for ∀t ∈ T ,
•t ∩ t• = φ, where

(a) TD is a set of classic transitions as in a Petri net;

(b) TI is a set of logic input transitions, for ∀t ∈ TI , the input place of t is
restricted by a logic input function fI(t); and

(c) TO is a set of logic output transitions, for ∀t ∈ TO, the output place of t is
restricted by a logic output function fO(t);

3. F ⊆ (P × T) ∪ (T × P) denotes a set of directed arcs with each one from p to t
or from t to p, where p ∈ P and t ∈ T ;

4. I denotes a logic input function of t, where t ∈ TI , and for ∀t ∈ TI , I(t) = fI(t);

5. O denotes a logic output function of t, where t ∈ TO, and for ∀t ∈ TO, O(t) =
fO(t);

6. M : P → N is a marking, M(p) denotes the number of tokens in p, where p ∈ P ;
and

7. LPN has the following transition firing rules:

268 Y. Teng, L. Qi, Y. Du

(a) for ∀t ∈ TD, the transition firing rule is consistent with that of Petri nets;

(b) for ∀t ∈ TI , I(t) = fI(t). If fI(t)|M =• T•, then t can fire and is denoted as
M [t > M ′, and for ∀p ∈• t, M(p) = 1, M ′(p) = 0; for ∀p ∈ t•, M(p) = 0,
M ′(p) = 1; and for ∀p /∈• t ∪ t•, M ′(p) = M(p); and

(c) for ∀t ∈ TO, O(t) = fO(t). If fO(t)|M =• T•, then t can fire and is denoted
as M [t > M ′, and ∀p ∈• t, M ′(p) = 0; for ∀p ∈ t•, M ′(p) = 1; and for
∀p /∈• t ∪ t•, M ′(p) = M(p).

8. There are three symbols of the logic function:
⊗

, ∧ and ∨. p1
⊗

p2 · · ·
⊗

pn
denotes only one of p1−pn contains tokens; p1∧p2 · · ·∧pn denotes each of p1−pn
contains tokens; p1 ∨ p2 · · · ∨ pn denotes at least one of p1 − pn contains tokens;
where n ≥ 2.

For example, a logic Petri net denoted by LPN1 is presented in Figure 1, where
t1 and t3 are two logic transitions and t2 is a classic transition. t1 is a logic input
transition, and I(t1) = p2 ∧ (p1

⊗
p3). If t1 fires, p1 and p3 cannot contain tokens at

the same time, and fI(t1) = p2 ∧ (p1
⊗

p3) =• T•, there will be two cases:

1. both p1 and p2 contain a token; or

2. both p2 and p3 contain a token.

Besides, t3 is a logic output transition, and O(t3) = p6 ∨ p7. When t3 fires, its logic
output function needs to satisfy fO(t3) = p6 ∨ p7 =• T•, there are three cases:

1. only p6 contains a token;

2. only p7 contains a token; or

3. both p6 and p7 contain a token.

Figure 1. A logic Petri net model LPN1

Definition 6 (Alignment). Let σ ∈ A∗, and PN = (P, T ;F,M). A move is a pair
(a, t) ∈ (A∪>>)×(T ∪>>), where >> denotes no move. A move sequence denoted
by γ = ((a1, t1)(a2, t2) . . . (a|γ|, t|γ|)) is called an alignment between σ and PN, where

1. π1(γ) = σ denotes a trace sequence generated by γ (ignoring >>); and

A Logic Petri Net-Based Repair Method of Models 269

2. mi[π2(γ) > mf denotes a complete firing sequence generated by γ (ignoring
>>); and

3. for each move (a, t), it is called a log activity if a ∈ A and t =>>; it is called
a model activity if a =>> and t ∈ T ; it is called a synchronous activity if a ∈ A
and t ∈ T ; it is called an illegal activity otherwise.

Γσ,PN denotes a set of all alignments between σ and PN.

Definition 7 (Optimal alignment). Let σ ∈ A∗ and PN = (P, T ;F,M). γ′ ∈ Γσ,PN
denotes an optimal alignment between σ and PN, if for ∀γ′ ∈ Γσ,PN, we have∑

(a,t)∈γ lc(a, t) ≤
∑

(a′,t′)∈γ lc(a
′, t′), where lc(a, t) denotes a likelihood cost func-

tion. For each move (a, t), if a ∈ A and t =>>, lc(a, t) = 1; if a =>> and t ∈ T ,
lc(a, t) = 1; if a ∈ A and t ∈ T , lc(a, t) = 0. Γσ,PN,lc denotes a set of all optimal
alignments between σ and PN.

Definition 8 (Process tree). Let A ∈ A be a set of activities. The notation of
⊕

denotes an operator set, and
⊕

= {×,→,
⊙
,∧}, where

1. a ∈ A ∪ {τ} denotes a process tree, and τ is an invisible transition; and

2. if PT1,PT2, . . . ,PTn(n > 0) are process trees, and then
⊕

(PT1, . . . ,PTn) is also
a process tree; × represents the choice relation among PT1, . . . ,PTn; → repre-
sents the sequential execution of PT1, . . . ,PTn;

⊙
represents the loop structure

of PT1, . . . ,PTn; and ∧ represents the parallel structure of PT1, . . . ,PTn.

Definition 9 (Precursor, successor). Let L ∈ B(A∗) be a log where A ∈ A. For
∀σ ∈ L, if an activity a ∈ δ(σ) and the position index of a in σ is i, the precursor of
a is denoted as 4a at the position with index i−1; and the successor of a is denoted
as a4 at the position with index i+ 1.

For example, there is a trace 〈t1, t2, t5, t3, t4, t5〉, t5 is the precursor of t3, i.e.,
4t3 = t5; t4 is the successor of t3, i.e., t43 = t4.

3 INCOMPLETE CHOICE STRUCTURES DEVIATION REPAIR

This section proposes a repair method of process models with incomplete choice
structures. For incomplete choice structures, we first present choice relation sets
based on process trees of process models, including head-to-tail places, branch sets
and choice activity sets. By comparing and analyzing the logic relation between
activities in traces and transitions of choice relation sets, a model repair method via
logic Petri nets is proposed.

In the following, we use PN = (P, T ;F,M) to denote a four-tuple Petri net, and
use PT to denote a process tree of PN.

Definition 10 (Tree relation). Let | → be a relation symbol of PT, and (ti ∪⊕
)∗| → (tj ∪

⊕
)∗| → . . . | → (tn ∪

⊕
)∗ is a tree relation, where ti, tj, . . . , tn ∈ T

and
⊕

= {×,→,
⊙
,∧}.

270 Y. Teng, L. Qi, Y. Du

Definition 11 (Node relation). Let n ∈ (T ∪
⊕

) be a node of PT,
⊕

= {×,→,⊙
,∧}. The top layer of PT is called the root node, there are six node relation:

1. if m| → n and m ∈ (T ∪
⊕

), then m is called the parent node of n, denoted as
n.parent = m;

2. if n| → m and m ∈ (T ∪
⊕

), then m is called the child node of n, denoted as
n.child = m;

3. if m| → n, m| → l, m| → r and m, l, r ∈ (T ∪
⊕

), then l and r are called the
left and right sibling nodes of n, respectively, where l and r are on the left and
right sides of n, denoted as n.lsib = l and n.rsib = r;

4. if ∃n.child ∈ (T ∪
⊕

) and |n.child| > 1, then n.child.pi denotes the ith child
node of n, where i ∈ [1, |n.child|];

5. if n| → . . . | → m, m.child = null, and m.lib = null, then m is called the leftmost
leaf node of n, denoted as n.child.lp = m; and

6. if n| → . . . | → m, m.child = null, and m.rib = null, then m is called the
rightmost leaf node of n, denoted as n.child.rp = m.

For example, a Petri net model denoted by PN1 is presented in Figure 2, and
PN1 contains choice structures. Let σ1 = 〈a, t1, t5, t2, t4, b〉, σ2 = 〈a, t6, t7, c, b〉 be
two traces. PN1 has a choice structure with transitions t1, t2, t3, t4, t5, t6, t7. In the
trace σ1, we have that t1, t2, t4 and t5 are concurrently enabled. It shows that the
branch containing t1, t2, t4 can occur concurrently with the branch containing t5.
In the original model PN1, either of these two branches can be selected to occur. So
there is an incomplete choice structure.

Figure 2. A Petri net model PN1

Figure 3 shows the process tree of PN1 represented by PT1. PT1 =→ (a,×((→
(t1,×(t2, t3), t4), t5,→ (t6, t7)), b). For PT1, “→”| → “×”, “×”| → “→”, and
“→”| → t1 are three tree relations of PT1. The root node is “→”. If n = “×”,
then n.parent = “→”, n.lsib = a, and n.rsib = b. It can be seen that t5 is the
child node of n, n.child.p1 = “→”, n.child.p2 = t5, and n.child.p3 = “→”. Besides,
n.child.lp = t1, and n.child.rp = t7.

Definition 12 (Head-to-tail place). [SFP , SLP] is called the head-to-tail place of
a choice structure, where SFP and SLP are called the head place and the tail place,
respectively. Let n = “×” be a node of PT, and it needs to satisfy:

A Logic Petri Net-Based Repair Method of Models 271

Figure 3. The process tree PT1 of PN1

1. if n.child.pi = m, m.child = null, and 0 < i ≤ |n.child|, then SFP =• m and
SLP = m•; and

2. if n.child.pi = m, ∃m.child ∈ (T ∪
⊕

),
⊕

= {×,→,
⊙
,∧} and 0 < i ≤ |n.child|,

then SFP =• (n.child.lp) and SLP = (n.child.rp)•.

Definition 13 (Branch set). Let n be a node of PT, n = “×” or n = “∧”, and
a branch is defined as follows:

1. If n.child = m, m.child = null, i.e., n.child.child = null, then {m} is a branch;
and

2. if n.child = m, ∃m.child.p1,m.child.p2, . . . ,m.child.pk, and 0 < k ≤ |m.child|,
where

(a) if m = “→”, then {m.child.p1, m.child.p2, . . . ,m.child.pk} is a branch;

(b) if m = “×”, then {m.child.p1}, {m.child.p2}, . . . , {m.child.pk} are each
a branch; and

(c) if m = “∧”, then {m.child.p1}, {m.child.p2}, . . . , {m.child.pk} are each
a branch.

BS denotes a branch set that contains all branches of choice and concurrent
structures.

Theorem 1. For n = “×”, if ∃n.child = m and m.child = null, then {m} is
a branch.

Proof. If ∃n.child = m and m.child = null, i.e., ∃n.child.child = null, it means that
the child node of n is a leaf node. ¬∃m.child| →

⊕
, where

⊕
= {×,→,

⊙
,∧}, i.e.,

there are no structures behind m until SLP . We have SLP = m•. Since m.parent = n
and n = “×”, n is the initial operator notation of the choice structure, then SFP =•

m. Thus, {m} is a branch.

272 Y. Teng, L. Qi, Y. Du

If {m} is a branch and n = “×”, it means m• = SLP and •m = SFP . We have
¬∃m.child| →

⊕
and “×”| → m, i.e., m = n.child and m.child = null. �

Theorem 1 indicates that for the node of the process tree, if the node is “×”
and the child node of the node is a leaf node, then the child node alone is a branch
of the choice structure.

Theorem 2. For n = “×” or n = “∧”, m = n.child, 0 < k ≤ |m.child|,
{m.child.p1}, {m.child.p2}, . . . , {m.child.pk} are each a branch.

Proof. For n = “×” or n = “∧”, there is ∃q = m.lsib or ∃q=m.rsib, and n| →
m.lsib or n| → m.rsib. If q.child.lp and m are contained in a branch, we have
M [q.child.lp >, ¬M [m >, M [q.child.lp > M ′, M ′[m > or M [m >, ¬M [q.child.lp >,
M [m > M ′, M ′[q.child.lp >. For n = “×”, ∃M , M [q.child.lp >, ¬M [m >,
when M [q.child.lp > M ′, ¬M ′[m > or M [m >, ¬M [q.child.lp >, M [m > M ′,
¬M ′[q.child.lp >, i.e., q.child.lp and m are not contained in a branch. For n =
“∧”, ∃M,M [q.child.lp >, M [m >, M [q.child.lp > M ′, M ′[m > or M [m > M ′,
M ′[q.child.lp >, i.e., q.child.lp and m are not contained in a branch. Thus,
{m.child.p1}, {m.child.p2}, . . . , {m.child.pk} are each a branch. �

By Theorem 2, for the node denoted by “×” or “∧” of the process tree, those
child nodes of this node are not in the same branch.

Definition 14 (Choice activity set). The choice activity set contains first and last
choice activity sets. FCS and LCS denote the first and the last choice activity sets,
respectively. If n = “×” is a node of PT, we have:

1. if n.child = m, m.child = null, then FCS = {m}, and LCS = {m};
2. if n| → . . . | → m, m = “∧” or m = “×”, k = |m.child|, q = n.child.lp and
m = q.parent, then FCS = {m.child.p1, m.child.p2, . . . , m.child.pk};

3. if n| → . . . | → m, m = “∧” or m = “×”, k = |m.child|, q = n.child.rp and
m = q.parent, then LCS = {m.child.p1, m.child.p2, . . . , m.child.pk}; and

4. if n| → . . . | → m, m = “→”, and m.child.child = null, then FCS = {m.child.lp},
and LCS = {m.child.rp}.

The algorithms of calculating branch sets, head-to-tail place and choice activity
sets are proposed in the following.

Algorithm 1 calculates the branch set. For each node n of the process tree, if n
is “∧” or “×”, and the child node of n is a leaf node, then this child node of n is
contained in a branch. If the child node of n is “→”, and those child nodes of “→”
are leaf nodes, then all those leaf nodes are contained in a branch. If the child node
of “→” is “×”, then each node of the child node of “×” is contained in a branch.

Algorithm 2 calculates the head-to-tail place and the choice activity set. For
each node n of the process tree, if n is “×”, its head place is the pre-set of the
leftmost leaf node of n, and its tail place is the post-set of the rightmost leaf node

A Logic Petri Net-Based Repair Method of Models 273

Algorithm 1 Calculate−BS(PT)

Input: A process tree denoted by PT
Output: The branch set denoted by BS

1: BS ← φ; CTB ← φ;
2: for each n ∈ PT do
3: if n = “∧”||n = “×” then
4: for (i = 1; i ≤ |n.child| ; i+ +) do
5: mi ← n.child.pi;
6: if mi.child = null then
7: BS ← BS ∪ {mi};
8: end if
9: if mi = “→” and mi.child.child = null then

10: for (j = 1; j ≤ |mi.child| ; j + +) do
11: CTB ← CTB ∪mi.child.pj;
12: end for
13: end if
14: if mi = “→” and mi.child = “×” then
15: for each mi.child.child do
16: CTB ← CTB ∪mi.child.child;
17: end for
18: end if
19: BS ← BS ∪ CTB;
20: end for
21: end if
22: end for
23: return BS

of n. If the child node is a leaf node, then it is both contained in the first and last
choice activity set. If the child node g of n is “×” or “∧”, and g is the parent node
of the leftmost of rightmost leaf node of n, then each child node of g is contained
in the first or last choice activity set. If g is “→” and the child node of g is a leaf
node, then the leftmost leaf node of g in contained in the first choice activity set,
and the rightmost leaf node of g in contained in the last choice activity set.

For PT1, we can obtain its head-to-tail place, branch set and choice activity
set. Its head-to-tail place is denoted by [SFP , SLP] = [p2, p6], and its branch set
is denoted by BS = {{t1, t2, t4}, {t1, t3, t4}, {t5}, {t6, t7}}. The first choice activity
set is denoted by FCS = {t1, t5, t6} and the last choice activity set is denoted by
LCS = {t4, t5, t7}.

Theorem 3. |BS|max is the maximum length of elements in BS. For n = “×” or
n = “∧”, n| → w| → . . . | → m, if w = “→”, ∃m = “→”, x = |w.child| and y =
|m.child|, then |BS|max = x+ y, where w.child.child = null and m.child.child = null;
If ¬∃m = “→”, |BS|max = x+ 1.

274 Y. Teng, L. Qi, Y. Du

Algorithm 2 Calculate− FLC(PT)

Input: A process tree denoted by PT
Output: The head-to-tail place denoted by [SFP , SLP], the first choice activity set

denoted as FCS, and the last choice activity set denoted as LCS
1: SFP ← φ; SLP ← φ; FCS ← φ; LCS ← φ; u← φ; q1 ← φ; q2 ← φ;
2: for each n ∈ PT do
3: if n = “×” then
4: u← |n.child|;
5: m← n.child.p1;
6: k ← n.child.pu;
7: SFP ← SFP ∪• (m.child.lp);
8: SLP ← SLP ∪ (k.child.rp)•;
9: for (i = 1; i ≤ |n.child| ; i+ +) do

10: gi ← n.child.pi;
11: if gi.child = null then
12: FCS ← FCS ∪ {gi.child};
13: LCS ← LCS ∪ {gi.child};
14: end if
15: q1 ← n.child.lp;
16: q2 ← n.child.rp;
17: if gi = “×”||gi = “∧” and (gi = q1.parent) then
18: for each gi.child do
19: FCS ← FCS ∪ gi.child;
20: end for
21: end if
22: if gi = “×”||gi = “∧” and (gi = q2.parent) then
23: for each gi.child do
24: LCS ← LCS ∪ gi.child;
25: end for
26: end if
27: if gi = “→” and gi.child.child then
28: FCS ← FCS ∪ gi.child.lp;
29: LCS ← LCS ∪ gi.child.rp;
30: end if
31: end for
32: end if
33: end for
34: return [SFP , SLP], FCS, LCS

A Logic Petri Net-Based Repair Method of Models 275

Proof. For n = “×” or n = “∧”, n| → w| → . . . | → m, w = “→”, if ∃d1 =
w.child.pi, d1.child = null, d2 = w.child.pj, d2.child = null, where i, j ∈ [1, |w.child|],
it means that M [d1 >, ¬M [d2 > M ′, M [d1 > M ′, M ′[d2 >, so the maximum length
of the element of BS only containing d1 and d2 is 2. So if ∃d = w.child, d.child = null,
|d| = x, where 0 < x ≤ |w.child|, then the length of the element in BS containing d
is x. If ∃m = “→”, if ∃e1 = m.child.pi, e1.child = null, e2 = m.child.pj, e2.child =
null, where i, j ∈ [1, |m.child|], it means that M [e1 >, ¬M [e2 > M ′, M [e1 > M ′,
M ′[e2 >, in the same way, the length of the element in BS only containing e1 and
e2 is 2. So if ∃e = m.child, e.child = null, |e| = y, where 0 < y ≤ |m.child|, then
the maximum length of the element in BS containing e is y, thus, |BS|max = x+ y;
If ∃m = “→”, it means that M [m.child.pi >, M [m.child.pj >, M [m.child.pi >
M ′, M ′[m.child.pj > or M [m.child.pi >, M [m.child.pj >, M [m.child.pi > M ′,
¬M ′[m.child.pj >, i 6= j and 0 < i, j ≤ |m.child|, so the maximum length of
the element in BS containing m.child is 1, thus, |BS|max = x+ 1. �

By Theorem 3, in the process tree, the maximum length of the branch of the
choice or concurrent structure is the sum of the number of leaf nodes of the child
node of “→” and the number of nodes “×” and “∧”.

Deviations are determined by judging whether the corresponding transitions of
log activities are in a branch. For those log activities, we can obtain the branches
that need to be concurrent with other branches. New activities that need to be
inserted into the original models can also be obtained from the optimal align-
ment. The algorithm for determining the deviation position is given in the fol-
lowing.

Algorithm 3 calculates the deviation position for incomplete choice structures.
We obtain the positions of SFP and SLP in the optimal alignment, and collect new
activities. For activities between SFP and SLP in the optimal alignment, if the
activity is a log activity and the corresponding transition is contained in the first
choice activity set, we determine whether all transitions of the whole branch headed
by this transition are log activities; if they are, we regard the first and last transitions
of the branch as a deviation position.

g1=
a t1 t5 t2 t4 b

a t1 >> t2 t4 b

Figure 4. An optimal alignment γ1 between σ1 and PN1

g2=
a t6 t7 b

a t6 >> b

c

t7

Figure 5. An optimal alignment γ2 between σ2 and PN1

276 Y. Teng, L. Qi, Y. Du

Algorithm 3 Determining deviation positions for incomplete choice structures

Input: A process tree denoted by PT, a Petri net denoted by PN = (P, T ;F,M),
and the optimal alignment denoted by Γσ,PN ,lc

Output: The deviation position denoted by DPCOS, and the new activity set de-
noted by AL

1: DPCOS ← φ; AL← φ;
2: k ← 0; g ← 0; h← 0;
3: BS ← Calculate−BS(PT);
4: [SFP , SLP],FCS,LCS ← Calculate− FLP(PT);
5: for (i = 1; i ≤ |γ| ; i+ +) do
6: if π1(γ[i]) = SFP then
7: k ← i;
8: end if
9: if π1(γ[i]) = SLP then

10: g ← i;
11: end if
12: if π2(γ[i]) =>> and π1(γ[i]) /∈ δ(PN) then
13: AL← AL ∪ {(π1(γ[i]), >>)};
14: end if
15: end for
16: for (i = k + 1; i < g; i+ +) do
17: if π1(γ[i]) ∈ FCS and π2(γ[i]) =>> then
18: for (j = 1; j ≤ |BS| ; j + +) do
19: if π1(γ[i]) ∈ BS then
20: h← j;
21: for (v = 2;πh(πv(BS)) ∈ δ(σ); v + +) do
22: Continue;
23: end for
24: end if
25: end for
26: end if
27: end for
28: DPCOS ← DPCOS ∪ {(πh(π1(BS)), (πh(πv(BS)))};
29: return DPCOS, AL

Figure 4 is an optimal alignment γ1 between σ1 and PN1, and Figure 5 is an op-
timal alignment γ2 between σ2 and PN1. σ1 has transitions of choice structures with
t1, t5, t2, t4, and the branch set of PN1 is denoted asBS = {{t1, t2, t4}, {t1, t3, t4}, {t5},
{t6, t7}}. Its head-to-tail place is denoted as [SFP , SLP] = [p2, p6]. Its first choice
activity set is denoted as FCS = {t1, t5, t6}, and the last choice activity set is de-
noted as LCS = {t4, t5, t7}. We can find that the branch {t5} occurs concurrently
with the branch {t1, t2, t4} by traversing the optimal alignment. For γ1, (t5, >>)
is a log activity, and t5 is both contained in first and last choice activity sets, so

A Logic Petri Net-Based Repair Method of Models 277

its deviation position denoted by DPCOS = {(t5, t5)}. For γ2, its new activity set
denoted by AL is {c}.

An algorithm is proposed to repair models with incomplete choice structures via
logic Petri nets according to the deviation position in the following content.

Algorithm 4 Repair models for incomplete choice structures

Input: The deviation position denoted by DPCOS, a Petri net denoted by PN =
(P, T ;F,M), the head-to-tail place denoted by [SFP , SLP], and the new activity
set denoted by AL

Output: A logic Petri net denoted by LPN′ = (P ′, T ′;F ′, I ′, O′,M ′)
1: LPN′ ← PN;
2: for each (ti, tj) ∈ DPCOS do
3: P ′ ← P ′ ∪ Pnew1 ∪ Pnew2;
4: T ′ ← T ′;
5: F ′ ← F ′ − {SFP → ti} − {tj → SLP}∪{{•SFP} → Pnew1} ∪ {Pnew1 →
ti} ∪ {tj → Pnew2} ∪ {Pnew2 → {SL•P}};

6: I ′ ← I ′ ∪ {I(SL•P) = {SLP}
⊗

Pnew2

⊗
({SLP} ∧ Pnew2)};

7: O′ ← O′ ∪ {O(•SFP) = {SFP}
⊗

Pnew1

⊗
({SFP} ∧ Pnew1)};

8: end for
9: for each t ∈ AL do

10: P ′ ← P ′ ∪ Pnew;
11: T ′ ← T ′ ∪ t;
12: F ′ ← F ′ ∪ {4t→ Pnew} ∪ {Pnew → t} ∪ {t→ SLP};
13: O′ ← O′ ∪ {O(4t) = Pnew

⊗
{SLP}};

14: end for
15: return LPN

Algorithm 4 repairs models with incomplete choice structures. For each de-
viation position and new activity, we add different logic input and output transi-
tions.

For σ1 and σ2, its deviation position and new activity set are denoted as DPCOS =
{(t5, t5)} and AL = {c}. For DPCOS = {(t5, t5)}, we delete the arc from p to t5 and
the arc from t5 to p′, where p ∈• t5 and p′ ∈ t•5. Then we add two places, and
add the arc from a to the new place and the arc from the new place to t5, where
a ∈• p; we also add the arc from t5 to the new place and the arc from the new
place to b, where b ∈ p′•. We change a to a logic output transition and change b
to a logic input transition. For AL = {c}, 4c = t7 and c4 = b. We add a place
and new transition c. Then we insert three arcs from t7 to the new place and from
the new place to c and from c to b into the model. Besides, we change t7 to a logic
output transition. The repaired model by our approach denoted as LPN2 is shown
in Figure 6.

278 Y. Teng, L. Qi, Y. Du

p1 a p2

t6 p5 t7

t1 p3
t2

t3

p4 t4

t5

p6 b p7

p8 p9

p10 c

O(a)=p2Äp8Ä(p2Ùp8)

O(t7)=p6Äp10

I(b)=p9Äp6Ä(p9Ùp6)

Figure 6. The repaired model LPN2 by our approach

4 INCOMPLETE CONCURRENT STRUCTURES
DEVIATION REPAIR

This section presents a repair method of the model with incomplete concurrent
structures. For incomplete concurrent structures, we propose concurrent relation
sets, including head-to-tail transitions and concurrent activity sets. By compar-
ing and analyzing the logic relations between activities in traces and transitions
in concurrent activity sets, we can determine the deviation position of incomplete
concurrent structures, and repair models with incomplete concurrent structures via
logic Petri nets.

In the following, we use PN = (P, T ;F,M) to denote a four-tuple Petri net, and
use PT to denote a process tree of PN.

Definition 15 (Head-to-tail transition). [SFT , SLT] is called the head-to-tail tran-
sition of a concurrent structure, and SFT and SLT are called the head transition and
the tail transition, respectively, where SFT = n.lsib and SLT = n.rsib, n = “∧” and
n ∈ PT.

Theorem 4. For n = “∧”, if ∃n.child = m and m.child=null, then {m} is a branch.

Proof. If ∃n.child = m and m.child = null, it means that the child node of n is a leaf
node, i.e., ¬∃m.child| →

⊕
, where

⊕
= {×,→,

⊙
,∧}. Since n = “∧”, n.lsib =

SFT and n.rsib = SLT . We have SFT .parent = SLT .parent = n.parent = “→”. Since
m = n.child and m.child = null, it means that SFT , m and SLT fire in order, i.e.,
SFT =• (•m) and SLT = (m•)•. Thus, {m} is a branch.

If {m} is a branch and n = “∧”, it means n.lsib = SFT and n.rsib = SLT . We
have SFT =• (•m) and SLT = (m•)•. Thus, ¬∃m.child| →

⊕
and “∧”| → m, i.e.,

m = n.child and m.child = null. �

By Theorem 4, for the node denoted by “∧” of the process tree, if the child node
of the node is a leaf node, then this child node is alone a branch in the concurrent
structure.

Definition 16 (Concurrent activity set). First and last concurrent activity sets are
called the concurrent activity set together. FUS and LUS denote the first and the

A Logic Petri Net-Based Repair Method of Models 279

last concurrent activity sets, respectively. If n = “∧” and n ∈ PT, they need to
satisfy:

1. if n.child = m, m.child = null, then FUS = {m}, and LUS = {m};
2. if n| → . . . | → m, m = “∧” or m = “×”, k = |m.child|, q = n.child.lp and
m = q.parent, then FUS = {m.child.p1,m.child.p2, . . . ,m.child.pk};

3. if n| → . . . | → m, m = “∧” or m = “×”, k = |m.child|, q = n.child.rp and
m = q.parent, then LUS = {m.child.p1,m.child.p2, . . . ,m.child.pk}; and

4. if n| → . . . | → m, m = “→”, and m.child.child = null, then FUS = {n.child.lp},
and LUS = {n.child.rp}.

The algorithm of calculating head-to-tail transitions and concurrent activity sets
is given in the following.

Algorithm 5 calculates the head-to-tail transition and the concurrent activity
set. For each node n of process tree, if n is “∧”, its head transition is the pre-set
of the pre-set of the leftmost leaf node of n, and its tail place is the post-set of the
post-set of the rightmost leaf node of n. For each child node of n, if its child node
is a leaf node, then the child node of n is contained in the first and last concurrent
activity sets. If the child node g of n is “∧” or “×”, and g is the parent node of
the leftmost or rightmost leaf node of n, then each child node of g is contained in
the first or last concurrent activity set. If g is “→” and the child node of g is a leaf
node, then the leftmost leaf node of g is contained in the first concurrent activity
set, and the rightmost leaf node of g is contained in the last concurrent activity
set.

Figure 7 shows a Petri net model PN2, and PN2 contains concurrent structures.
Let σ3 = 〈a, t1, t3, t6, e, c〉 and σ4 = 〈a, b, t4, t5, f, c〉 be two traces. PN2 has a con-
current structure with transitions t1, t2, t3, t4, t5, t6. In the trace σ3, we have that
t1, t3 and t6 are concurrently enabled. For PN2, according to Algorithm 1, we can
calculate its branch set denoted by BS = {{t1, t3}, {t2, t3}, {t4, t5}, {t6}}. It shows
that the branches {t1, t3} and {t6} can occur selectively with the branch {t4, t5}. In
the original model PN2, all these branches need to occur. So this is an incomplete
concurrent structure.

Figure 8 shows the process tree of PN2 represented by PT2. We have PT2 =→
(a, b,∧(→ (×(t1, t2), t3),→ (t4, t5), t6), c). For PT2, we can obtain the head-to-tail
transition, the branch set and the concurrent activity set. Its head-to-tail tran-
sition is denoted as [SFT , SLT] = [b, c], and its branch set is denoted as BS =
{{t1, t3}, {t2, t3}, {t4, t5}, {t6}}. The first concurrent activity set is denoted as FUS =
{t1, t2, t4, t6}, and the last concurrent activity set is denoted as LUS = {t3, t5, t6}.

For incomplete concurrent structures, we can obtain log activities and model
activities from the optimal alignment. For those model activities, we can obtain
branches that need to occur selectively with other branches. For log activities,
we can obtain new activities that need to be inserted into the original model.
The algorithm of determining deviation positions is given in the following con-
tent.

280 Y. Teng, L. Qi, Y. Du

p1 a p2 p9

t1
p3

t2

t3

p6
t4

p4

b

p5

t5

t6 c

p7 p8

p10 p11

Figure 7. A Petri net model PN2

®

a b Ù c

® ® t6

t4 t5´ t3

t1 t2

Figure 8. The process tree PT2 of PN2

Algorithm 6 calculates the deviation position for incomplete concurrent struc-
tures. We obtain the positions of SFT and SLT in the optimal alignment, and
collect new activities. For activities between SFT and SLT in the optimal align-
ment, if the activity is a model activity and the corresponding transition is con-
tained in the first concurrent activity set, we determine whether all transitions of
the branch headed by this transition are model activities. If the corresponding ac-
tivity of head transition is a model or synchronous activity, we regard the invisible
or head transition and the first and last transitions in the branch as the deviation
position.

An optimal alignment γ3 between σ3 and PN2 is represented in Figure 9, and
an optimal alignment γ4 between σ4 and PN2 is shown in Figure 10. The branch
set of PN2 is BS = {{t1, t3}, {t2, t3}, {t4, t5}, {t6}}. For γ3, (>>, b), (>>, t4) and
(>>, t5) are model activities, and we can find that the branch {t4, t5} can occur se-
lectively with other branches by traversing the optimal alignment. For γ4, (>>, t1),

A Logic Petri Net-Based Repair Method of Models 281

Algorithm 5 Calculate− FLT(PT)

Input: A process tree denoted by PT
Output: The head-to-tail transition denoted by [SFT , SLT], the first concurrent

activity set denoted as FUS, and the last concurrent activity set denoted as
LUS

1: SFT ← φ; SLT ← φ; FUS ← φ; LUS ← φ; u← φ; q1 ← φ; q2 ← φ;
2: for each n ∈ PT do
3: if n = “∧” then
4: u← |n.child|;
5: m← n.child.p1;
6: k ← n.child.pu;
7: SFT ← SFT ∪• (•(m.child.lp));
8: SLT ← SLT ∪ ((k.child.rp)•)•;
9: for (i = 1; i ≤ |n.child| ; i+ +) do

10: gi ← n.child.pi;
11: if gi.child = null then
12: FUS ← FUS ∪ {gi.child};
13: LUS ← LUS ∪ {gi.child};
14: end if
15: q1 ← n.child.lp;
16: q2 ← n.child.rp;
17: if gi = “×”||gi = “∧” and (gi = q1.parent) then
18: for each gi.child do
19: FUS ← FUS ∪ gi.child;
20: end for
21: end if
22: if gi = “×”||gi = “∧” and (gi = q2.parent) then
23: for each gi.child do
24: LUS ← LUS ∪ gi.child;
25: end for
26: end if
27: if gi = “→” and gi.child.child then
28: FUS ← FUS ∪ gi.child.lp;
29: LUS ← LUS ∪ gi.child.rp;
30: end if
31: end for
32: end if
33: end for
34: return [SFT , SLT], FUS, LUS

282 Y. Teng, L. Qi, Y. Du

Algorithm 6 Determining deviation positions for incomplete concurrent structures

Input: A process tree denoted by PT, a Petri net denoted by PN = (P, T ;F,M),
and the optimal alignment denoted by Γσ,PN ,lc

Output: The deviation position denoted by DPCUS, and the new activity set de-
noted by AL

1: DPCUS ← φ; AL← φ;
2: k ← 0; g ← 0; h← 0;
3: BS ← Calculate−BS(PT);
4: [SFT , SLT],FUS,LUS ← Calculate− FLT(PT);
5: for (i = 1; i ≤ |γ| ; i+ +) do
6: if π2(γ[i]) = SFT then
7: k ← i;
8: end if
9: if π2(γ[i]) = SLT then

10: g ← i;
11: end if
12: if π2(γ[i]) =>> and π1(γ[i]) /∈ δ(PN) then
13: AL← AL ∪ {(π1(γ[i]), >>)};
14: end if
15: end for
16: for (i = k + 1; i < g; i+ +) do
17: if π2(γ[i]) ∈ FUS and π1(γ[i]) =>> then
18: for (j = 1; j ≤ |BS| ; j + +) do
19: if π2(γ[i]) ∈ BS then
20: h← j;
21: for (v = 2;πh(πv(BS)) ∈ δ(σ); v + +) do
22: Continue;
23: end for
24: end if
25: end for
26: end if
27: end for
28: if π1(γ[k]) =>> then
29: DPCUS ← DPCUS ∪ {τ(πh(π1(BS)), (πh(πv(BS)))};
30: else
31: DPCUS ← DPCUS ∪ {π1(γ[k])(πh(π1(BS)), (πh(πv(BS)))};
32: end if
33: return DPCUS, AL

A Logic Petri Net-Based Repair Method of Models 283

(>>, t3) and (>>, t6) are model activities, and we can find branches {t1, t3} and
{t6} occur selectively with other branches. Its head-to-tail transition is [SFT , SLT] =
[b, c], its first concurrent transition is FUS = {t1, t2, t4, t6}, and the last concurrent
transition is LUS = {t3, t5, t6}. Because {t4, t5} is a branch of PN2, and the head
transition b also cannot fire, so {τ(t4, t5)} is a deviation. Because {t1, t3} and {t6}
are two branches of PN2, and the head transition b is a synchronous activity, so
{b(t1, t3), b(t6, t6)} is a deviation. So we obtain its deviation position is DPCUS =
{τ(t4, t5)), b(t1, t3), b(t6, t6)}. Besides, (e,>>) and (f,>>) are log activities, the new
transitions e and f need to be inserted into the model, and its new activity set is
AL = {e, f}.

g3=
a >> t1 t3 t6 >>

a b t3 t6t1 t4

>>

t5

e

>>

c

c

Figure 9. An optimal alignment γ3 between σ3 and PN2

g4=
a b t4 t5 >> >>

a b t5 t1t4 t3

>>

t6

f

>>

c

c

Figure 10. An optimal alignment γ4 between σ4 and PN2

Algorithm 7 repairs models for incomplete concurrent structures via logic Petri
nets according to the deviation position. For different deviation positions, we add
different logic input and output transitions.

For σ3, σ4 and PN2, its deviation position is denoted by DPCUS={τ(t4, t5)),
b(t1, t3), b(t6, t6)}, and its new activity set is denoted by AL = {e, f}. For τ(t4, t5)),
we add an invisible transition to skip transition b, and add two arcs from the invisible
transition to p and p′, where p ∈• t1 and p′ ∈• t6. For b(t1, t3) and b(t6, t6), we change
the head transition b to a logic output transition. For AL = {e, f}, we add two
places and new transitions e and f , and change the tail transition c to a logic input
transition. The model repaired by our approach denoted by LPN3 is represented in
Figure 11.

5 EXPERIMENTAL EVALUATION

This section will compare our repair approach with Fahland’s approach, Knapsack’s
approach and Goldratt’s approach. The data is from a routine examination and
a CT index examination of a hospital in Qingdao, and event logs can be accessible at:
https://pan.baidu.com/s/1Nx2vf82NYKB9TGbf8uYIFQ. The Fahland’s approach
is implemented in ProM6.6, which is a process mining tool with lots of plugins
and can be available from: http://www.promtools.org/prom6/. The Goldratt’s
approach and Knapsack’s approach are implemented in the DOS window and edited

https://pan.baidu.com/s/1Nx2vf82NYKB9TGbf8uYIFQ
http://www.promtools.org/prom6/

284 Y. Teng, L. Qi, Y. Du

Algorithm 7 Repair models for incomplete concurrent structures

Input: The deviation position denoted by DPCUS, a Petri net denoted by PN =
(P, T ;F,M), the head-to-tail transition denoted by [SFT , SLT], and the new
activity set denoted by AL

Output: A logic Petri net denoted by LPN′ = (P ′, T ′;F ′, I ′, O′,M ′)
1: LPN′ ← PN;
2: for each SFT (ti, tj) ∈ DPCUS do
3: P ′ ← P ′;
4: T ′ ← T ′;
5: F ′ ← F ′;
6: O′ ← O′ ∪ {O(SFT = [∧{•ti}]

⊗
{{SF•T} − {•ti}}};

7: I ′ ← I ′ ∪ {I(SLT) = [∧{t•j}]};
8: end for
9: for each τ(ti, tj) ∈ DPCUS do

10: P ′ ← P ′;
11: T ′ ← T ′ ∪ {τ};
12: F ′ ← F ′ ∪ {{•SFT} → τ} ∪ {τ → {{SF•T} − {•ti}}};
13: end for
14: for each t ∈ AL do
15: P ′ ← P ′ ∪ Pnew;
16: T ′ ← T ′ ∪ t;
17: F ′ ← F ′ ∪ {{(4t)•} → t} ∪ {t→ Pnew} ∪ {Pnew → SLT};
18: I ′ ← I ′ ∪ {I(SLT) = I(SLT) ∪ [

⊗
Pnew]};

19: end for
20: return LPN

in ProM6.6. Since there are no corresponding experimental tools for mining and
repairing logic Petri nets, the model repair and analysis of our repair approach use
manual simulation in this paper.

5.1 Experiment Data

We take two business processes from a routine examination and a CT index exam-
ination in a hospital as examples. A hospital routine examination business process
is represented in Figure 12. First, a patient makes an appointment in the hospital
and pays for an appointment. Then he (or she) can get a number and wait for his
(or her) order. After that, a doctor will check what the patient needs by the rou-
tine examination. There are five types of examinations and the patient can do one
of them, i.e., the electrocardiogram, the abdominal ultrasound, the lung function
examination, the blood glucose and lipid, and the liver and kidney examination. Fi-
nally, a doctor will diagnose and cure disease according to examinations. Figure 13
shows a hospital CT index examination business process. First, a patient goes to
the information desk to consult some related problems and makes an appointment.

A Logic Petri Net-Based Repair Method of Models 285

p1 a p2 p9

t1
p3

t2

t3

p6
t4

p4

b

p5

t5

t6 c

p7 p8

p10
p11

e

f

p12

p13

O(b)=(p3Ùp6Ùp9)Äp6

I(c)=(p5Ùp8Ùp10)Äp12Äp13

Figure 11. The repaired model LPN3 by our approach

Then he (or she) will have an outpatient examination and take a brain CT and
a head CT. Besides, a doctor checks for four symptoms, i.e., the sinusitis, the brain
damage, the cerebral infarction, and the intracranial tumor. After that, the patient
needs a surgery and is hospitalized for tests.

Reserve Pay

Get

number

Call number

by order

Routine

examination

Electrocardi-

ogram

Abdominal

ultrasound

Lung function

examination

Blood glucose

and lipid

Liver and

kidney

examination

Diagnosis
Cure of

disease

Figure 12. A hospital routine examination business process

Consultation

desk

Reserve

system

Outpatient

examination

Brain CT Head CT

Sinusitis

Brain

damage

Cerebral

infarction

Intracranial

tumor

Surgery
Hospitaliza

-tion

Leave

hospital

Figure 13. A hospital CT index examination business process

However, some event logs deviating from the original model are generated in
the real process model systems. For example, in the hospital routine examination

286 Y. Teng, L. Qi, Y. Du

business process, a patient can do four tests at once, i.e., the liver and kidney
examination, the lung function examination, the blood glucose and lipid, and the
electrocardiogram; the patient also can carry out the abdominal ultrasound and the
gynecological examination together. In the hospital CT index examination business
process, the patient may only have a brain examination, he (or she) is tested for
only three conditions, i.e., the intracranial tumor, the brain damage, and the cerebral
infarction; the patient also can take medicines after the sinusitis examination. In
those situations, the process models need to be repaired, the choice structure needs
to be repaired to an incomplete choice structure, and the concurrent structure needs
to be repaired to an incomplete concurrent structure. These two repaired structures
can describe both choice and concurrent structures. Petri net-based models cannot
simply and accurately express those structures, and we can repair model based on
logic Petri nets.

5.2 Model Repair

For event logs of a hospital routine examination business process, we first filter out
event logs that are significantly deviated from the examination business process.
And according to the preprocessed ten sets of event logs (as shown in Table 1),
the process model (as shown in Figure 12) is repaired based on four model repair
methods. Table 1 records the specific information of activities in event logs and the
number of deviations.

Logs Traces Events Transitions Length Deviations

L1 100 1 020 13 8–11 220

L2 200 2 103 13 8–12 503

L3 300 3 143 13 8–12 743

L4 400 4 306 13 8–12 1 106

L5 500 5 447 13 8–12 1 447

L6 600 6 129 13 8–11 1 378

L7 700 7 169 13 8–11 1 570

L8 800 8 179 13 8–11 1 780

L9 900 9 169 13 8–11 1 970

L10 10 00 10167 13 8–11 2 168

Table 1. Event logs L1–L10 of a routine examination business process

Our proposed approach is compared with Fahland’s approach, Knapsack’s ap-
proach and Goldratt’s approach to illustrate its correctness and effectiveness. For
incomplete choice structures, the Fahland’s approach repairs the choice structure
by adding loop structures, and adds invisible transitions to skip transitions that
are not enabled. The Goldratt’s method and Knapsack’s method add different
self-loops of repeat transitions to improve the fitness of process models. For in-
complete concurrent structures, the Fahland’s approach collects new transitions as
a sub-log and inserts it into the original model, and skips transitions that are not

A Logic Petri Net-Based Repair Method of Models 287

enabled by adding invisible transitions. Besides, the Goldratt’s method and Knap-
sack’s method also add many invisible transitions to make repaired models better
replay event logs generated in real systems. These invisible transitions and repeat
transitions increase the uncertainty of the operation of the model, which leads to
a poor performance of the model. These models cannot represent the logic rela-
tion among activities in incomplete choice structures and incomplete concurrent
structures well, and most of them deviate from original structures of process mod-
els. It does not take advantage of the application and extension of process mod-
els.

For Figure 12 and Table 1, models repaired by four approaches are represented
in Figures 14, 15, 16 and 17, respectively. The model repaired by Fahland’s method
adds a loop structure to make transitions in the choice structure fire simultaneously.
The models repaired by Goldratt’s approach and Knapsack’s approach add different
self-loops of single transitions. Our approach does not add any repeat transitions and
does not add loop structures to change the basic structure of the original model. The
model repaired by our method contains 3 logic transitions, the logic input function
is I(Diagnosis) = p10

⊗
p11

⊗
p13

⊗
p14

⊗
(p10∧p11∧p13∧p14), and the logic output

functions are O(Routine examination) = p6
⊗

p7
⊗

p8
⊗

p9
⊗

(p6∧p7∧p8∧p9) and
O(Abdominal ultrasound) = p12

⊗
p13. Our repaired model can describe the logic

relation among transitions of incomplete choice structures. These input and output
functions limit the enablement of transitions in the model, so the model generates
fewer traces that are not included in event logs.

Reserve Pay
Get

number

Call number

by order

Routine

examination

Electrocardi-

ogram

Abdominal

ultrasound

Lung function

examination

Blood glucose

and lipid

Liver and

kidney

examination

Diagnosis
Cure of

disease

Gynecological

examination

Figure 14. The repaired routine examination model by Fahland’s method

Compared with the original model, the addition results of four repair models are
represented in Table 2. As shown in Table 2, Goldratt’s method adds the largest
number of transitions (including invisible transitions), and our method only adds
one transition without invisible transitions. The number of added repeat transitions
by Goldratt’s method and Knapsack’s method are 6 and 4, respectively. Compared
with other three repair methods, our method adds the least transitions, and does
not add invisible transitions and repeat transitions.

288 Y. Teng, L. Qi, Y. Du

Reserve Pay

Get

number
Call number

by order

Routine

examination

Electrocardi-

ogram

Abdominal

ultrasound

Lung function

examination

Blood glucose

and lipid

Liver and

kidney

examination

Diagnosis
Cure of

disease

Lung function

examination

Blood glucose

and lipid

Gynecological

examination

Electrocardi-

ogram

Liver and

kidney

examination

Figure 15. The repaired routine examination model by Knapsack’s method

Reserve Pay

Get

number

Call number

by order

Routine

examination

Blood glucose

and lipid

Electrocardi-

ogram

Lung function

examination

Liver and

kidney

examination

Liver and

kidney

examination

Diagnosis
Cure of

disease

Electrocardi-

ogram

Lung function

examination

Abdominal

ultrasound

Electrocardi-

ogram

Lung function

examination

Liver and

kidney

examination

Gynecological

examination

Figure 16. The repaired routine examination model by Goldratt’s method

Four Repair Methods Added |P | Added |T + τ | Added |F | Added Repeat |T |
Our method 7 1 9 0

Fahland’s method 1 3 6 0

Goldratt’s method 0 7 14 6

Knapsack’s method 0 5 10 4

Table 2. The addition results of Figures 14, 15, 16 and 17

A Logic Petri Net-Based Repair Method of Models 289

Reserve Pay

Get

number
Call

number

by order

Routine

examination

Abdominal

ultrasound

Blood glucose

and lipid

Liver and

kidney

examination

Lung

function

examination

Electrocardio

gram

Diagnosis
Cure of

disease

Gynecological

examination

O(t5)=p6Äp7Äp8Äp9Ä

(p6Ùp7Ùp8Ùp9)

p1 t1 p2 p3

t3

p4
t4

p5
t5

p6

p7

p8

p9

t11
p14

t9
p12

t10

p13
t8

p11

p10

t7

t6

t12 p15
t13 p16

t2

I(t12)=p10Äp11Äp13Äp14
Ä(p10Ùp11Ùp13Ùp14)

O(t9)=p12Äp13

Figure 17. The repaired routine examination model by our approach

We process event logs of a CT index examination business process according to
the same data filtering method. The filtered ten sets of event logs are described in
Table 3. The process model (as shown in Figure 13) is repaired based on ten sets of
event logs. The information of activities in event logs and the number of deviations
are recorded in Table 3.

Logs Traces Events Transitions Length Deviations

L11 100 1 166 13 10–12 38

L12 200 2 366 13 9–12 38

L13 300 3 366 13 9–12 238

L14 400 4 566 13 9–12 238

L15 500 5 765 13 9–12 238

L16 600 6 965 13 9–12 238

L17 700 8 165 13 9–12 238

L18 800 9 100 13 9–12 573

L19 900 10 300 13 9–12 573

L20 1 000 11 500 13 9–12 573

Table 3. Event logs L11 − L20 of a CT index examination business process

Four repaired models repaired by three classic methods and our repair method
are shown in Figure 18, 19, 20 and 21, respectively. Fahland’s method inserts
many invisible transitions into the model to skip concurrent transitions that can-
not fire. Although it makes activities in event logs be well replayed in the model,
it also reduces the precision and simplicity of the model. Goldratt’s approach
inserts activities deviating from the model into the original model by means of
self-loops. Knapsack’s approach repairs the model in the same way as Goldratt’s
approach with different constraints. Besides, these two methods add a lot of in-
visible transitions. The model repaired by our approach reduces the degree of un-
certainty of transition firing and has a high simplicity of net structures. Besides,
it contains one logic input function and one logic output function, and they are

290 Y. Teng, L. Qi, Y. Du

I(Surgery) = (p10 ∧ p11 ∧ p12 ∧ p13)
⊗

p14
⊗

(p10 ∧ p11 ∧ p12) and O(Head CT) =
(p6 ∧ p7 ∧ p8 ∧ p9)

⊗
p9. The repaired model by our approach can describe the

logic relation among transitions of incomplete concurrent structures, and it does
not generate additional transitions to increase the uncertainty of the operation of
the model.

Consultation

desk

Reserve

system

Outpatient

examination

Brain CT

Head CT

Brain

damage

Sinusitis

Intracrani

al tumor

Cerebral

infarction

Surgery
Hospitaliza-

tion

Leave

hospital

Take

medicine

Figure 18. The repaired CT index examination model by Fahland’s method

Consultation

desk

Reserve

system

Outpatient

examination

Brain CT

Head CT

Sinusitis

Cerebral

infarction

Intracranial

tumor

Brain

damage

Surgery
Hospitaliza-

tion

Leave

hospital

Take

medicine

Figure 19. The repaired CT index examination model by Knapsack’s method

Table 4 records addition results of four repair methods. Fahland’s method adds
the maximum number of transitions, including invisible transitions. The addition
result of our repaired model is best, and the other three repaired models add a lot
of invisible transitions and repeat transitions.

5.3 Performance Analysis

The sub-section describes the performance analysis of four repaired models com-
bining with event logs L1–L20. Fitness is the proportion of traces that the model

A Logic Petri Net-Based Repair Method of Models 291

Consultation

desk

Reserve

system

Outpatient

examination

Brain CT

Head CT

Intracranial

tumor

Sinusitis

Cerebral

infarction

Brain

damage

Surgery
Hospitaliza-

tion

Leave

hospital

Take

medicine

Figure 20. The repaired CT index examination model by Goldratt’s method

Consultation

desk

p1 t1
Reserve

system

Outpatient

examination

Brain CT Head CT

Intracranial

tumor

Brain

damage

Cerebral

infarction

Sinusitis

Surgery
Hospitaliza-

tion

Leave

hospital

p2 t2

O(t5)=(p6Ùp7Ùp8Ùp9)Äp9
Take

medicine

p3
t3

p4 t4 p5
t5

p6

p7

p8

p9

t6

t7

t8

t9

p10

p11

p12

p13 t10 p14

t11 p15 t12 p16 t13 p17

I(t11)=(p10Ùp11Ùp12Ùp13)

Äp14Ä(p10Ùp11Ùp12)

Figure 21. The repaired CT index examination model by our approach

can completely replay in the event log. A model with high fitness allows behav-
iors described in the event log to occur. If a model is precise, it does not allow
too many activities that are not described in event logs to appear in the model.
The formula for calculating fitness and precision of logic Petri nets are proposed
in [19]. We consider the structure of the model and the repeatability of activi-
ties, and calculate the simplicity of net-based structures according to the method
proposed in [18].

For four repaired models, we obtain the degree of fitness between models and
event logs L1–L20 represented in Table 5 and Table 6. As shown in Table 5,
for our approach, Fahland’s approach and Goldratt’s approach, the fitness be-

Four Repair Methods Added |P | Added |T + τ | Added |F | Added Repeat |T |
Our method 1 2 7 0

Fahland’s method 1 7 17 0

Goldratt’s method 0 6 15 1

Knapsack’s method 0 6 15 1

Table 4. The addition results of Figures 18, 19, 20 and 21

292 Y. Teng, L. Qi, Y. Du

tween these repaired models and event logs L1–L10 are all 1. However, the fit-
ness value of the model repaired by Goldratt’s method is slightly lower than that
of the other methods. As shown in Table 6, the degree of fitness between these
four repaired models and event logs L11–L20 are all 1. In general, the fitness of
these four methods is very high, and those four repaired models all have a high
fitness.

Four Repair Methods L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Fahland’s method 1 1 1 1 1 1 1 1 1 1

Our method 1 1 1 1 1 1 1 1 1 1

Goldratt’s method 1 1 1 1 1 1 1 1 1 1

Knapsack’s method 1 0.9884 0.9884 0.9723 0.9710 1 1 1 1 1

Table 5. The fitness between different models and event logs L1–L10

Four Repair Methods L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Fahland’s method 1 1 1 1 1 1 1 1 1 1

Our method 1 1 1 1 1 1 1 1 1 1

Goldratt’s method 1 1 1 1 1 1 1 1 1 1

Knapsack’s method 1 1 1 1 1 1 1 1 1 1

Table 6. The fitness between different models and event logs L11–L20

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

The repaired model by Fahland's

approach

The repaired model by our

approach

The repaired model by Goldratt's

approach

The repaired model by

Knapsack's approach

Figure 22. The precision between different models and event logs L1–L10

The results of precision between models proposed by four repair methods and
event logs L1–L20 are represented in Figure 22 and Figure 23. As shown in Fig-
ure 22, the model repaired by our approach has the highest precision, significantly
higher than Knapsack’s approach, Goldratt’s approach and Fahland’s approach.
As shown in Figure 23, the model repaired by our approach also has the highest
precision, and it has a clear performance advantage than the other three repair
methods. In general, the precision of our repaired model for incomplete choice
structures or incomplete concurrent structures is significantly higher than that of
the three other classic repair methods. Our proposed method greatly improves the

A Logic Petri Net-Based Repair Method of Models 293

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L11 L12 L13 L14 L15 L16 L17 L18 L19 L20

precision

The repaired model by

Fahland's approach

The repaired model by our

approach

The repaired model by

Goldratt's approach

The repaired model by

Knapsack's approach

Figure 23. The precision between different models and event logs L11–L20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

The repaired model by

Fahland's approach

The repaired model by our

approach

The repaired model by

Goldratt's approach

The repaired model by

Knapsack's approach

Figure 24. The simplicity between different models and event logs L1–L10

precision of the process models and also improves the performance of the mod-
els.

The simplicity of net structures is obtained by calculating the sum of the pro-
portion of events of per trace in the total number of transitions of models. The
results of simplicity of four repair approach combining with event logs L1–L20 are
represented in Figure 24 and Figure 25. As shown in Figure 24, the simplicity of the
repaired model by our approach is highest, followed by Fahland’s approach. These
two methods are higher than Knapsack’s approach and Goldratt’s approach. As
shown in Figure 25, our repair approach has the highest simplicity of net struc-
tures, higher than Goldratt’s approach and Knapsack’s approach. By compari-
son, the repaired model by Fahland’s approach has the lowest simplicity of net
structures. In terms of net structures, our repair approach has the highest sim-
plicity of net structures, higher than Goldratt’s approach, Knapsack’s approach

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L11 L12 L13 L14 L15 L16 L17 L18 L19 L20

The repaired model by

Fahland's approach

The repaired model by our

approach

The repaired model by

Goldratt's approach

The repaired model by

Knapsack's approach

Figure 25. The simplicity between different models and event logs L11–L20

294 Y. Teng, L. Qi, Y. Du

and Fahland’s approach. Therefore, for business processes with incomplete con-
current and choice structures, our method not only enables the model to have
a high precision and fitness, but also improves the simplicity of net structures of
the model.

6 CONCLUSIONS

In the paper, the repair method for process models with incomplete choice and
concurrent structures is proposed via logic Petri nets. Current model repair meth-
ods tend to change the choice structure to a loop structure, and generate a large
number of invisible and repeat transitions, or add self-loops of transitions to im-
prove fitness. The concepts of choice relation sets and concurrent relation sets
are presented based on process trees. For incomplete choice structures, we judge
whether the corresponding transitions of log activities are contained in a whole
branch, and determine deviation positions based on choice activity sets. For incom-
plete concurrent structures, we find deviations by judging whether the correspond-
ing transitions of model activities are contained in a whole branch and whether
the head-to-tail transition is a synchronous activity. Then we determine devia-
tion positions based on concurrent activity sets, and repair models via logic Petri
nets according to different deviation positions. Through the simulation experiment,
we prove that our repair approach greatly improves the precision and simplicity
of the model, and the fitness is still very high. It also can describe the logic re-
lation among transitions in incomplete choice and concurrent structures correctly.
However, process trees can only represent Petri nets with block-distributed struc-
tures. For those process models that cannot be represented by process trees, we
will further study how to determine the deviation position through other algo-
rithms.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of
China under Grant 61903229 and Grant 61973180, in part by the Key Research
and Development Program of Shandong Province under Grant 2018GGX101011,
and in part by the Natural Science Foundation of Shandong Province under Grant
ZR2018MF001 and Grant ZR2019BF004.

REFERENCES

[1] Qi, H. D.—Du, Y. Y.—Liu, W.: Process Model Repairing Method Based on Reach-
able Markings. Journal of Shandong University of Science and Technology (Natural
Science), Vol. 36, 2017, No. 1, pp. 118–124.

A Logic Petri Net-Based Repair Method of Models 295

[2] Conforti, R.—Dumas, M.—Garćıa-Bañuelos, L.—La Rosa, M.: BPMN
Miner: Automated discovery of BPMN Process Models with Hierarchical Structure.
Information Systems, Vol. 56, 2016, pp. 284–303, doi: 10.1016/j.is.2015.07.004.

[3] van der Aalst, W. M. P.—ter Hofstede, A. H. M.: YAWL: Yet Another
Workflow Language. Information Systems, Vol. 30, 2004, No. 4, pp. 245–275, doi:
10.1016/j.is.2004.02.002.

[4] Liu, G. J.: Complexity of the Deadlock Problem for Petri Nets Modeling Resource
Allocation Systems. Information Sciences: An International Journal, Vol. 363, 2016,
Iss. C, pp. 190–197, doi: 10.1016/j.ins.2015.11.025.

[5] Wang, Y. Y.—Du, Y. Y.: Conformance Checking Based on Extended Footprint
Matrix. Journal of Shandong University of Science and Technology (Natural Science),
Vol. 37, 2018, No. 2, pp. 9–15.

[6] van der Aalst, W. M. P.—Weijters, A. J. M. M.—Maruster, L.: Work-
flow Mining: Discovering Process Model from Event Logs. IEEE Transactions
on Knowledge and Data Engineering, Vol. 16, 2004, No. 9, pp. 1128–1142, doi:
10.1109/TKDE.2004.47.

[7] Weijters, A. J. M. M.—van der Aalst, W. M. P.: Rediscovering Workflow
Models from Event-Based Data Using Little Thumb. Integrated Computer-Aided
Engineering, Vol. 10, 2003, No. 2, pp. 151–162.

[8] Adriansyah, A.—Munoz-Gama, J.—Carmona, J.—van Dongen, B. F.—
van der Aalst, W. M. P.: Aligning Based Precision Checking. In: La Rosa, M.,
Soffer, P. (Eds.): Business Process Management Workshops (BPM 2012). Springer,
Berlin, Heidelberg, Lecture Notes in Business Information Processing, Vol. 132,
pp. 137–149, doi: 10.1007/978-3-642-36285-9 15.

[9] Leemans, S. J. J.—Fahland, D.—van der Aalst, W. M. P.: Scalable Process
Discovery and Conformance Checking. Software and Systems Modeling, Vol. 17, 2018,
pp. 599–631, doi: 10.1007/s10270-016-0545-x.

[10] Alizadeh, M.—Lu, X.—Fahland, D.—Yanonne, N.—
van der Aalst, W. M. P.: Linking Data and Process Perspectives for Con-
formance Analysis. Computers and Security, Vol. 73, 2018, pp. 172–193, doi:
10.1016/j.cose.2017.10.010.

[11] Rozinat, A.—van der Aalst, W. M. P.: Conformance Checking of Processes
Based on Monitoring Real Behavior. Information Systems, Vol. 33, 2008, No. 1,
pp. 64–95, doi: 10.1016/j.is.2007.07.001.

[12] Buijs, J. C. A. M.—van Dongen, B. F.—van der Aalst, W. M. P.: A Genetic
Algorithm for Discovering Process Trees. IEEE Congress on Evolutionary Computa-
tion, 2012, 8 pp., doi: 10.1109/CEC.2012.6256458.

[13] Fahland, D.—van der Aalst, W. M. P.: Model Repair – Aligning Pro-
cess Models to Reality. Information Systems, Vol. 47, 2015, pp. 220–243, doi:
10.1016/j.is.2013.12.007.

[14] Polyvyanyy, A.—van der Aalst, W. M. P.—ter Hofstede, A. H. M.—
Wynn, M. T.: Impact-Driven Process Model Repair. ACM Transactions on Software
Engineering and Methodology, Vol. 25, 2016, No. 4, pp. 25–33, doi: 10.1145/2980764.

https://doi.org/10.1016/j.is.2015.07.004
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1016/j.ins.2015.11.025
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1007/978-3-642-36285-9_15
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1016/j.cose.2017.10.010
https://doi.org/10.1016/j.is.2007.07.001
https://doi.org/10.1109/CEC.2012.6256458
https://doi.org/10.1016/j.is.2013.12.007
https://doi.org/10.1145/2980764

296 Y. Teng, L. Qi, Y. Du

[15] Qi, H. D.—Du, Y. Y.—Qi, L.—Wang, L.: An Approach to Repair Petri Net-
Based Process Models with Choice Structures. Enterprise Information Systems,
Vol. 12, 2018, No. 8-9, pp. 1149–1179, doi: 10.1080/17517575.2018.1432768.

[16] Du, Y. Y.—Qi, L.—Zhou, M. C.: Analysis and Application of Logical Petri Nets
to E-Commerce Systems. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, Vol. 44, 2014, No. 4, pp. 468–481, doi: 10.1109/TSMC.2013.2277696.

[17] Zhang, X. Z.—Du, Y. Y.—Qi, L.—Sun, H. C.: An Approach for Repairing Pro-
cess Models Based on Logic Petri Nets. IEEE Access, Vol. 6, 2018, pp. 29926–29939,
doi: 10.1109/ACCESS.2018.2843137.

[18] Teng, Y. X.—Du, Y. Y.—Qi, L.—Luan, W. J.: A Logic Petri Net-Based Method
for Repairing Process Models with Concurrent Blocks. IEEE Access, Vol. 7, 2019,
pp. 8266–8282, doi: 10.1109/ACCESS.2018.2890070.

[19] Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. Thesis, Techni-
sche Universiteit Eindhoven, 2014, pp. 139–149, doi: 10.6100/IR770080.

https://doi.org/10.1080/17517575.2018.1432768
https://doi.org/10.1109/TSMC.2013.2277696
https://doi.org/10.1109/ACCESS.2018.2843137
https://doi.org/10.1109/ACCESS.2018.2890070
https://doi.org/10.6100/IR770080

A Logic Petri Net-Based Repair Method of Models 297

Yuanxiu Teng received her B.Sc. degree from Shandong Uni-
versity of Science and Technology, Qingdao, China, in 2017. She
is now pursuing the M.Sc. degree in the College of Computer
Science and Engineering, Shandong University of Science and
Technology, Qingdao, China. Her current research interests are
process mining, Petri nets and workflow.

Liang Qi received his B.Sc. degree in information and com-
puter science and M.Sc. degree in computer software and theory
from Shandong University of Science and Technology, Qingdao,
China, in 2009 and 2012, respectively, and the Ph.D. degree in
computer software and theory from Tongji University, Shanghai,
China, in 2017. He is currently Lecturer of computer science and
technology at Shandong University of Science and Technology,
Qingdao, China. His current research interests include Petri
nets, discrete event systems, process mining and optimization
algorithms.

Yuyue Du received his B.Sc. degree from Shandong University,
Jinan, China, in 1982, the M.Sc. degree from Nanjing University
of Aeronautics and Astronautics, Nanjing, China, in 1991, and
the Ph.D. degree in computer application from Tongji Univer-
sity, Shanghai, China, in 2003. He is currently Professor at the
College of Computer Science and Engineering, Shandong Uni-
versity of Science and Technology, Qingdao, China. His research
interests are in formal engineering, Petri nets, real-time systems,
process mining and workflows.

