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Abstract. Malicious information is often hidden in the massive data flow of online
social networks. In “We Media” era, if the system is closed without intervention,
malicious information may spread to the entire network quickly, which would cause
severe economic and political losses. This paper adopts a reverse intervention strat-
egy from the perspective of topology control, so that the spread of malicious in-
formation could be suppressed at a minimum cost. Noting that as the information
spreads, social networks often present a community structure and multiple mali-
cious information promoters may appear. Therefore, this paper adopts a divide
and conquer strategy and proposes an intervention algorithm based on subgraph
partitioning, in which we search for some influential nodes to block or release clar-
ification. The main algorithm consists of two main phases. Firstly, a subgraph
partitioning method based on community structure is given to quickly extract the
community structure of the information dissemination network. Secondly, a node
blocking and clarification publishing algorithm based on the Jordan Center is pro-
posed in the obtained subgraphs. Experiments show that the proposed algorithm
can effectively suppress the spread of malicious information with a low time com-
plexity compared with the benchmark algorithms.
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1 INTRODUCTION

In recent years, social media has become an important platform for online users
to participate in the Internet, such as Facebook, Twitter, Sina Weibo, WeChat,
QQ, etc. Users on social media have formed OSN (Online Social Networks). The
expansion of the social category from physical space to virtual space is a process from
quantitative change to qualitative change. On the one hand, the deep integration
of social media and politics, economy and culture releases positive energy, and the
highly connected OSN provides infrastructure for the realization of “Internet +”.
On the other hand, malicious information such as rumors and fake news often hide in
the massive social data, which brings unprecedented challenges for national security
and social stability, making the high-speed diffusion of information in OSN a double-
edged sword. The “information security” in online social networks has attracted
more and more attention.

The control of malicious information in OSN is mostly studied from two aspects:
credibility evaluation and information dissemination dynamics. In the perspective
of credibility evaluation, classification or sorting methods are often used, and the
text content of social media, supplemented by user information and communication
characteristics could be analyzed. Kwon et al. [1] used the timing characteristics,
combined with the structure and semantics of the message to identify rumors. Song
et al. [2] analyzed the statistical characteristics of text content (such as number
of repeated microblogs in the last 20 Weibo contents, number of external links,
number of @ symbols, number of topic tags) and characteristics of user relationships
(number of followers, reputation of each user) to identify malicious information on
Twitter. In the perspective of information dynamics, Fang [3] used life cycle theory
to divide the information fermentation process into four stages: gestation, diffusion,
transformation and attenuation. Lan et al. [4] established a differential equation
model based on the forming process and influencing factors to study the information
evolution in the network, and the authors proposed three characteristic time points
and four periods for public opinion diffusion.

The above studies provide the basis for reverse control (i.e. manual intervention)
of malicious information, even though none of them mentioned the intervention of
malicious information. In the analysis of the propagation of malicious information,
OSN is regarded as a closed system. The attacker can choose a reasonable publish-
ing strategy to make information spread quickly and achieve his purpose. However,
in reality, the system is open. From a theoretical point of view, the multi-layered
information dissemination process could be interfered by adding disturbance vari-
ables. From a practical point of view, it is possible to issue clarification or block
rumor accounts, making malicious information and the clarification disturb each
other, which could hinder the rapid spread of malicious information. Therefore, to
timely and effectively disturb the evolution of malicious information is a challenging
and important issue.

The current literatures of reverse control mostly compromise on effectiveness
and efficiency. In this paper, we go further on reverse control in OSN and try
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our best to suppress the spread of malicious information at a minimum cost. The
main contributions of this paper can be summarized as follows. Firstly, we propose
a novel community partitioning algorithm to reduce the complexity in large-scale
networks. Secondly, we introduce a mechanism which incorporates both blocking
and clarification publishing methods to impede the spread of malicious informa-
tion. Thirdly, we utilize the Jordan Center to select key nodes for publishing
clarifications. Finally, we verify the effectiveness of the model through the experi-
ments.

The remainder of this paper is organized as follows. We review the related
works in Section 2. In Section 3, we present the problem formulation. The reverse
intervention algorithm based on subgraph partitioning is proposed in Section 4.
Experimental results are presented in Section 5. Finally, we summarize this paper
in Section 6.

2 RELATED WORK

The research of reverse control in OSN originated from the invulnerability of complex
networks, in which different measurement and control indicators have been proposed
and analyzed. For example, the authors of [5] studied the invulnerability of ad hoc
network, in which “k-connectivity” and power control were used to protect the
network against random failure. In [6], the critical removal ratio was used as the
measurement for the networks with incomplete information, and the invulnerability
of the network was analyzed based on characteristic spectrum. Albert et al. [7]
used generating function to analyze the critical removal ratio under the random
failure conditions. Cohen et al. [8] extended the problem to the generalized random
graph. Callaway et al. [9] studied the percolation problem on graphs with completely
general degree distribution and proposed some specific solutions for a variety of
cases, including site percolation, bond percolation, and models in which occupation
probabilities rely on vertex degree. In [10], highly optimized tolerance (HOT) theory
and node preference attachment mechanism were used to build the invulnerable
dynamic evolution model for the studied network.

The controllability and information diffusion were also analyzed in opportunis-
tic social networks [11] and location-based social networks (LBSNs). For exam-
ple, weight distribution between nodes and communities reconstitution were es-
tablished in [12] to solve the problem of message delivery for social opportunistic
networks. In [13], the authors proposed a routing algorithm called sensor commu-
nication area node extend (SCANE) to select relevance nodes and to recombine
communication areas. In [14], a method for recommending points of interest (POIs)
was proposed based on a collaborative tensor factorization (CTF) technique. Luan
et al. [15] proposed a maximal-marginal-relevance-based personalized trip recom-
mendation method that considers both relevance and diversity of trips in a trip
planning. These literatures are inspiring and instructive to analyze the propagation
of rumors.
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In order to restrain the propagation of rumors, scientists have proposed many
methods. The literatures can be roughly categorized as controlling influential users
(links), and clarifying the rumors by spreading the truths under different diffu-
sion models. For blocking strategies, the evaluation of important nodes and links
plays an important role in the blocking strategies. The centrality indicators such as
degree centrality, clustering coefficient, betweenness centrality, closeness centrality,
k-shell decomposition [16], HITS algorithm [17], PageRank algorithm [18], network
efficiency [19], Laplace centrality [20] , structural hole [21], minimum spanning tree
index [22], mutual information method [23], and node contraction method [24] could
be drew on in the proposed strategies. Fan et al. [25] explored the Least Cost Ru-
mor Blocking (LCRB) problem to prevent rumors from spreading. The authors
tried to minimize the number of people infected from the originate community to
other communities by identifying a minimal bridge end set which diffuse the posi-
tive (protector) cascade. However, the authors assumed that the cascade of rumor
and protector start at the same time, which was not in line with the real situation
that the positive cascade was usually released after the rumor has been noticed.
For clarifying the rumors, Wan et al. [26] proposed a novel model of competitive
coupling to describe the complex process of information diffusion in online social
networks and introduced the constrained intervention strategies. The analysis of
coupling diffusion among different information is very inspiring when we introduce
the clarifications. Wen et al. [27] numerically evaluated the two types of strategies
used for restraining rumors in OSNs, including blocking rumors at important users
and clarifying rumors by spreading truths, thus introduced a mathematical model
to present the spread of rumors and truths. The authors found that the truth clar-
ification method could eliminate more rumors in the long run while the blocking
method based on degree could provide better performance in the early stage of the
rumor spread.

Credibility analysis of posts and users was also used to control the rumor spread-
ing. Bao et al. [28] proposed a novel immunization strategy called MST based on
trust network. The authors established a weighted trust network based on the trust
relationship between users, and determined the most important information diffu-
sion paths to cut down. However, the trust weight of the links was hard to determine
and the proposed algorithm was time consuming. Bao et al. also proposed a SPNR
model in [29], in which the authors split the infected states into two separate states
according to whether the user support or oppose the information. That is, the pa-
per assumed the users in OSN could spontaneously oppose the rumor. However,
only parameters’ influence was analyzed and effective rumor control strategies need
further discussion. Bhattacharya et al. [30] proposed a belief surveillance approach
for specific propositions, which is inspired by studies on disease surveillance. The
authors demonstrated that although factual statements garner a high degree of be-
lief, some are still being questioned, and some fictional statements also garner a high
degree of belief, which was instructive for the control of malicious information.

Inspired by the above literatures, we incorporate both blocking and clarification
publishing methods to control the diffusion of malicious information. In this paper,
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we break the assumption of closed systems and implement reverse interventions to
impede the spread of malicious information.

3 PROBLEM FORMULATION

In this section, we give the definition of the Jordan Center and present information
diffusion models and symbols used in this paper.

3.1 Diffusion Model

We use directed graph G = (V,E) to represent OSN, where V is the set of nodes,
and E is the set of edges in the network. Two nodes connected by edges are called
neighbors (e.g., there is a relationship of following). At some certain moment, an
attacker in the network issues a malicious message m, and other nodes in the network
will receive message m and forward it to its neighbor nodes.

Next, we describe the propagation model used in this paper. Existing informa-
tion dissemination models can be roughly divided into two categories: epidemiolog-
ical infection models such as SI (Susceptible-Infected), SIR (Susceptible-Infected-
Recovery) and SIS (Susceptible-Infected-Susceptible) model and influence diffusion
models such as IC (Independence Cascade) and LT (Linear Threshold) model. This
paper focuses on the influence diffusion model, namely LT and IC model. These
two models have received extensive attention since they were first proposed in the
pioneering work of Kempe et al. [31].

IC model: An infected node v has only one chance to infect its susceptible neigh-
bors, and each neighbor node w ∈ N(v) (N(v) represents the neighbor set of
node v) can be infected with an independent probability pv,w.

LT model: Each node in the network independently selects a threshold θv ∈ [0, 1]
at the initial stage. Whether a susceptible node w adopts the information de-
pends on the sum of all its neighbors’ weights pv,w, where v ∈ N(w). When the
sum of the weights for susceptible node w satisfies

∑
v∈N(w) bv,w ≥ θv, the node

w will be infected.

3.2 Problem Formulation

The reverse intervention of malicious information is closely related to the influence
diffusion model of OSN. Malicious information spread together with other infor-
mation in the network, and information holding the opposite opinion will compete
with each other. In the real world, users who receive clarification usually should no
longer accept the malicious information (rumors). In order to prevent people from
being misled by malicious information, a natural way is to introduce clarifications to
uninfected users as soon as possible, at least earlier than the arrival of malicious in-
formation. Once malicious information is detected, the network administrator (e.g.
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police department) can generate a competitive positive cascading (clarification) to
minimize the number of infected (propagating) users. In this paper, we assume that
the clarification has higher priority than malicious information to activate nodes.
Therefore, according to the IC and LT model discussed above, the problem that
needs to be solved in this paper is described as the following optimization problem.

min |S| (1)

s.t.

S ⊂ V, (2)

|I(G)|
|V|

≤ β. (3)

That is, according to the propagation situation of malicious information m, we
try to select a minimum set of nodes to block or publish clarification to control the
spread of malicious information, so that the infection rate of the whole network after
a time window T is less than β (I(G) in Equation 3 represents the set of infected
nodes in the network).

3.3 Jordan Center

In this subsection, we give the definition of the Jordan Center according to the
previous work [32, 33].

Definition 1 (Jordan Center). Let d(s, u) represent the distance between nodes s
and u in graph G (i.e. length of the shortest path). A is a collection of randomly
selected nodes in G, and d̄(s,A) is defined as the eccentricity of node s, i.e., the
maximum distance between s and any selected node of A, yielding:

d(s,A) = max
u∈A

d(s, u). (4)

Jordan Center of A is defined as the node with the smallest eccentricity in G.

4 REVERSE INTERVENTION ALGORITHM BASED
ON SUBGRAPH PARTITIONING

In online social networks, algorithms based on community partitioning have been
proven to be effective [34, 35]. In the actual network, we can usually observe the
fragments of the propagation, take SIR model as an example, some nodes will change
from infected state to recovery state. In this paper, we ignore the problem of in-
complete observation. Considering the huge advantages of community partitioning,
we propose a community-based heuristic method according to the network topology
to solve the problem of reverse intervention for malicious information. Specifically,
our approach consists of two main phases:
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1. subgraph partitioning based on community structure to quickly reveal the com-
munity structure of the network;

2. node selection based on the Jordan Center to effectively control the spread of
malicious information by means of high-influence nodes.

4.1 Subgraph Partitioning Algorithm Based on Community Structure

In networks with distinct community structures, information is more likely to spread
within the community and then spread to other areas of the network. As shown
in Figure 1, the network often presents a community structure. As the malicious
information spreads, users will hold different opinions on the current event, thus
malicious information and external disturbances will form a competition process.
The red arrow in Figure 1 represents the opponent flow of malicious information,
the blue arrow represents the supporter flow, and the two will form a hedge. By
observing the current information dissemination, this paper uses the community
structure of the network to distinguish the spread of malicious information, and
then suppress the spread of malicious information by publishing clarification in each
community.

Figure 1. Reverse intervention of malicious information

Lots of measures of the strength of division of a network into communities have
been proposed by experts in this field, such as conductance, normalized cut, cut
ratio, triangle participation ratio (TPR), etc. [36, 37]. In this paper, we adopt the
classic index of modularity proposed by Mark Newman [38] to measure the quality
of the community partitioning algorithm, which compares the connection density
between the original network and the reference network in the same community. The
reference network is defined as a random network having the same degree sequence
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as the original network. Suppose A is the adjacency matrix of a network, where
kv(kw) is the degree of node v(w) and the total number of edges in the network
is N . Then, the modularity is defined as follows:

Q =
1

2N

∑
v,w

[
Avw −

kvkw
2N

]
δ(Cv,Cw) (5)

where Cv is the community to which node v belongs. If node v and node w belong to
the same community, i.e., Cv = Cw, then δ(Cv,Cw) = 1; otherwise, δ(Cv,Cw) = 0.

The higher the modularity, the better the community partitioning algorithm. As
an important indicator to measure the quality of community division, modularity
has been widely used [39].

In this paper, in order to evaluate the community characteristics of subgraphs,
we use the definition of subgraph fitness function [40]:

Q(C) =

∑
in

2N
−
(∑

tot

2N

)2

(6)

where
∑
in denotes the number of inner edges of a subgraph C, and

∑
tot denotes

the total number of edges connected to the nodes inside subgraph, including the
edges inside the subgraph and the edges outside the subgraph. The subgraph fitness
function measures the degree of “cohesion” of the edges in the subgraph. Obviously,
if the community structure of C is more obvious, the value of Q is larger, and vice
versa.

For a particular node, when its edges are mostly inside a subgraph, it is more
likely to belong to the subgraph. When most of the edges point to the external
nodes of the subgraph, it is unlikely to belong to the subgraph. Therefore, we define
the evaluation function f of node n as follow:

f(n) = kCn/k
G
n (7)

where kCn is the degree of node n inside subgraph C. kGn is the degree of node n in
the entire network G.

Accordingly, we propose the subgraph partitioning algorithm based on commu-
nity structure in this subsection. The basic idea of the algorithm is to randomly
select nodes in the network, and then gradually expand the subgraph until the lo-
cal subgraphs satisfying the given conditions are constructed. That is, the existing
structure of the network is divided according to the local subgraph, and the specific
process is shown in Algorithm 1.

The subgraph partitioning algorithm starts from a randomly selected set of
nodes {V1, V2, . . . , Vk} and extends the subgraph along the edges. In order to ensure
the community structure of the obtained subgraph, the nodes are first screened in
the process of expansion. The algorithm selects the node with the highest evalua-
tion function (most likely belongs to the subgraph) (Step 6), and judges whether
adding the node to the current subgraph can increase the subgraph fitness function



164 D. Yuan, H. Sun

Input: Online social network G = (V,E). The number of nodes
initially selected (initial number of subgraphs) k, the maximum
number of nodes m in each subgraph.
Output: Subgraphs Ci = {Ci, i = 1, 2, . . . } ⊂ V.
Initialize: Randomly select k nodes Vi from the node set, let Ci =
{Vi} , i = 1, 2, . . . , k
1. repeat
2. for each Ci do
3. if size(Ci) < M then
4. NCi

= neighbor(Ci) ,increase.Ci = false
5. repeat
6. m = arg maxm∈NCi

f(m)

7. if Q(Ci ∪ {m}) > Q(Ci) then
8. Ci = Ci ∪m, increase.Ci = true
9. end if
10. NCi

= NCi
− {m}

11. until size(NCi
) = 0

12. end if
13. end for
14. if Ci ∩ Cj 6= φ and Q(Ci ∪ Cj) > max(Q(Ci), Q(Cj))
15. then Ci = Ci ∪ Cj,Cj = φ
16. end if
17. until size(Ci) > M or increase.Ci = false
Return: Subgraphs Ci, i = 1, 2, . . .

Algorithm 1: Subgraph Partitioning Algorithm

(Steps 7–9). If yes, the node is added to the subgraph, otherwise the node is aban-
doned. Repeat the above steps until the subgraph reaches the specified scale m or
the subgraph fitness stops growing (Step 17).

Due to the randomness of the initial node selection, subgraph initialized from dif-
ferent nodes may overlap. For overlapped subgraphs, the algorithm chooses to merge
them according to whether the combined fitness function Q increases (Steps 14–16).
Therefore, when selecting k, the subgraph merge situation that may occur should
be considered. In order to suppress all possible sources of malicious information,
this paper chooses k to be larger than the estimated number of sources in the net-
work.

It is not necessary to divide the network into complete community structures to
achieve perfect reverse intervention for malicious information. Therefore, in order to
reduce the complexity of the algorithm, by setting the value of a reasonable subgraph
size m, the algorithm stops when the subgraph has been extended to the expected
size.
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4.2 Reverse Intervention Algorithm Based on Jordan Center

Once the first phase is completed, we get a subgraph structure Ci = {Ci, i =
1, 2, . . . } ⊂ V, where Ci, i = 1, 2, . . . is a disjoint subset, now we need to select
nodes from these subgraphs to block or post clarification. For simplicity, we assume
that the subgraphs Ci = {Ci, i = 1, 2, . . . } are sorted in a non-incremental order
with number of nodes (i.e., |C1| ≥ |C2| ≥ |C3| . . .). Since users exchange informa-
tion more frequently with users in the same community, and nodes from different
subgraphs typically have a small chance to spread malicious information (or clarifi-
cation) to nodes in other subgraphs. Therefore, our problem is equivalent to finding
nodes in each subgraph to control the infection rate of malicious information, so
that the infection rate of the whole network can be lower than β.

This paper uses the Jordan Center to find the key node in each subgraph to
control the propagation of malicious information. The specific process is summarized
in Algorithm 2. The algorithm selects the most influential node in each subgraph
according to the definition of Jordan center (Step 4), and determines if it is an
infected node. If yes, we delete the node (block the account), otherwise we select it
as the clarification publishing node (Steps 5–9). Repeat the above steps until the
infection rate of the whole network is lower than β.

Input: Online social network G = (V,E), number of subgraph p,
the infection rate of malicious information β

Output: Set S ⊂ V makes |I(G)|
|V| ≤ β

1. Let S = φ
2. for i from 1 to p do Si = φ

3. while |I(Ci)|
|V| ≤ β do

4. v = mins∈Ci
d(s,Ci)

5. if v ∈ I (G) then
6. block and delete v;
7. else
8. Si = Si ∪ {v}
9. break
10. end if
11. end while

12. if |I(G)|
|V| ≤ β then

13. break
14. end if
15. end for
Return S

Algorithm 2: Reverse Intervention Algorithm
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5 EXPERIMENT RESULTS

In this section, we used real large-scale networks to experimentally evaluate the
performance of our proposed method in this paper. The datasets we used were
downloaded from Stanford dataset collection (http://snap.stanford.edu/data).
The first dataset is ego-Facebook, which contains 88 234 edges and 4 039 nodes,
and the average clustering coefficient is 0.6055. The second dataset is cit-HepPh,
which is a paper citation network, containing 34 546 nodes and 421 578 edges, and
the average clustering coefficient is 0.2848. The experimental environment in which
the algorithm ran is: processor Intel® Core™ i7-7500M @ 2.70 GHz, memory 8 GB,
operating system Windows 10, programming language is Python.

We chose the following four benchmark methods to compare with our proposed
algorithm:

1. Random: Randomly selected nodes in the network to block (or publishing clar-
ification) until the infection rate met the requirements.

2. High-degree: The degree based heuristic algorithm, which selected nodes with
the highest degree in the network to block (or publishing clarification) until the
infection rate met the requirements.

3. Topcgo: A method proposed by Eftekhar et al. [41], which selected nodes with
the greatest margin of information spread until the stopping criterion was met.

4. Greedy: The basic greedy algorithm proposed by Kempe et al. [31], which cal-
culated the information dissemination range of each node under the IC model.

In all experiments, Monte Carlo simulation was implemented to estimate the
effectiveness of the algorithms. That is, the results were averaged over 1 000 runs
for consistency. We chose pv,w in the IC model as 0.25 for any node. And parameter β
changed from 0.1 to 0.5. For each β, our proposed algorithm and the benchmark
algorithms were independently implemented to get the number of required nodes to
achieve the inhibitory effect.

We first consider the IC model using the two datasets. As depicted in Figures 2
and 3, the number of required nodes in our proposed method was highly competitive
in comparison with those of others, especially in case that large number of nodes need
to be immunized with the malicious information. In particular, when β was small
(β ∈ [0 . . . 0.09]), our proposed method did not performed as good as other methods.
However, it became much better than other methods except Greedy algorithm as β
gets larger. This is because the benchmark methods chose the candidate nodes
within the whole network and our proposed method chose the candidate nodes
based on community structure. When a small number of nodes were required,
the Random, High-degree and Topcgo algorithm could easily select the influential
nodes while our proposed algorithm must select nodes in each subgraph. In fact,
influential nodes were often distributed in different subgraphs. As the number of
required nodes increased, our proposed algorithm could effectively pick up the key
nodes in each subgraph, which had influence to other nodes within the subgraph.

http://snap.stanford.edu/data
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However, the benchmark methods had to choose these influential nodes in the whole
network.

Figure 2. Nodes selected in different algorithms for ego-Facebook dataset

Figure 3. Nodes selected in different algorithms for cit-HepPh dataset

We next illustrate the difference when our proposed method is used under IC
model and LT model. As shown in Figure 4, under the LT model, the proposed
method could select a slightly fewer nodes to block or release clarification to achieve
the desired effect than the IC model. This is because in Steps 5–9 of Algorithm 2,
once the Jordan Center in the community was an infected node, we blocked it
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and selected the node with the second largest influence (i.e., the second smallest
eccentricity) to release clarification if it was not infected, and so on. In the IC
model, the infected node had only one chance to affect its neighbor nodes. Whether
to block this node or not had no effect to depress the propagation of the malicious
information. But the infected nodes still had an impact under the LT model. It is
worth noting that the time when to intervene was very important. This is beyond
the scope of this paper and will be discussed in our future work.

Figure 4. Comparison of the proposed algorithm under different propagation models

We finally evaluated the running time of our proposed algorithm and benchmark
methods in Figure 5. Since the time consumption of the Random algorithm was very
small, it is not depicted in this figure. As shown in the figure, although Greedy al-
gorithm had the best performance (fewest nodes required to suppress the spread of
malicious information), its time complexity was too high, especially on cit-HepPh
dataset where it took more than 7500 seconds to meet the condition. Compared with
other benchmark algorithms, our proposed algorithm had not only the advantage in
intervention performance, but also had the advantage in time complexity. This is
because we first divided the entire network into community structures, which could
reduce much processing time during the influential node selection period. There-
fore, our proposed algorithm could effectively impress the propagation of malicious
information in a timely manner.

6 CONCLUSIONS

In this paper, we propose a reverse intervention algorithm based on subgraph par-
titioning, which impede the spread of malicious information from the perspective
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Figure 5. Time consumption of different algorithms

of network topology. Firstly, a subgraph partitioning method based on community
structure is given. Secondly, a node blocking and clarification publishing algorithm
based on the Jordan Center is proposed in the obtained subgraphs. Experiments on
real-world networks including ego-Facebook and cit-HepPh show that the proposed
algorithm can effectively suppress the spread of malicious information under a low
time complexity.
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