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Abstract. A novel Chaotic Election Algorithm (CEA) is presented for numerical
function optimization. CEA is a powerful enhancement of election algorithm. The
election algorithm is a socio-politically inspired strategy that mimics the behavior
of candidates and voters in presidential election process. In election algorithm, indi-
viduals are organized as electoral parties. Advertising campaign forms the basis of
the algorithm in which individuals interact or compete with one other using three
operators: positive advertisement, negative advertisement and coalition. Adver-
tising campaign hopefully causes the individuals converge to the global optimum
point in solution space. However, election algorithm suffers from a fundamental
challenge: it gets stuck at local optima due to the inability of advertising campaign
in searching solution space. CEA enhances the election algorithm through modify-
ing party formation step, introducing chaotic positive advertisement and migration
operator. By chaotic positive advertisement, CEA exploits the entire solution space,
what increases the probability of obtaining global optimum point. By migration,
CEA increases the diversity of the population and prevents early convergence of
the individuals. The proposed CEA algorithm is tested on 28 well-known standard
boundary-constrained test functions, and the results are verified by a comparative
study with several well-known meta-heuristics. The results demonstrate that CEA
is able to provide significant improvement over canonical election algorithm and
other comparable algorithms.
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1 INTRODUCTION

Optimization is the process of finding the best solution from among the set of all
feasible solutions subject to a given set of constraints. An optimization problem
can be represented as a minimization (maximization) model with the goal to obtain
a point x∗ from a solution space S ∈ Rn, where objective function f : S → R is
minimized, i.e. f(x∗) ≤ f(x) for all x ∈ S. In recent years, several meta-heuristics
have been presented to solve optimization problems. A bibliography of recently pro-
posed meta-heuristics is given in [1], and several surveys are given in [2, 3, 4, 5, 6, 7].
Generally speaking, meta-heuristics can be classified into three main categories [53]:
evolutionary, swarm intelligence and physics-based algorithms.

Evolutionary meta-heuristics are mainly inspired by the concepts of natural bio-
logical evolution, in which the fittest individuals can survive and the weak must
die [8]. In natural evolution survival is achieved through reproduction. Evolution-
ary algorithms begin their optimization process with a randomly generated pop-
ulation of individuals, where any individual is a candidate solution for the given
problem. For each generation, individuals compete with each other to reproduce
offspring. The best-fit individuals have the best chance to reproduce. Offspring
are generated by the combination and mutation of the individuals in the previous
generation. The offspring iteratively update over the course of generations until an
optimal solution is reached. Some of the well-known evolutionary algorithms are
Genetic Algorithm (GA) [9], Differential Evolution (DE) [35], Biogeography-Based
Optimizer (BBO) [42] and Backtracking Search Optimization Algorithm (BSA) [10].

The second main branch of meta-heuristics is swarm intelligence algorithms.
These algorithms are inspired by natural or non-natural phenomena and mostly
mimic the social behavior of swarms and social organisms [53, 8]. For example,
Artificial Bee Colony (ABC) [11] is a nature inspired algorithm, which models intel-
ligent behavior of honey bees in nature. Another example is election algorithm [12],
a non-natural inspired algorithm, which simulates candidates’ behavior in a presiden-
tial election process. Swarm intelligence based algorithms are multi-agent models.
These algorithms model the intelligent behaviors of agents and their local interac-
tion with the environment and neighboring agents to explore solution space and
reach global optima. Some of the well-known swarm intelligence algorithms include:
Particle Swarm Optimization (PSO) [13], Ant Colony Optimization (ACO) [37],
ABC [11], Election algorithm [12], Firefly Algorithm (FA) [44], Grey Wolf Opti-
mizer (GWO) [53] and Salp Swarm Algorithm (SSA) [55].

The third class of meta-heuristics is physics-based methods, which almost mimic
the physical processes of nature. For example, Big-Bang Big-Crunch (BB-BC) [28] is
inspired by the evolution of universe; and Gravitational Search Algorithm (GSA) [43]
is developed based on gravity law. Some other well-known algorithms that fall
into the category of physics-based meta-heuristics include: Intelligent Water Drops
(IWD) [15], Charged System Search (CSS) [16], Black Hole (BH) [17] and Magnetic
Optimization Algorithm (MOA) [18]. For a survey of physics-based algorithms
see [19].
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Meta-heuristics are widely used in various scientific and engineering applications
because they have shown good performance in solving large-scale, complex non-linear
and non-differentiable problems. The applications range from data mining [20],
image processing [21] and social network analysis [22] in computer science domain,
at one end of the spectrum, to air traffic control [23], airfoil design [55], optical buffer
design [53] in industrial field, at the other side of spectrum. However, according to
the famous “No Free Lunch” theory [24], there is no meta-heuristic best suited for
solving all optimization problems. A particular meta-heuristic may show promising
results on a set of problems, but the same algorithm may show poor results on
a different set of problems. On the other hand, meta-heuristics achieved encouraging
results on optimization problems but their performance far from the ideal. According
to this issue and the NFL theory, it is obvious that there is still a room for introducing
new meta-heuristics or improving existing meta-heuristics.

As an element of research in this field, this paper presents a new Chaotic Election
Algorithm, denoted as CEA. The CEA enhances the canonical election algorithm
threefold:

1. increasing the speed of party formation step employing random initialization
method,

2. introducing migration operator to enhance the diversity of population and pre-
venting early convergence of the algorithm, and

3. introducing chaotic positive advertisement operator to searching efficiently the
entire solution space.

The CEA algorithm is tested on 28 test problems and compared with several well-
known meta-heuristics. The experimental results show that the proposed algorithm
outperforms counterpart meta-heuristics for several benchmark test functions.

The rest of the paper is organized as follows. Section 2 presents related work,
with the focus on chaotic swarm optimization algorithms. Section 3 presents the
canonical election algorithm. Section 4 outlines the proposed Chaotic Election Al-
gorithm (CEA). In Section 5, the proposed algorithm is tested on numerical opti-
mization benchmark problems and the simulation results are compared with several
well-known algorithms. Finally, Section 6 presents a conclusion of this work and
suggests some directions for future work.

2 RELATED WORK

Most of the meta-heuristic algorithms suffer from stagnation in local optima and low
convergence rate. With the development of the nonlinear dynamics, chaos theory
has been widely used in various applications [29]. One of the major applications
is the introduction of chaos concept into the optimization meta-heuristics. Chaos
mechanism is one of the best methods to improve the performance of evolution-
ary algorithms in terms of both local optima avoidance and convergence speed [32].
Due to the ergodicity and randomness nature, chaos has several advantages that
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include self-organization, evolution, easy implementation and high ability to avoid
being trapped in local optima [34, 41]. Due to these properties, simultaneous use of
chaos and optimization algorithms improves the performance of algorithms. Up to
now, the chaos theory has been successfully combined with several meta-heuristic
optimization methods [41]. Table 1 lists some familiar meta-heuristics and their
improved ones by incorporated chaos. It is important to notice that Table 1 is
not aiming to summarize a comprehensive survey of such chaotic combination, but
to show that utilizing chaotic mechanisms indeed empowers the algorithm to pos-
sess better performance. This issue highlights that there is an interesting room
to combine other meta-heuristics with chaotic mechanism to improve their perfor-
mance.

Algorithm Reference
Canonical Version Chaotic Version

Differential Evolution [35] [36]
Ant Colony Optimization [37] [38]
Artificial Bee Colony Algorithm [39] [31]
Imperialist Competitive Algorithm [40] [41]
Biogeography-Based Optimization [42] [32]
Gravitational Search Algorithm [43] [30]
Bat Swarm Optimization [44] [45]
Cuckoo Search Algorithm [46] [47]
Firefly Algorithm [48] [49]
Particle Swarm Optimization [50] [51]
Krill Herd Algorithm [52] [29]
Grey Wolf Optimizer [53] [34, 54]
Salp Swarm Algorithm [55] [56]

Table 1. Some meta-heuristics and their corresponding chaotic meta-heuristics

Jia et al. [36] proposed DECLS algorithm to enhance the search ability of Differ-
ential Evolution (DE). DECLS explores a huge search space in the early run phases to
avoid premature convergence, and exploiting a small region in the later run phases to
refine the final solutions. Cai et al. [38] proposed Chaotic Ant Swarm Optimization
(CASO) algorithm for solving the economic dispatch problems of thermal generators
in power systems. CASO combines the chaotic and swarm-based search capability
of ants in searching the global optimum solution.

Alatas [31] proposed Chaotic ABC (CABC) algorithm that adopts chaotic maps
for parameter adaptation to prevent the ABC to get stuck on local optima and to
improve its convergence speed. This is done by using of chaotic number generators
each time a random number is needed by the canonical ABC algorithm.

Talatahari et al. [41] proposed a Chaotic Imperialist Competitive Algorithm
(CICA). They used different chaotic maps to improve the assimilation phase of the
algorithm. The results on four benchmark problems show the benefits of using
chaotic maps in assimilation phase. Saremi et al. [32] investigated the effectiveness
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of ten different chaotic maps in solving the entrapment in local optima and slow
convergence speed problems of the BBO algorithm. They used chaotic maps to
define selection, emigration, and mutation probabilities. The experiments show
that the chaotic maps are able to improve the performance of BBO.

Gao et al. [30] proposed Chaotic Gravitation Search Algorithms (CGSA) to
alleviate the slow convergence and local optima trapping problems of GSA algorithm.
The big problem in the canonical Bat Swarm Optimization (BSO) is the premature
convergence into local optima. To alleviate this issue, Rezaee [45] presented the
CBSO algorithm, which is a chaotic-based bat swarm optimization algorithm. In
CBSO, the loudness is updated via multiplying a linearly decreasing function by
chaotic map functions.

Wang et al. [47] proposed Chaotic Cuckoo Search (CCS) that embeds chaotic
mechanisms into Cuckoo Search (CS) algorithm. In CCS, twelve chaotic maps are
applied to tune the step size of the cuckoos used in the original CS algorithm. The
experiments on optimization benchmark problems show that the performance of
CCS is much better than canonical CS algorithm.

Gandomi et al. [49] proposed Chaotic Firefly Algorithm (CFA) algorithm that
incorporated chaos into FA so as to increase its global search mobility. They used
twelve different chaotic maps to tune the attractive movement of the fireflies in the
algorithm. The experiments show that CFA outperforms the canonical FA.

Alatas et al. [51] proposed twelve different Chaos Embedded Particle Swarm
Optimization Algorithms (CEPSOAs) that use chaotic maps for parameter adap-
tation. CEPSOAs use chaotic number generators each time a random number is
needed by the canonical PSO algorithm. The results on benchmark problems show
that CEPSOAs increased the solution quality and improved the global searching
capability by escaping the local optimum points.

Yaghoobi and Mojallali proposed an Improved Chaotic Krill Herd (ICKH) algo-
rithm used for PID controller design [57]. The main idea of the ICKH is to combine
chaos theory and Krill Herd (KH) algorithm to improve the search efficiency.

Yu et al. [34] incorporated chaotic local search mechanism to enhance the search
dynamics of GWO algorithm and accelerating it convergence speed. They investi-
gated twelve different kinds of chaotic maps to identify the influence of chaotic search
capability on GWO. The results show that chaotic empowers GWO to achieve better
performance in terms of solution quality and convergence speed. In another work,
Kohli and Arora [54] proposed CGWO algorithm that uses different chaotic maps
to regulate the key parameter “a” of GWO algorithm, with the aim of accelerating
its convergence speed. The results show the superiority of CGWO when compared
to GWO algorithm.

In order to boost the performance of the canonical SSA, Sayed et al. [56] pro-
posed Chaotic Salp Swarm Algorithm (CSSA) that is a hybrid solution based on
SSA algorithm and chaos theory. They evaluated ten chaotic maps and found that
logistic chaotic map is the optimal map of the used ten maps. The simulation results
on optimization benchmarks and feature selection problem reveal the superiority of
CSSA algorithm when compared to canonical SSA and some other counterparts.
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After this short review, and from the experimental studies presented in the
above-mentioned literature, it is obvious that utilizing chaotic mechanisms indeed
empowers the algorithm to get better results. This issue highlights that there is
an interesting room to combine other meta-heuristics with chaotic mechanism to
improve their performance.

3 ELECTION ALGORITHM

3.1 General Aspects

The election algorithm simulates the socio-political process of presidential election
in real world [12]. It is a multi-agent algorithm, in which agents are called “persons”.
There are two types of persons: candidates and voters. Some of the best persons
are selected to be the candidates and the remaining are the voters. Initially, all the
voters are divided among the candidates based on their similarity in opinions and
ideas. Candidates together with their voters form some political parties.

Once initial parties are formed, the candidates start their advertising campaign.
Candidates to advertise themselves employ two kinds of advertisements: positive
advertisement and negative advertisement. In positive advertisement, candidates
convey their agendas and ideas to the voters and attempt to attract the voters
towards themselves. In negative advertisement, candidates attempt to increase their
own popularity and decrease the popularity of other candidates. Any candidate that
is not able to succeed in negative advertisement and cannot increase his popularity
will be eliminated. The candidates that have similar opinions can unite and form
a new party which is a combination of these parties. This process is a simple
model of coalition which is pursued by some candidates in real-world elections. The
election algorithm iteratively applies positive advertisement, negative advertisement
and coalition on population until termination conditions are satisfied. Once the
algorithm stops, the candidate who attained the majority of votes will be announced
as the winner. The winner candidate is equal to the best solution found for the given
optimization problem.

3.2 Working Principle

Figure 1 shows the working principle of the election algorithm. The algorithm starts
with an initial population. Each individual in the population is called a person. For
a problem with x1, x2, . . . , xNvar variables, the initial population consists of Npop

persons. Each person Pi is an 1×Nvar array of variables values and is defined as

Pi = [x1, x2, . . . , xNvar ]. (1)

The eligibility of a person Pi is found by evaluation of the eligibility function
E at the variables x1, x2, . . . , xNvar considering objective function of the problem.
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The eligibility function is defined as follows:

E(Pi) = E(x1, x2, . . . , xNvar). (2)

The persons are divided to several political parties. To fulfill this aim, from the
total population, Nc of the most popular persons (the persons with best eligibility
values) are selected to be candidates, and the remaining Nv persons will be the vot-
ers, each of which belongs to a candidate. The voters are divided among candidates
based on their eligibility distance. Voter vk is considered as a supporter of candidate
ci, if the following predicate holds.

Pi = {vk : |Evk − Eci | < |Evk − Ecj | ∀ 1 ≤ j ≤ Nc} (3)

where Pi is the ith party and Nc is the number of initial candidates. Eci and Evk

present the eligibility of candidate ci and voter vk, respectively. In the party forma-
tion process, each voter is assigned to exactly one party. After dividing the voters
among candidates and forming the initial parties, the candidates start advertising
campaign. The advertising campaign consists of three main phases: positive adver-
tisement, negative advertisement and coalition.

The positive advertisement is modeled by conveying some variables of the can-
didate to its voters inside a party. To do this task, in each party, Ns variables of
the target candidate are randomly selected and replaced with the selected variables
of the voters. Ns is computed as follows:

Ns = dXs × Sce (4)

where Sc is the number of candidate’s variables and Xs is the selection rate. The
selected variables Ns are weighted with a coefficient ω and then embedded in voters.
The new value for the ith variable of a voter after positive advertisement is given
by:

xinew = ω.xiold , where ω =
1

|Eci − Evk |+ 1
. (5)

In negative advertisement, candidates try to attract voters of weak candidates
toward themselves. A party is weak if its candidate to be the weakest compared
to other parties’ candidates. To model the negative advertisement, first, a num-
ber of voters from the weakest party are selected. Then, a race is taking place
among powerful parties to possess these voters. To select the weakest voters from
the weakest party, the eligibility distance between the voters, and the weakest can-
didate is computed, and then 5 % of the farthest voters are selected. The distances
between selected voters and the powerful candidates are computed, and the voters
are assigned to the closest candidates.

In coalition phase, several candidates join together and form a new party. Among
the candidates that wish to collate, a candidate is picked up at random to be the
leader candidate and the remaining are considered as the followers. In coalition,
all of the follower candidates and their voters become the voters of the leader one.
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Until termination conditions are not satisfied, the advertising campaign operators
are iteratively applied to update the population. Finally, the update process stops
and the candidate with the majority of votes is announced as the winner. The
winner is equal to the best solution found for the optimization problem.
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Figure 1. The working principle of the election algorithm

4 CHAOTIC ELECTION ALGORITHM

The advertising campaign is the core operator in the election algorithm, which
causes the individuals converge to an optimal point in the search space. However,
advertising campaign suffers from three challenges:

1. computing the Euclidean distance in the creation of initial parties and the neg-
ative advertisement steps that decrease the speed of the algorithm,

2. getting stuck at local optima,

3. inefficiency of positive advertisement phase.

In advertising campaign, after several iterations, diversity in the population may
decrease. As a result, the candidates and their voters cannot explore the entire
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Figure 2. The working principle of the CEA algorithm

solution space and get stuck at local optima. To alleviate these issues, we proposed
a Chaotic Election Algorithm, denoted as CEA. Figure 2 shows the flowchart of the
CEA algorithm. The CEA enhances the election algorithm threefold:

1. increasing the speed of electoral party formation step utilizing random initial-
ization method,

2. introducing migration operator, and

3. improving the positive advertisement using chaotic maps.

In the following, these enhancements are described.

4.1 Electoral Party Formation

As mentioned above, one drawback of the election algorithm is the computation of
Euclidean distance for creating the initial electoral parties that decreases the speed
of the algorithm. To alleviate this issue, we substitute the computation of Euclidean
distance with a random initialization process. By this way, the voters are divided
among candidates based on their eligibility, in which the initial number of voters of
a candidate is proportionate to its eligibility. To identify the voters of a candidate ci,
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first, its normalized eligibility is computed as

neci =

∣∣∣∣ eci −max(I)∑
k ∈ Nceck −max(I)

∣∣∣∣ where I = {ecj |j ∈ Nc} (6)

where eci is the eligibility of candidate ci, neci is the normalized eligibility of candi-
date ci, and Nc is the initial number of candidates. The initial number of voters of
candidate ci is computed as

Nvci
= dneci ×Nve . (7)

Nv is the number of all voters.
Then we randomly select Nvci

of the voters and give them to candidate ci. The
voters along with their candidate ci form an electoral party Pi in the solution space.

4.2 Migration

We introduced migration operator to help the election algorithm maintain diversity
in the population and improve its optimization and search capability. Migration
keeps the election algorithm away from converging too fast before exploring the en-
tire solution space. The motivation to introducing the migration operator comes
from the fact that in some real-world elections, some individuals can travel from
other countries to the target country and vote to their favourite candidate. The
travellers are referred as migrants, which can increase the popularity of some can-
didates. To model migration, some new voters are randomly generated on different
areas of the solution space. Here, the new generated voters referred as migrants.
The number of migrants at every generation of the algorithm is given by:

M = dµ×Npope (8)

where M is the number of new migrants, µ is the migration coefficient, and Npop

is the population size. In the implementations, the proper value for µ is deter-
mined empirically. The migration in every generation of the algorithm adds M new
individuals to the population. This causes two issues:

1. excessive growth of the population and

2. increasing the computational time of the algorithm.

To alleviate these issues, we eliminate M of the weakest individuals from the popu-
lation at every generation of the algorithm. To do this, first all of the individuals in
the population are sorted based on their eligibility in ascending order and then M
of the inferior individuals (the individuals with lowest eligibility) are removed.

4.3 Chaotic Positive Advertisement

In the election algorithm, positive advertisement is realized through transferring
some randomly selected variables from a candidate to its voters. The informa-
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tion only transfers towards voters and the candidate remains without change. Two
weaknesses may exist in this way. First, the information exchange (social learning)
is one-directional, in which some variables of candidates convey towards voters. As
a result, the candidates and their voters cannot explore the entire solution space
and the convergence speed decreases. Second, the voters who are affected and their
variables are all chosen randomly. As a result, voters with higher eligibility, which
may guide the population towards global optimums are not utilized. To overcome
these issues and improve the exploration and exploitation ability of canonical EA,
we proposed a new chaotic positive advertisement. Chaos is a special kind of dy-
namic behavior of non-linear systems [41]. Due to the high ability to avoid being
trapped in local optima and easy implementation, chaos has raised enormous in-
terest in optimization theory [41, 57]. The application of chaotic maps instead of
random variables in the positive advertisement phase is a powerful mechanism to
increase diversity of the population and improve the CEA’s performance in prevent-
ing premature convergence to local optima. Let vk(t) denote the position of voter k
in the search space at iteration t, and ci(t) denote the position of candidate i at
iteration t. The position of voter vk at iteration t+ 1 is computed as

vk (t+ 1) = vk(t) + A+B (9)

where t indicates the current iteration, A and B are coefficient vectors, which are
calculated as

A = ω × r × V1, (10)

B = ω × r × tan (θ)× V2 (11)

where r is the chaotic variable generated based on a chaotic map, V1 is a vector
where its starting point is the previous position of the voter vk and its direction
is toward the candidate position ci, and V2 is a unit vector which is perpendicular
to V1. It is important to notice that V1.V2 = 0. ω is the distance between voter vk
and candidate ci, which is computed as

ω = |ci(t)− vk(t)| . (12)

By term A, the candidate ci attracts voter vk towards itself with no deviation
(point l1 in Figure 3). In order to increase the searching around the candidate ci,
some deviations are added to locate the final position of the voter vk in its movement
toward candidate ci (point l2 in Figure 3). By this way, different points around
the candidate ci are explored. θ ∈ U(−λ,+λ) is a random number with uniform
distribution regenerated every iteration. λ adjusts the deviation of voter vk from
its original direction. In our implementation, λ = π/4 is used that resulted in good
convergence of individuals to the global optimum.

Different chaotic maps can be used to generate chaotic variables. In our imple-
mentations, we used logistic map [41] to generate chaotic variable r. The reason
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to this choice is that CEA have shown better performance when logistic map have
been used in compared to the other chaotic maps. The logistic map shows good
chaotic properties, it displays better randomness than other maps, and it can navi-
gate the algorithm to the points that have been distributed in search space as much
as possible [30, 27].

Logistic map is defined as

rk+1 = ark(1− rk) (13)

where rk represents the krmth number in the chaotic sequence, and k means the index
of the chaotic sequence. r ∈ (0, 1) under the conditions that the initial r0 ∈ (0, 1)
and that r0 /∈ {0.0, 0.25, 0.5, 0.75, 1}. In the experiments a = 4 is used. In the
current study, 1-dimension, non-invertible logistic map is used to produce chaotic
sequences.
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Figure 3. Attracting of voter vk toward candidate ci in the chaotic positive advertisement

Due to the non-repetition and ergodicity property of chaotic variables and non-
repetition nature of chaos, the newly proposed chaotic positive advertisement car-
ries out overall searches at higher speed than the standard positive advertisement,
which is based on the random-based searches. The incorporation of the chaotic
positive advertisement in the CEA has two advantages: (i) improving the infor-
mation exchange between candidates and voters, and (ii) searching efficiently the
entire solution space to find a global optimum point. Based on the simulation re-
sults presented in the next section, CEA is faster when compared with the canonical
EA.

5 EXPERIMENTS

The proposed CEA algorithm is tested on 28 benchmark functions. The CEA al-
gorithm is compared with several top-performing meta-heuristics in solving real-
parameter optimization problems, including Covariance Matrix Adaptation Evo-
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lution Strategies (CMA-ES) [60], Self-adaptive Differential Evolution (SaDE) al-
gorithm [61], adaptive Differential Evolution (JDE) algorithm [62], PSO2011 [50],
Election algorithm Emami2015, Socio Evolution & Learning Optimization (SELO)
algorithm [63], and Chaotic Salp Swarm Algorithm (CSSA) [56]. CMA-ES, SaDE,
and JDE algorithms are the most successful optimization algorithms. In the com-
petitions at different CEC conferences, these algorithm and their variants possess
top positions when compared to other best performing algorithms. PSO2011 [50]
is an advanced version of the standard PSO, which incorporates many improve-
ments of PSO that have been identified by years of studies. SELO is a novel
meta-heuristic inspired by the social learning behavior of humans organized as
families in a societal setup. The reason behind the selection of SELO as a com-
parative algorithm is that it is a socio-inspired strategy (similar to CEA, which is
a socio-politically inspired strategy), and it outperformed other socio-inspired al-
gorithms. CSSA is a chaotic version of SSA algorithm and achieved encouraging
results [56].

5.1 Benchmark Functions

Twenty eight well-known benchmark functions are used in the experiment. These are
continuous, unbiased optimization problems and have different degrees of complex-
ity and multi-modality. This set of problems has different kinds of properties such
as unimodal, multimodal, separable and non-separable. These problems are single
objective optimization problems taken from various sources including CEC2005 [58],
CEC2013 [64], CEC2015 [59] and recently published papers. The benchmark func-
tions can be classified into four groups:

Group I: F1-F10 are unimodal functions. These functions are used to assess the
fast-converging performance of CEA and comparative algorithms.

Group II: F11-F20 are multimodal functions. These functions have many local
optima points and are considered to evaluate the ability of algorithms to avoid
local optima. Details about hybrid benchmarks are given in [11, 39].

Group III: F21-F24 are shifted and rotated multimodal functions whose base func-
tions belong to Group II functions. These functions are enough complex and
used to test the search capability of algorithms.

Group IV: F25-F28 are hybrid multimodal functions whose base functions belong
to Group I, II and III functions. This set of functions is more complex than
other ones and used to test the performance of algorithms in finding the global
optimum of problems consisting of different subcomponents with different prop-
erties. Details about hybrid benchmarks are given in [58, 59].

We test the benchmark functions in 30 and 50 dimensions to draw empirical con-
clusion on the performance of the algorithms. Tables 2, 3, 4 and 5 list the characteris-
tics of benchmark functions used in the tests. These functions are introduced in evo-
lutionary computation share tasks and utilized by many researchers [11, 63, 10, 53].
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We have chosen these benchmarks to be able to fairly compare our results to those
of the counterpart algorithms.

5.2 Parameter Setting

The initial population sizes of all algorithms were 100 and the maximum number of
function evaluations was 100 000. The other specific parameters for the algorithms
are given in Table 6, as provided by their authors. We used five predefined criteria
to terminate the algorithms’ searching process that include:

• if the algorithm failed to find a better solution than the existing solution during
the last 100 000 function evaluations,

• if the number of function evaluations reaches 1 000 000,

• if the maximum number of iterations (2 000 000 iterations) was reached,

• if the value of the objective function is less than 10−16,

• if the fitness value reaches below a predefined maximum error, the function
evaluation is terminated.

All algorithms were programmed in MATLAB R2017a on a Personal Computer
Intel Pentium 4 with the 3 GHz and 2 GB RAM. The operating system of the com-
puter is Windows 7.

Problem Name Type Range Minimum Definition  

1f  Cigar S [0, 10] 0 2 6 2
1 1

2

( ) 10
n

i
i

f x x x


    

2f  Discus S [0, 10] 0 6 2 2
2 1

2

( ) 10
n

i
i

f x x x


   

3f  DixonPrice N [-10, 10] 0 2 2 2
3 1 1

2

( ) ( 1) (2 )
n

i i
i

f x x i x x 


      

4f  Powell N [-4, 5] 0  42
2

1 14 1
( ) 0.5 0.5n n n

i i ii i i
f x x ix ix

  
    
      

5f  Rosenbrock N [-30, 30] 0 
1

2 2 2
5 1

1

( ) 100( ) ( 1)
n

i i i
i

F x x x x





        

6f  Schwefel_1_2 N [-100, 100] 0  16

2

1
( ) n i

ji j
f x x

 
    

7f  Schwefel_2_22 N [-10, 10] 0 
17 1

( ) nn
i ii i

f x x x
 

     

8f  Sphere S [-100, 100] 0 2
8 1
( ) n

ii
f x x


   

9f  Sumsquares S [-10, 10] 0 2
9 1
( ) n

ii
f x ix


   

10f  Zakharov N [-5, 10] 0  42
2

10 1 1 1
( ) 0.5 0.5n n n

i i ii i i
f x x ix ix

  
    
     

Table 2. Unimodal benchmark problems; Range: limits of search space, N: Non-Separable, S: Separable

Table 2. Unimodal benchmark problems. Range: limits of search space, N: non-
separabple, S: separable.
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Problem Name Type Range Minimum Definition 

21f  Shifted Sphere Function S [-100, 100] -450 2
21

1
( ) _ ,   

n

i
i

f z z f bias z x o


     

22f  Shifted Schwefel N [-100, 100] -450 2
22

1 1
( ) ( ) _ ,    

n i

j
i j

f z z f bias z x o
 

      

23f  Shifted Rosenbrock’s N [-100, 100] 390  
1

2 2 2
23 1

1
( ) ( ) ( 1) _ ,    1

n

i i i
i

f z z z z f bias z x o





         

24f  Shifted rotated Rastrigin’s N [-5, 5] -330  2
24

1
( ) 10 cos(2 ) 10 _ ,    ( )*

n

i i
i

f z z z f bias z x o M


       

Table 4. Shifted and rotated benchmark problems; Range: limits of search space, N: Non-Separable, S: Separable 

Table 4. Shifted and rotated benchmark problems. Range: limits of search space, N:
non-separable, S: separable.

5.3 Results

In experiments, the algorithms ran for 30 times for all test functions, each time
using a different initial population. We test the benchmark functions in 30 and
50 dimensions to draw empirical conclusion on the performance and scalability of
the algorithms. The statistical results are reported in Tables 7–14. In these tables,
min and mean are respectively the minimum and the mean function values obtained
by the algorithms over 30 simulation runs. Std indicates the standard deviation of
the results, and Succ indicates the number of success trials over 30 simulation runs.
Succ is defined as

Succ =
30⋃
i=1

NSucc |ε . (14)

where NSucc denotes the number of successful trials, in which the solution is found
on ε. In simulations, an algorithm found global optimum when it converges into ε
tolerance and it is defined as

|fcos t(Ti)− fcos t(T ∗)| ≤ ε (15)

where fcos t(Ti) denotes the cost function value in ith iteration and fcos t(T
∗) indicates

the global optimum of the test function.
In Tables 7–14, in order to make comparison clear, the values below 10−16 are

assumed to be 0. In Tables 7–14, symbol “n” presents the dimension of the prob-
lems. As shown in Tables 7–14, for 30-dimension problems, the CEA algorithm
performed best on 26 benchmark functions. The second and third ranks belong
to JDE and SADE with 24 and 22 successes, respectively. The election algorithm,
CSSA, SELO, PSO2011 and CMA-ES performed best on 22, 21, 20, 20 and 19
benchmark functions, respectively. For 50-dimension problems, the CEA algorithm
performed best on 20 benchmark functions and takes the first rank. The second
and third ranks belong to JDE and SADE with 18 and 16 successes, respectively.
The election algorithm, CSSA, SELO, PSO2011 and CMA-ES performed best on
15, 13, 14, 9 and 13 benchmark functions, respectively. From numerical simulations,
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Problem Name Type Range Minimum Definition  

25f  
Hybrid  
composition 
function 

S [-5, 5] 120 

1 2

3 4

5 6

7 8

9

1 2 10

1 2 1

10

0

,  ’  
,   
,  ’

[ ,  ,  ...,  ] [1, 1, ..., 1]
[ ,  ,  ...,  ] [1,  1

 
, 

,  10,  10,  

’  
,   

5 /

F F Rastrigin s Function
F F Weierstrass Function
F F Griewank s Function
F F Ackley s Function
F F Sphere Function
  
  










60,  5 / 60,  5 / 32,  5 / 32,  5 /100,  5 /100]
  

26f  
Rotated  
hybrid  
comp. Fn 1 

N [-5, 5] 120 

1 2

3 4

5 6

7 8

9

25

1 2 10

1 2

10

   
,  ’  
,  

:

[ ,  ,  ...,  ] [1, 

 
,  ’  
, ’  
,   

1, ..., 1]
[ ,  ,  ...,

rotated version of
F F Rastrigin s Function
F F Weierstrass Function
F F Griewank s Function
F F Ackley s Function
F F Sphere F n tio

f

u c n
  
 









10 ] [1,  1,  10,  10,  5 / 60,  5 / 60,  5 / 32,  5 / 32,  5 /100,  5 /100] 

 

27f  
Rotated 
hybrid  
comp. Fn 2 

N [-5, 5] 310 

1 2 10

1

1 2

3 4

5 6

7 8

9 10

2

 
 

[ ,  ,  ...,  ] [1,  2,  1.5,  1.5,  1,  1,  1.5,  1.

,   ’  
,   ’  
,   
,

5,  2,  2]
[ ,

  
,   ’

 ,  ..

 

Sphere Function
Weierstrass Funct

F F Ackley s Function
F F Rastrigin s Function
F F
F F
F F Griewank s Functi

ion
on

  
 











10.,  ] [2*5 / 32,  5 / 32,  2*1,  1,  2*5 /100,  5 /100,  2*10,  10,  2*5 / 60,  5 / 60] 
 

28f  
Rotated  
hybrid  
comp. Fn 4 

N [-5, 5] -330 

1

2

3

4

5

6

7

8

 
  '  

8 2 
'  

'

 
 

 
’

 

-  
 

'  
-

 
 

F
F
F
F
F R

Weierstrass Function
Rotated Expanded Scaffer s Function

F F Function
Ackley s Function

astrigin s Function

Non Continuous Expanded Sc
F Griewank s Func

affer s Func
t

tion
Non Co

ion
F
F














1

9

2 10

1 2 10

10

 '
   

     
[ ,  ,  ...,  ] [1,  2,  1.5,  1.5,  1,  1,  1.5,  1.5,  2,  2]
[ ,  ,  ...,  ] [2*5

 
 

/ 32,  5 / 32,  2

ntinuous Rastrigin sFunction
High Conditioned Elliptic Function
Sphere Function with Noi

F
F se in Fitness
  
  









*1,  1,  2*5 /100,  5 /100,  2*10,  10,  2*5 / 60,  5 / 60]

 

Table 5. Hybrid benchmark problems; Range: limits of search space, N: Non-Separable, S: Separable 

Table 5. Hybrid benchmark problems. Range: limits of search space, N: non-separable,
S: separable.

it is obvious that all algorithms have almost consistent behavior on all benchmark
functions. The solution quality and convergence accuracy obtained on most test
functions using the CEA in 30 independent simulation runs are almost exceeding
or matching the best performance obtained by other algorithms. This testifies that
the CEA has better stability behavior on most test functions rather than other
algorithms.

CEA outperforms all compared algorithms on the unimodal benchmark func-
tions in terms of the statistical test. The performance of CEA in solving multimodal
benchmark problems is superior, and it generates best results in terms of min and
mean values in solving 30 and 50 dimension benchmark functions. The worst results
belong to CSSA, SELO and PSO2011 in solving 30 and 50 dimension multimodal
benchmark functions. When solving shifted and rotated benchmark functions, CEA
generally performs very well in 30 dimension benchmark functions, however, it does
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Algorithm Control parameters 
CMA-ES 

0.25  , 
4 2.log( )

2
N


     

 
 

SADE , 0.1)       0.1      0.05(0.5,0.3)        ( c pmF N CR n CR     

JDE 0.5initialf  , 0.90initialCR  , 1 0.1  , 2 0.1   
PSO2011 1.80      C 1.80        =0.5+(1-rand)1 2C    
Election algorithm Nc = 0.7 Psize , N P Nv csize  , Coalition rate=0.2,  sX =0.30 

SELO  2,   3,   0.999,   0.1
_ _ _  0.999
_ _ _  0.9991

0.95000  0.99995

p kP O r r
follow prob factor ownparent
follow prob factor otherkids
r to

   






 

CSSA 24

1 2 32 ,   ,  [0,1]
l

Lc e c c
  
     

CEA Nc = 0.7 Psize , N P Nv csize  , Coalition rate=0.2,  sX =0.30 

0.10   

Table 6. Control parameters of the algorithms used in the tests 

Table 6. Control parameters of the algorithms used in the tests

not perform well in 50 dimension functions. SADE performs very well in solving
50 dimension shifted and rotated benchmark functions. CEA is not as competitive
in solving 50 dimension hybrid functions as it does in unimodal and multimodal
benchmarks. However, a careful investigation on the mean values shows that the
performance of CEA is encouraging. From simulation results we can see that CEA
performs very well in 30-dimension hybrid functions, JDE and SADE perform well
in 50 dimension hybrid functions, and PSO2011 and election algorithm report the
worst results in 30 and 50 dimension hybrid functions when compared with other
algorithms. The mean and min values of CMA-EA, SELO, and CSSA in solving
both 30 and 50 dimension functions are close to each other and show moderate
results.

Table 15 presents the multi-problem based pairwise statistical comparison results
on 30-dimension benchmark functions using the averages of the global minimum
values obtained through 30 simulation runs of CEA and the comparison algorithms,
based on the Wilcoxon Signed-Rank Test [26]. Table 16 presents the multi-problem
based pairwise comparison results for 50-dimension benchmark functions. Multi-
problem based pairwise comparisons identify which algorithm is statistically more
successful in a test that includes several benchmark problems [26]. The results show
that CEA was statistically more successful than other algorithms in solving the
benchmark functions with a statistical significance value α = 0.05.

In order to observe the convergence behavior of the CEA algorithm, the con-
vergence curve, the average fitness, and the trajectory of the first individual in its
first dimension are illustrated in Figures 4, 5, 6 and 7. It should be noted that for
greater clarity of plots the behavior of algorithms is shown only for 200 iterations.
The second column of Figures 4, 5, 6 and 7 depicts the trajectory of the first indi-
vidual in the population, in which changes of the first person in its first dimension
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a) b) c) d)

Figure 4. Results on unimodal problems, a) Graphical representations of benchmark prob-
lem, b) trajectory of the first individual in the first dimension, c) the average fitness of
individuals, and d) the convergence curve of CEA algorithm
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a) b) c) d)

Figure 5. Results on multimodal problems, a) Graphical representations of benchmark
problem, b) trajectory of the first individual in the first dimension, c) the average fitness
of individuals, and d) the convergence curve of CEA algorithm
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a) b) c) d)

Figure 6. Results on shifted and rotated problems, a) Graphical representations of bench-
mark problem, b) trajectory of the first individual in the first dimension, c) the average
fitness of individuals, and d) the convergence curve of CEA algorithm

can be observed. It can be seen that there are abrupt changes in the initial steps of
iterations. These abrupt changes are decreased gradually during the search process.
This behavior guarantees that a population-based algorithm eventually converges
to a point in search space [53, 56]. The third column of Figures 4, 5, 6 and 7 shows
the average fitness that individuals obtain over 200 iterations. It can be observed
that average fitness values are decreased gradually. From this behavior, it can be
concluded that the fitness of individuals in the population improves through itera-
tions. This is due to a proper balance between exploration and exploitation power
of the CEA algorithm. The forth column of Figures 4, 5, 6 and 7 shows the con-
vergence curve of CEA algorithm. It can be seen that the proposed CEA algorithm
converges with a steady speed. This behavior shows the superiority of the CEA
algorithm in terms of the stability and the performance. To sum up, the results ver-
ify the performance of the CEA algorithm in solving various benchmark problems
compared to the counterpart algorithms. It can be concluded that the proposed
CEA is an efficient algorithm for numerical function optimization.
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a) b) c) d)

Figure 7. Results on hybrid problems, a) Graphical representations of benchmark prob-
lem, b) trajectory of the first individual in the first dimension, c) the average fitness of
individuals, and d) the convergence curve of CEA algorithm

From the results we can see that time consumption of JDE costs least time on
most test functions. CSSA costs the most time and it is in the last rank. Although
CEA reported slightly more run time than JDE and SADE, their run times are com-
parable on most benchmarks. In contrast, CEA reports run times less than election
algorithm, CMA-EA, CSSA, PSO2011 and SELO on most benchmark functions.
While CEA reports more run time than JDE and SADE (on most benchmarks),
its results are much better in terms of solution quality and finding global optima.
On most test functions, CEA obtained the global optimum earlier before the total
function evaluations. This is the reason that the time consumption of CEA is much
better than the election algorithm. This justifies that the CEA is a powerful and
robust extension of the election algorithm.
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Comparison T+ T- p-value Winner 
CEA vs. CMA-ES 39 6 0.02852 CEA 
CEA vs. JDE 7 3 -* CEA 
CEA vs. SADE 11 10 - CEA 
CEA vs. PSO2011 30 15 0.2040 CEA 
CEA vs. Election algorithm 11 4 - CEA 
CEA vs. SELO 17 4 - CEA 
CEA vs. CSSA 13 8 - CEA 
* Symbol "-" means that it is not possible to calculate an accurate p-value  

Table 15. Multi-problem based statistical pairwise comparison of CEA and comparison 
algorithms using two-sided Wilcoxon Signed-Rank test (0.05), n=30 Table 15. Multi-problem based statistical pairwise comparison of CEA and comparison

algorithms using two-sided Wilcoxon Signed-Rank test (α = 0.05), n = 30

Comparison T+ T- p-value Winner 
CEA vs. CMA-ES 101 19 0.0114 CEA 
CEA vs. JDE 33 12 0.01928 CEA 
CEA vs. SADE 52 3 0.00298 CEA 
CEA vs. PSO2011 103 2 0.00028 CEA 
CEA vs. Election algorithm 57 21 0.08726 CEA 
CEA vs. SELO 53 25 0.0466 CEA 
CEA vs. CSSA 77 28 0.06876 CEA 

Table 16. Multi-problem based statistical pairwise comparison of CEA and comparison 
algorithms using two-sided Wilcoxon Signed-Rank test (0.05), n=50 Table 16. Multi-problem based statistical pairwise comparison of CEA and comparison

algorithms using two-sided Wilcoxon Signed-Rank test (α = 0.05), n = 50

6 CONCLUSION

This paper presents a Chaotic Election Algorithm (CEA) to improve the original
election algorithm. The CEA enhances the election algorithm threefold:

1. modifying party formation phase,

2. introducing migration operator, and

3. introducing a chaotic positive advertisement.

CEA by modifying the party formation phase through eliminating the Euclidean
distance computation from the process increases the speed of the algorithm. With
the migration operator, diversity in the population is maintained, what keeps the
CEA away from converging too fast before exploring the entire solution space. With
the new chaotic positive advertisement, the information exchanges between candi-
dates and voters efficiently and improves the algorithm’s search ability. To show the
performance of the CEA algorithm, it is evaluated on 28 optimization benchmarks
and compared with CMA-EA, JDE, SADE, PSO2011, SELO, CSSA and election
algorithm. The results show that the proposed CEA algorithm outperforms the
canonical election algorithm and other comparable counterparts in terms of solu-
tion quality and convergence speed. There remain several points to improve our
research. First, the CEA will be trapped in local optimums on few functions, which
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can be seen from simulation results on some benchmark functions. We can combine
the CEA with some local search strategies or other meta-heuristics to further en-
hance its optimization ability. Second, we can apply the proposed CEA algorithm
to solve more practical optimization problems to accurately identify its weaknesses
and merits. Third, in some specific engineering applications, some components of
the algorithm can be modified in order to improve the performance of the algorithm.
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