
Computing and Informatics, Vol. 38, 2019, 1149–1180, doi: 10.31577/cai 2019 5 1149

FORMAL VERIFICATION OF SECURITY PATTERN
COMPOSITION: APPLICATION TO SCADA

Fadi Obeid, Philippe Dhaussy

Lab-STICC CNRS, UMR 6285
Ensta Bretagne, 2 Rue François Verny
29200 Brest, France
e-mail: {fadi.obeid, philippe.dhaussy}@ensta-bretagne.fr

Abstract. Information security was initially required in specific applications, how-
ever, nowadays, most companies and even individuals are interested in securing their
information assets. The new requirement can be costly, especially with the high de-
mand on security solutions and security experts. Security patterns are reusable
security solutions that prove to be efficient and can help developers achieve some
security goals without the need for expertise in the security domain. Some security
pattern combinations can be beneficial while others are inconsistent. Model check-
ing can be used to verify the production of combining multiple security patterns
with an architecture. Supervisory control and data acquisition (SCADA) systems
control many of our critical industrial infrastructures. Due to their limitations,
and their augmented connectivity, SCADA systems have many unresolved security
issues. In this paper, we demonstrate how we can automatically generate a secure
SCADA model based on an insecure one and how to verify the generated model.

Keywords: Information security, security patterns, formal verification, model
checking, SCADA

1 INTRODUCTION

Information security is a tremendous challenge, whereas meeting security require-
ments without affecting the services is a difficult task. General security guide-
lines [20] are useful in avoiding many security problems and building a fairly secure
system. Furthermore, some security problems are highly recurrent and efforts to
resolve them are redundant. A best solution may be found in a specific context

1150 F. Obeid, P. Dhaussy

which can later be beneficial for others. A security pattern describes how to apply
a specific security measure to solve a security problem.

To achieve multiple security goals, multiple security patterns can be used. How-
ever, while some security patterns are better when combined, others are inconsistent
and can raise new problems. Combining multiple security patterns in an application
can have additional issues depending on the application itself.

An efficient security solution should solve a security issue to fulfill some security
requirements without affecting other system requirements. Model checking can be
used to verify that the system meets its requirements and ensures correct functional-
ity [6]. It can also verify the consistency of the security patterns with the architecture
and with each other. This is important to validate the security properties of the
system as well as the security properties of the patterns themselves.

Supervisory control and data acquisition (SCADA) systems control many of our
critical industrial infrastructures, such as nuclear and chemical plants. Due to their
limitations, and their augmented connectivity, SCADA systems raise tremendous
challenges for security experts. With their requirements and the criticality of their
security, it is very difficult to achieve a good security level in SCADA systems.
Finally, attacks on SCADA have risen lately [5].

The main objective of our work is to automatically generate a secure architecture
based on an insecure architecture and some security requirements. We also need to
verify the result using model checking to make sure the security requirements of the
architecture are respected. This requires three different elements:

1. a library of security patterns,

2. a tool to automatically combine the patterns with an architecture,

3. a model-checker to verify the resulting model.

The effiency of the patterns and the choice of the security policies are out of the
scope of this paper.

In this paper we demonstrate how we can automatically generate a secure
SCADA model based on an insecure one. The generated model applies multiple
security patterns based on a security policy. The model can later be verified using
model checking to validate the security properties and ensure correct functionality.
Finally, we present some measurements regarding the complexity of our approach.

We start by introducing a background study of related work in Section 2. We
specify the abstract model in Section 3, any implementation of our approach should
respect this model. In Section 4, we illustrate the included security patterns and
their security properties. We define our approach for security patterns combination
in Section 5. The verification approach is explained in Section 6. In Section 7, we
describe our implementation approach along with an example and some complexity
studies. Finally, we conclude in Section 8.

Formal Verification of Security Pattern Composition: Application to SCADA 1151

2 RELATED WORK

Yoshioka et al. [26] offer a survey on security patterns. Many security patterns were
introduced by Yoder and Barcalow [25] and Fernandez and Pan [14]. Schumacher
et al. [21] provide a full description of integrating security patterns into systems.
Hafiz et al. [17] present a pattern language unifying and classifying all published
security patterns at the time. Wassermann and Cheng [24] detail many security
patterns and enable the verification of these patterns by adding formal constraints
to them.

Avalle et al. [3] wrote a survey on formal verification of security protocol im-
plementations, focusing on the automatic verification of models close to the real
implementation. There are many research efforts on model checking of design pat-
terns [2, 10, 1, 22] which we consider enriching. Dong et al. [11] investigate model
checking of security pattern combinations where the authors explain how wrongly
combining security patterns may result in several errors.

Concerning SCADA security, many studies [19, 18, 27] were conducted to address
the security problems in SCADA and/or give some theoretical solutions and guides
for improving SCADA security. Other studies [23, 15] aim to enhance the security
level and fortify the provided services along with the managed critical data. SCADA-
specific security solutions and SCADA-specific IDS are proposed by Fovino et al. [16]
and Zhu and Sastry [28], respectively. Fernandez et al. [12] propose the use of
security patterns to design secure SCADA systems.

To the best of our knowledge, there is no research work that considers formally
verifying properties on an auto generated architecture with a combination of security
patterns. In our work, we are interested in generating secure architecture (using
security patterns) and providing automatic proofs of the robustness of the generated
architecture based on specific security requirements.

3 ABSTRACT MODEL

Figure 1 describes the abstract model on which security patterns are applied. We
consider an architecture containing multiple entities (Entity) communicating be-
tween each other through communication channels (Channel). The communication
channel has a Fifo to organize the order of messages (Message). The entities are
divided into two categories: Components which are the assets of the architecture
and need to be secured, and Clients that are seen as guests to the architecture.
Any entity can receive and send messages. The client (Client) can additionally
initiate requests and is considered as an external entity of the system. The commu-
nication component (ComComp) can only forward messages from one entity to the
other. The access component (AccComp), in addition to forwarding messages, owns
resources (Resource) and responds to requests by accessing these resources.

During experimentations, multiple formats for the message were used. We found
that the most convenient method is to separate message parts depending on the
security hypothesis of these parts.

1152 F. Obeid, P. Dhaussy

Figure 1. Abstract model

We consider the comInfo to have integrity, meaning if it is modified by an en-
tity x, the source of the message becomes x. However, this part is not confidential
and any other entity can read its contents so it can forward the message if needed.
In addition for integrity, the data part is considered to have confidentiality, meaning
that only the target of the message can read this part.

The message is therefore formatted as follows:

• comInfo containing information about the communication:

– source: the source of the message,

– target : the target of the message,

– type: the type of the message, either a request REQ or a response RESP.

• data containing the details of the request or the response:

– op: the operation concerned by the message (READ or WRITE),

– res : the resource concerned by the message,

– ans : the answer, ACK or NAK for RESP and null for REQ.

Figure 2 demonstrates the automata of a communication component, an access
component, and a client, respectively. A communication component receives a mes-
sage and goes to Received state, depending on whether it can forward the message or
not, it either goes back to Idle, or it goes to Sending. An access component behaves
differently after the Received state, if the target of the message is the component
itself, it goes to Respond, else, it goes to Sending to forward the message. From

Formal Verification of Security Pattern Composition: Application to SCADA 1153

Respond, the access is accomplished by passing through Access and Respond again,
finally, when the response is ready, the Sending state is visited to send the response.
In the case of the client, it can initiate a request, and send this request, then it waits
for a response at waitResp. When the response arrives, the client goes back to Idle
state so it can send other requests.

a) Communication comp b) Access comp

c) Client

Figure 2. Automata of the interacting entities

In our approach, we assume that any component is physically robust, meaning
that its behavior cannot be affected directly from the outside. The information
passing from one part of the component to another is secure, it is not visible to
other entities nor can they change it. The only way to affect a component is by
sending a message to this component resulting in the component’s behavior.

Our concept is to secure this behavior in a way that no matter what happens out-
side the components, the system behaves correctly, while no security properties are
violated. Any integrated security pattern is also considered internal to the compo-
nent. This means that any relation/communication/sharing between these patterns,

1154 F. Obeid, P. Dhaussy

and between these patterns and the component, is not visible to nor modifiable by
any other entities.

Any implementation should respect this model, meaning that we can create
more complicated entities, but the minimal structure should be respected. In addi-
tion, some behavior properties are used to limit possible problems and simplify the
application of the patterns.

We start by explaining the required notations:

• Acomps, Ccomps, and Clts are the sets of access components, communication
components, and clients, respectively,

• Comps = Acomps ∪ Ccomps and Ents = Comps ∪ Clts,
• received(e, m) is detected when entity e receives message m,

• sent(e, m) is detected when e sends m,

• any is a joker used when the variable does not matter, for example, we write
received(e, any) detects the event where e received any message,

• e.state is the current state of the entity e.

We formalize the properties shared by the different components as follows:

• Receive messages only when at Idle state.

prt ARCH 1 : ∀c ∈ Comps,

�[received(c, any)⇒ c.state = Idle].
(1)

• Send messages only from Sending state.

prt ARCH 2 : ∀c ∈ Comps,

�[sent(c, any)⇒ c.state = Sending].
(2)

• Never leave Sending state without sending a message.

prt ARCH 3 : ∀c ∈ Comps,

�[c.state = Sending⇒ ♦sent(c, any)].
(3)

• To reduce the number of unnecessary configurations, some variables are given
a null value (exp. mess = MESS NULL) when the component is at Idle state.

prt ARCH 4 : ∀c ∈ Comps,

�[c.state = Idle⇒ c.mess = MESS NULL].
(4)

The formal description of the properties is close to implementation, since the
included parameters and states are included in the minimal requirements for any
application to our approach. However, when describing the security patterns in the
following section, some formal properties are more abstract so they would consider
different implementations.

Formal Verification of Security Pattern Composition: Application to SCADA 1155

4 SECURITY PATTERNS

The security pattern is a reusable solution to a recurring security problem. It is
usually constructed by security specialists and used by developers who lack security
knowledge. It provides a detailed guideline of how to implement the best found
solution for a specific security problem.

Patterns should be considered as methodological tools to describe technical so-
lutions related to security. They impose decisions that must be taken into consid-
eration when designing architectures. They also facilitate communication between
experts and non-experts.

We consider that the set of security measures to implement for an architecture
are not, in general, managed at a single point. Due to the specificities of the patterns,
the responsibility for managing the entire implemented security policy is shared
between several patterns implemented on multiple components.

We can summarize the essential objective of each pattern as follows:

• SAP unifies the access points, instead of having to take security measures in
different places, they are taken at the unified access point.

• CHP is dedicated to performing verifications and applying countermeasures
based on a security policy.

• AUTH implements a security policy based on access rights.

• FWLL implements a security policy to restrict incoming and outgoing messages
based on specified filters.

We divide these patterns into two categories: active patterns and passive pat-
terns. SAP and CHP are the active patterns that should make decisions, calls, and
verifications. AUTH and FWLL are the passive patterns which represent the forms
that the security policies should take. Based on AUTH and FWLL, CHP can verify
the conformity of a request with the implemented security policy.

We consider two main objectives related to these patterns:

• Objective 1: Securing access to a component’s resources:

– SAP limits the access points to a component’s resources to a single access
point, and it checks the availability of requested resources.

– CHP, solicited by SAP, verifies access rights and takes countermeasures.

– AUTH specifies the access rights.

• Objective 2: Securing access to a set of components:

– SAP limits access points to an area to a single-point component, and it
verifies the availability of the recipient entities of the messages.

– CHP is called by SAP to verify that the message entering or exiting the area
can pass (respects the security policy), if not, a countermeasure is taken.

– FWLL specifies the security policy used to filter messages.

1156 F. Obeid, P. Dhaussy

4.1 Single Access Point (SAP)

The SAP pattern was introduced by Yoder and Barcalow [25]. It can be integrated
into different types of implantation: a system, an application, a server, etc.

The goal of the SAP pattern is to unify the points on which an area can be
accessed in order to improve the control and monitoring of entries.

Passing through a single access point is considered as a control, we therefore use
the notation controlled on anything that passes through a single access point.

We use SAP for two types of control:

• Separating the architecture into areas with one access point between each two
areas, and one access point to the external zone. In this case, SAP also verifies
the availability of a target before forwarding a message. This control can be
applied on communicating components with no resources to access. We call this
SAP C where C stands for communication.

• Separating the access to resources inside a component from the rest of the jobs
handled in this component. In this case, at each access request, SAP also
verifies if the targeted resource is available. This control can be applied on
access components with resources to unify their access verifications. We call
this SAP A where A stands for access.

Since SAP is called each time, additional security patterns and security measures
can later be patched to the SAP so they can handle other security requirements.
After verifying the availability of the resource (or the component), if the verification
fails, a negative response is prepared and sent. If the verification does not fail, either
another security pattern(s) is/are called, or the request is fulfilled by accessing the
resource (or forwarding the message).

Based on the SAP property classification proposed by Wassermann and
Cheng [24], we have formalized some of these properties for different SAP appli-
cations. Notice that in this article we include some but not all of the properties.

We start by defining some required notations:

• Mess is the list of all possible messages.

• Res is the list of all resources.

• OpRes is the list of all possible operations on resources.

• SCcomps is the list of all communication components using SAP C.

• SAcomps is the list of all components using SAP A.

• ∀cc ∈ SCcomps, cc.comps is the list of all components considered inside the
secure zone using cc as a single access point.

• ∀cc ∈ SCcomps, ∀m ∈ Mess, controlled(cc,m) is true if the message m has
already been controlled by cc (passed through the single access point).

• ∀ca ∈ SAcomps, ca.res is the list of all resources owned by ca.

Formal Verification of Security Pattern Composition: Application to SCADA 1157

• ∀ca ∈ SAcomps, ∀e ∈ Ents, ∀o ∈ OpRes, accessed(c, e, o.oper, o.res) is true if e
has accessed the resource o.res in ca with the operation o.op.

• ∀ca ∈ SAcomps, ∀e ∈ Ents, ∀o ∈ OpRes, controlled(c, e, o) is true if ca has
already controlled the request o demanded by e.

• m′ = neg(c,Mess,m) is the error message corresponding to m, where c is
the source of this error message where m′.comInfo.target = m.comInfo.source,
m′.comInfo.source = c, and m′.data.ans = NAK.

We classify the properties depending on the SAP application, and the general
type of the security property.

• Single Access Point of communication components (SAP C):

– Authenticity: All messages coming from outside an area protected by a com-
ponent cc ∈ SCcomps should pass through this cc before they go inside the
area. Therefore, if a message is received by a component protected by cc,
and the source of the message is not protected by cc, the message should
have been controlled by cc.

prt SAP C 1.a :

∀m ∈Mess, ∀cc ∈ SCcomps, ∀c ∈ cc.comps,

�[received(c,m) ∧m.source /∈ cc.comps

⇒ controlled(cc,m)].

(5)

– Any message received inside an area protected by component cc ∈ SCcomps,
without being controlled in advance by cc, originated from inside the pro-
tected area.

prt SAP C 1.b :

∀m ∈Mess, ∀cc ∈ SCcomps, ∀c ∈ cc.comps,

�[received(c,m) ∧ ¬controlled(cc,m)

⇒ m.source ∈ cc.comps].

(6)

– Availability: When a message is received by a component cc ∈ SCcomps, if
it is coming from the outside to the inside of the protected zone (the source is
not in the protected list), and the target is not available, a negative response
is sent to the source of the message. We consider that a target is unavailable
if it is not in the list of protected components.

prt SAP C 2 :

∀m ∈Mess, ∀cc ∈ SCcomps,

�[received(cc,m) ∧ {m.source,m.target} * cc.comps

⇒ ♦sent(cc, neg(cc,m))].

(7)

1158 F. Obeid, P. Dhaussy

– Confidentiality: Messages exchanged between components inside a secure
zone should never be read by outside entities.

prt SAP C 3 :

∀m ∈Mess, ∀cc ∈ SCcomps, ∀e ∈ Ents,
�[received(e,m) ∧m.source ∈ cc.comps

∧m.target ∈ cc.comps⇒ e ∈ cc.comps].

(8)

– Integrity: Messages exchanged between components inside a secure zone
should never be modified by outside entities.

prt SAP C 4 :

∀m ∈Mess, ∀cc ∈ SCcomps, ∀e ∈ Ents,
�[sent(e,m) ∧m.source ∈ cc.comps ∧m.target ∈ cc.comps

⇒ e ∈ cc.comps].

(9)

• Single Access Point of access components (SAP A):

– Authenticity: Each access to a resource owned by component ca ∈ SAcomps
is controlled (passes through the single access point).

prt SAP A 1 :

∀ca ∈ SAcomps, ∀e ∈ Ent, ∀o ∈ OpRes,

�[accessed(ca, e, o.oper, o.res)

⇒ controlled(ca, e, o)].

(10)

– Availability: When a component ca ∈ SAcomps controls an access, if the
requested resource is not available, a negative response is sent (no matter
what the operation is). The negative response is about the whole message
and not only the access request, therefore, the received message is used to
generate the negative response.

prt SAP A 2 :

∀ca ∈ SAcomps, ∀m ∈Mess, ∀r ∈ Res,
�[received(ca,m) ∧ controlled(ca,m.comInfo.source,

(any, r)) ∧ r /∈ ca.res

⇒ ♦sent(ca, neg(ca,m))].

(11)

We notice that these properties do not mention what is authorized and what is
not. As mentioned before, SAP only organizes and controls messages and access,
without applying a security policy. In the case of other security patterns applied on
the single access point, the properties of these patterns should consider the already
applied pattern.

Formal Verification of Security Pattern Composition: Application to SCADA 1159

4.2 Check Point (CHP) Pattern

The main objective of CHP [25] is to enforce a security policy and activate appro-
priate countermeasures in the case of violations. While CHP can be found in some
cases without SAP, in our work, we always apply these patterns together. Therefore,
we can consider SAP in the formalization of CHP properties.

CHP does not contain the security policy, but enforces this policy. Therefore, in
its formalization, we do not specify what the policy is, but only how to act depending
on different situations regarding the policy.

For instance, if a certain policy is violated, the component can be temporarily
shut, or can have a specific reaction varying according to what was violated and
how. For simplicity, in this document, a countermeasure would be either to neglect
a message or a request, or to send negative responses.

Whenever a single access point is visited, if CHP is included in the component,
it should be visited before the continuation of the job. However, if there is an early
refusal due to availability issues (unavailable target or resource), there is no need to
call CHP.

In the same fashion as for SAP, we formalize some of the CHP properties ex-
tracted from the work of Wassermann and Cheng [24]. The following additional
notations are required:

• Scomps = SCcomps ∪ SAcomps is the list of all secure components,

• ∀cs ∈ Scomps, cs.policy is the security policy applied in cs,

• J obs is the list of all possible jobs, which includes any resource access, and the
forwarding of any message,

• counter(p) is the countermeasure for violating the security policy p,

• checked(cs, job) is true if cs has already checked if job is conform to the security
policy applied in cs,

• accomplished(cs, job) is true if cs has accomplished job (the access is accomplished
or the message is forwarded),

• respects(p, job) is true if job respects the security policy p,

• triggered(cs, a) is true if cs has triggered the action a.

The properties are:

• Availability: Each time CHP verifies a job that does not violate the policy, the
job should continue (forwarding a message, or accessing a resource).

prt CHP 1 :

∀cs ∈ Scomps, ∀job ∈ J obs,
�[checked(cs, job) ∧ conform(cs.policy, job)

⇒ ♦accomplished(cs, job)].

(12)

1160 F. Obeid, P. Dhaussy

• Availability: Each time CHP verifies a job which does violate the security policy,
the appropriate countermeasure should be applied.

prt CHP 2 :

∀cs ∈ Scomps, ∀job ∈ J obs,
�[checked(cs, job) ∧ ¬conform(cs.policy, job)

⇒ ♦triggered(cs, counter(cs.policy))].

(13)

• Authenticity: If a job is accomplished, then it must be verified, this includes the
secured jobs only, such as forwarding messages or accessing resources.

prt CHP 3 :

∀cs ∈ Scomps, ∀job ∈ J obs,
�[accomplished(cs, job)

⇒ checked(cs, job) ∧ conform(cs.policy, job)].

(14)

4.3 Authorization Pattern (AUTH)

The authorization pattern (AUTH) was initially described by Fernandez et al. [14].
The main objective of AUTH is to describe a security policy regarding secure access
to objects. The concept is to specify protections on objects, then, create explicit
access rights relations between some subjects and some objects so that the subjects
have the privilege of accessing these objects.

In our work, the objects are the resources owned by the different components of
type AccComp, and the subjects are any type of entity. Protections can be specified
for an operation without the other (exp. resource r is protected for writing and
unprotected for reading). Permissions can also be granted to an entity regarding
specific operations or resources or both.

As mentioned before, CHP enforces the application of a security policy. In
this case, the security policy ensured by CHP is an authorization pattern to ensure
secure access to protected resources.

In order to apply the AUTH policy on an access component, we use the syntax:

• protect(ca, op, r): Protect the resource r owned by component ca for the opera-
tion op.

• permit(e, ca, op, r): Explicitly allow entity e to access the resource r owned by
the component ca using the operation op.

These functions can be used to specify the security policy which will later be
combined with an insecure architecture generating a secure one. We can also use
the wild-card any to generalize some of the rules. For example, protect(c, any, r)
means that resource r owned by component c should be protected for any type of
access (read, write, execute, etc.).

Formal Verification of Security Pattern Composition: Application to SCADA 1161

Once protections and permissions are specified, we can use following predicates:

• protected(ca, op, r): which is true if the resource r owned by the access component
ca is protected for the operation op,

• permitted(ca, e, op, r): which is true if the entity e has explicit permission to
access the resource r owned by the access component ca using the operation op,

• allowed(ca, e, op, r): which is true if e should be allowed to access r owned by ca
using op. This is true if either the r is not protected for the operation op, or if
there is a specific permission for e to have such access.

Notice that

allowed(ca, e, op, r) = (¬protected(ca, op, r)) ∨ (permitted(ca, e, op, r)).

We are only interested in the essential property of AUTH which specifies that
each proceeded access is in fact allowed.

prt AUTH 1 :

∀ca ∈ SAcomps, ∀e ∈ Ents, ∀o ∈ OpRes,

�[accessed(ca, e, o.oper, o.res)

⇒ allowed(ca, e, o.oper, o.res)].

(15)

4.4 Firewall Pattern (FWLL)

There are many descriptions for the Firewall pattern [21, 13, 7]. The main objec-
tive of FWLL is to filter messages between different communication areas. It can
function on the physical, transport, or application layer. At the physical layer, the
firewall filter is applied to data packets transmitted over a network. Depending on
information in these packets, some of them, or all of them, should be refused. At the
transport layer, the filter collects packets until it has enough information to decide
whether these packets are transferable or should be refused. Finally, at the appli-
cation layer, FWLL evaluates all messages against the associated rules concerning
services. For example, a given service may not send messages to a certain entity.

In our work we consider a specific FWLL approach which is most comparable
to the application layer. In the same fashion as AUTH, the concept is to apply
a specific security policy using FWLL. The policy decides on specific rules to refuse
some messages depending on one or more variables in these messages. In addition,
the policy can specify some exceptions for any of these rules.

As stated before, the data part of the message is confidential, and only the
target can read it. This means that a firewall cannot base its filter on this part of
the message. However, it can filter messages depending on their source, their target,
and the type of the message.

In order to apply the FWLL policy on a communication component, we use the
following syntax:

1162 F. Obeid, P. Dhaussy

• protect(cc, comps): Applies the FWLL pattern to the communication component
cc. All components specified in the list comps are considered protected by this
firewall, meaning that they are seen by the firewall as internal components. For
instance, when SAP C checks for target availability, this is the list it will check.
In addition to having a list of inside components cc.comps, cc would also have
cc.rules which are the rules for filtering messages based on their communication
information comInfo.

• addRule(cc, comInfo, exps): Adds a new filter rule to cc.rules, the rule is based
on comInfo stating the source, the target, and the type of the message. exps is
a list of comInfo stating the exceptions to this rule.

In addition to using the wild-card any to generalize some of the rules and null
to specify that there are no exceptions. For example, addRule(cc, (e1, c1, any), null)
adds a rule to the policy of cc stating that any message (of any type) with e1 as its
source and c1 as its target is refused, with no exceptions.

We can check whether a message satisfies a rule or not using satisfies(m, rule)
which is true if (m.comInfo 6= rule.comInfo)∨rule.exps.contains(m.comInfo). Notice
that the equality, as well as the contains, both understand the use of any. For
example, the following statements are both true:

(e1, c1, req) = (e1, c1, any),

[(e1, any, any)].contains((e1, c1, req)).

The most important property (regarding our work) of FWLL specifies that each
forwarded message does not break any rules.

prt FWLL 1 :

∀cc ∈ SCcomps, ∀,∀m ∈Mess,

�[received(cc,m) ∧ sent(cc,m)

⇒ ∀rule ∈ cc.rules, satisfies(m, rule)].

(16)

5 SECURITY PATTERN COMPOSITION

Figure 3 demonstrates an abstraction of our combination approach. To generate
a secure model, we specify the architecture elements along with the security policies.
The security policies are translated into security requirements used to create the
properties and assumptions of the system as well as the verification scenarios. The
properties and assumptions are used to specify the pattern semantics (which security
patterns are used and how).

Furthermore, the architecture, the pattern semantics and the scenarios are com-
bined using our auto-combiner tool. The output contains the secure model, regular
and attack scenarios, and observers coding the properties representing the security
requirements of the architecture and the patterns. Finally, these outputs are used

Formal Verification of Security Pattern Composition: Application to SCADA 1163

in a model-checker to verify that the model respects the properties in both regular
and attack scenarios. The result of such verification is either a valid model or traces
to help track violations.

For example, if we have the component c1 in the architecture elements, and
a security policy requiring to secure writing access to resource r1 of c1, the policy
can be expressed using protect(c1,WRITE, r1). When generating the secure model,
we know that c1 needs access protection, therefore we add the authorization pattern
along with SAP A and CHP. Since now c1 has authorization pattern attached to
it, each access to any of its resources should be verified. On the properties side, we
add a property to verify that each access was either permitted because the resource
is not protected for the specific operation (or an explicit permission is given to the
source), or denied because the resource is protected (and no explicit permission is
given). Finally, on the scenarios side, we add at least 2 different requests where one
should be denied (lack of explicit permission) and one should be granted (explicit
permission given). We can have other automatically generated scenarios (and some
manual scenarios) to present different behaviors (exp. parallel requests) and make
sure the properties are always respected.

Figure 3. Security pattern combination approach

The generated observers should consider the properties of the architecture, the
properties regarding the security requirements, and the properties of the patterns

1164 F. Obeid, P. Dhaussy

used. For example, the architecture may have a specific behavior that needs to
be respected, this should be translated into an observer to guarantee that the
new behavior is correct. A security requirement regarding a protection of a re-
source also needs an observer to validate that the protection was indeed applied.
Finally, the security patterns themselves have specific properties that should be
respected.

In many cases, combining these different types of properties is a complicated
task that can result in conflicts. This is not the same conflict we mentioned about
multiple patterns used together: this conflict is about the requirements of differ-
ent elements. For instance, the behavior of the architecture can be completely
changed by applying a security policy. Consider that we have a model, and it
should treat any message by forwarding it to a specific area. If the security policy
limits access to this area, message treatment would now depend on the message
itself.

Satisfying multiple requirements from different elements was a challenging part
of our approach. However, to limit the automatic decision making, we consider the
following order of property importance:

• The properties of the patterns are the most important, if these properties are not
respected, the generated model can no longer be considered secure. Even if all
other properties are respected or not, if the pattern is not functioning correctly,
then any grantee given by the pattern can no longer be considered true.

• The security requirements are next, however, in implementation, we can combine
these properties with the adjacent pattern properties. For example, the observer
regarding a secure access requirement can be integrated in an AUTH observer.

• Finally, the modified behavior of the model can have specific requirements that
cannot be directly met due to the security measures. However, the new be-
havior is a combination between the original behavior, the patterns, and the
requirements, which can be verified.

These are our own choices to resolve conflicts between properties. However,
there can be other unresolved conflicts between properties which can be shown as
properties violations which can be traced. To resolve these conflicts, either the
security requirements need to be reduced or some services (model requirements)
should be changed. The choice depends on each implementation, it also depends on
the decision makers who decide which is more important, security or service. This
question is not related to our work and is out of the scope of this paper. In our
case, conflicts are resolved using the properties priorities stated above. Unresolvable
conflicts did not appear during our experimentations.

6 VERIFICATION APPROACH

After specifying the architecture and the properties, we need to verify that these
properties are respected in the secure architecture. In the case of complex systems,

Formal Verification of Security Pattern Composition: Application to SCADA 1165

we cannot visually verify the code or the sequence diagram to ensure it respects its
properties. A more suited solution is to use model checking tools to formally prove
the correctness of a system. This approach relies on formal logic to obtain a proof
that is absolute and undeniable.

To be able to formally represent and verify our model we need 3 essential ele-
ments (Figure 4).

Figure 4. OBP explorer

We first need a language to model our SCADA system, the threat (attacker), and
the security patterns. For this, we use the Intermediate Format for the Embedded
Distributed Component Architectures (FIACRE) [4] which is a formally defined
language that defines the behavior of a system considering time aspects. For the
moment we are interested in the different possible behaviors of the system (with no
consideration of time aspects).

We also need a way to formally present our properties that would ensure the
fulfillment of the system requirements. We use the Context Description Language
(CDL) [8] which, in addition to formalizing properties, can formalize scenarios to
interact with the system. One of the main advantages of using CDL is the reduction
in state explosion [9]. The scenarios can be either implemented using FIACRE or
CDL, each implementation has its own advantages, in this article we have an example
of each.

Finally, we need a model explorer to explore our model, and verify our properties.
We use the Observer-Based Prover (OBP) explorer1.

To use our model checking tools, we transform the different versions of our
architecture (with or without each pattern) into a FIACRE code. We transform our
scenarios and properties into CDL scenarios and CDL observers.

CDL uses a specific syntax to express properties which can be implemented
using three different methods. While multiple methods can be used for the same
purpose, each is more suitable for a specific situation:

1 OBP documentation, tutorial and available tool: http://www.obpcdl.org

http://www.obpcdl.org

1166 F. Obeid, P. Dhaussy

Invariant: Suitable in cases where only one configuration is concerned at a time.
Exp. pre1 ⇒ pre2 means that at any configuration, if pre1 is true then pre2
should also be true.

Automaton: Suitable in cases where multiple configurations are concerned, it can
detect events in the transitions from one configuration to another. Exp. eve1 ⇒
pre2 ∧ eve2 means that if in a transition eve1 happens, then pre2 is true before
the transition, and eve2 happens in the same transition.

Liveness: Suitable when something leads to another. Exp. pre1 ⇒ ♦pre2, if pre1 is
true, pre2 is eventually true in any following sequence.

For example, prt CHP 3 uses the invariant method as follows:

predicate p1 is accomplished(ci, job),

predicate p2 is checked(ci, job) ∧ conform(ci.policy, job),

assert not(p1 ∧ ¬p2).
(17)

This means that any configuration where p1 is true and p2 is false should be
detected as a violation.

To observe prt ARCH 1, we create the following automaton:

• start→ e.Received(any)→ s1 (1),

• s1→ e.state = Idle→ start (2),

• s1→ e.state 6= Idle→ reject (3).

The observer is at start, when e receives any message during a transition from
one configuration to another, the observer goes to s1. During the same transition,
the observer can make multiple shifts, from s1, if the state of e in the original
configuration is Idle, the observer goes back to start. Since it has already detected
the receiving event, it does not detect it again during this same transition.

It is important for the observer to go back to start in the case of correct behavior
so it can detect the next time e receives a message. From s1, if the state of e in
the original configuration is not Idle, the observer goes to reject so it can be easily
traced. It stays in the reject state for the remainder of the sequence.

Figure 5 represents the property automaton, with p a priority to check one route
before the other (p1 is tested before p2).

Figure 5. Initial property automaton

Formal Verification of Security Pattern Composition: Application to SCADA 1167

Finally, to observe prt SAP C 2, we use the liveness method as follows:

[] (| ci@Received ∧ {ci.mess.source, ci.mess.target} * ci.comps |

=><> | ci@Sending ∧ ci.mess = neg(ci, ci.mess)) |).

If at some point ci is at Received, and either the source of the message or its
target is not in ci.comps, then, eventually, ci should be at Sending with a negative
response. Since we already verify elsewhere that if ci is at Sending it always sends
a message, the combination leads to the property being correctly verified.

In the same fashion, we create observers for all of the other properties. Some
of the more complicated properties require the use of more than one method at the
same time.

7 EXPERIMENTATION

7.1 Process

In our experimentations, we tested multiple approaches on how to include the se-
curity patterns in the architecture. In this document we describe one of these ap-
proaches in which we use multiple states and transitions to apply the patterns. This
modifies the automata (and the behavior) of both the communication component
and the access component.

Figure 6 demonstrates the automaton of the secure communication component.
From the Received state, in addition to verifying whether the message can be for-
warded or not (basic verifications), we also verify if it is signed correctly. If this is
the case, we go to SAP state which is responsible for testing the availability of the
target. If the target is not available, a negative response is prepared and sent. If
the target is available, CHP is called to verify the conformity of the message with
the security policy. If the message conforms, it is forwarded, if not, TrigAct is called
to make sure the correct countermeasure is applied, which is, in our case, sending
a negative response.

Figure 7 demonstrates the automaton of the secure access component. From
the Received state, in addition to verifying whether the target is the component
itself, we also verify if the message is signed correctly. If this is the case, we go
to Respond state which is responsible for preparing the correct response. In order
to prepare the response, the resource needs to be accessed, and SAP is called to
verify the availability of the resource. If it is not available, a negative response is
prepared and sent. If the resource is available, CHP is called to test the conformity
of the access demand with the security policy. If the demand conforms, the access
is correctly achieved and a positive response is sent. If not, TrigAct is called to
prepare a negative response as our chosen countermeasure.

The properties and scenarios can also be generated automatically. Each property
generates an observer for each instance where it is necessary. For example, if we

1168 F. Obeid, P. Dhaussy

Figure 6. Secure communication component

have two access components ca 1 and ca 2, applying prt SAP A 1 generates two
observers prt SAP A 1 ca 1 and prt SAP A 1 ca 2.

This is applied differently depending on the property itself. For example, con-
sider that the components above are both in an area secured by cc 1. Applying the
property prt SAP C 1.a creates an observer on cc 1 itself to detect whether or not
this happens. However, it should also verify the reaction of the components in the
secure zone.

This means that the secure components should verify the signature correctly,
which is observed using prt SAP C 1.a ca 1 and prt SAP C 1.a ca 1.

In this document we are more interested in validating our approach than verify-
ing the generated models. Therefore, we use manually generated scenarios designed
to verify certain aspects of the approach as well as to measure the complexity of the
generated model.

We have multiple options to vary the scenarios:

• Option 1: Whether or not to have a stable system with an initial behavior.
Which means, the system, without any external stimulation, already exchanges
messages.

• Option 2: Whether or not to have normal interactions coming from the environ-
ment (CLT1 and CLT2 can send requests).

• Option 3: Whether or not to have attacking interactions coming from the envi-
ronment (simply, an entity that is not recognized by the system, exp. ATT1).

Formal Verification of Security Pattern Composition: Application to SCADA 1169

Figure 7. Secure access component

• Option 4: Whether or not to have attacking interactions from inside the system,
we consider an unidentified entity (exp. ATT2) sending requests directly to LC1
without passing through GC and Network.

We can apply these options together. Consider that we have a system with
inter-communications (Option 1), this would result in multiple possible configura-
tions. We call this a stable system since each configuration can be reached from
any other configuration. At any point (no matter which configuration the system
is at), a client may send a valid request (Option 2) to which the response should
be positive. An unidentified entity can also send a request (Option 3) which should
result in a negative response. Finally, a request (Option 4) can be sent directly to
an internal component (a component in a secure area), and since such requests were
not signed by the Firewall, they should be ignored.

These scenarios are sufficient to verify all the different properties of the archi-
tecture, the security policy, and the patterns. However, the resulting configura-
tions are too complicated for visual verification. Therefore, we start by simulating
only one request using one of the options above, we alternate between requests and
options to visually verify that the automatically generated model behaves as ex-
pected and the properties are verified correctly. Additionally, we add mistakes to
the model to make sure the properties can detect these mistakes. Finally we can
apply the full verification which can conclude that the secure model respects the
properties.

1170 F. Obeid, P. Dhaussy

7.2 Case Study

Consider we want to secure the model in Figure 8, it has the following components:

• GCS1 and GCS2: Access controllers which can access resources as well as forward
messages. For the sake of our example, their access capabilities will not be
necessary since there are no requests targeting them.

• NET1 and NET2: Communication controllers which can only forward requests.
Both have a firewall when security is applied. NET1 would protect every other
component other than GCS1, and NET2 would protect every component of type
device DEVi.

• Four PLCi each responsible for the corresponding device DEVi. They ensure
indirect access, each request to a PLCi is treated at PLCi before being forwarded
to the device DEVi. All PLCi have secure access when security is applied.

• Four DEVi which respond to the indirect access requests. Note that they do not
apply security measures other then verifying messages signatures. Access rights
verifications are run at PLCi level.

Figure 8. Simple SCADA model

For example, a request from CLTi to PLCi would go through GCS1, NET1,
PLCi, NET1, GCS2, NET2, and DEVi. The response would take the reverse route
exactly. However, the request can be refused at NET1 and NET2 in the case of target
unavailability or filter violation, or at PLCi in the case of resource unavailability or
access rights violation.

We apply a security policy on this model regarding message filtering and resource
access. The policy details are:

Formal Verification of Security Pattern Composition: Application to SCADA 1171

• protect(GCSi, any, any): Protect all resources of any GCS for any operation (we
use i to apply the rule for any component of this type).

• protect(PLCi, any, any): Protect all resources of any PLC for any operation.

• protect(NET1, {PLCi,GCS2,NET2,DEVi}): Apply a firewall on NET1 protect-
ing all PLCs and Devs, and NET2 and GCS2.

• protect(NET2, {DEVi}): Apply a firewall on NET2 protecting all Devs.

• addRule(NET2, (any, {DEVi}, any), {({PLCi}, any, any)}): Add a filter rule to
NET2 refusing any message targeting DEV unless the source of this message is
a PLC.

We create multiple scenarios which we simulate on both the secure and the
insecure model. For verification purposes, we consider four different types of actors
included in these scenarios:

• CLTi: A legit client to which the response should be positive.

• SPMi: A known non-legit entity whose requests should be stoppable at Firewalls.
This is implemented using addRule(NETi, ({SPMi}, any, any), {})
• ATTi: An unknown non-legit entity whose requests may pass through the Fire-

walls but has no access rights resulting in negative responses directly from the
PLCi (without forwarding the request to the device DEVi).

• PENi: A penetration entity which would send requests directly from inside
the system, either to PLCi without passing through NET1 or to DEVi without
passing through NET2.

In the case of the insecure model, apart from PENi, we expect that the behavior
of the other actor types is always the same. Since there is no way of filtering
messages or applying access rights, these actor types are all the same to the system
and their messages always result in positive responses. PENi requests would also
have positive responses, however the route of the request is shorter since it is directly
inserted inside the system.

When security is applied, the behavior is expected to differ for each actor type.
CLTi should stay the same since it is legit, the route of the request is the same,
however the number of resulting configurations is expected to increase because of
the states and transitions related to security. SPMi requests are directly refused
at NET1 resulting in a negative response caused by the applied filter. ATTi routes
are longer than SPMi and shorter than CLTi since they are refused at PLCi level.
Finally, PENi messages are refused directly by the receiving component without
calling SAP, CHP, nor TrigAct, since they are not signed and this is verified at
Received state. This results in the shortest route for the PENi requests.

7.3 Property Verification

First, we investigated the insecure and the secure models by observing their be-
havior when stimulated by different possible actors, separated, or combined. Dur-

1172 F. Obeid, P. Dhaussy

ing these observations we confirmed our previous expectation about both models.
We also confirmed that the properties of the patterns, the security policy, and
the initial model are all respected in the secure model. This is true not only for
the properties mentioned in this paper but also for all the properties of the pat-
terns.

As explained before, the properties are applied for each component concerned.
For simplicity, we do not go into the details of each predicate and event used,
nor how they are written: we are more interested in the format of the proper-
ties. As explained before, the properties are applied for some or all of the com-
ponents depending on the property, some are only in the secure model while oth-
ers are used in both models. In the following, we present some of the properties
verified using our approach. Each property is written for only one component,
other applications undergo slight modifications such as the name of the compo-
nent.

• prt ARCH 1: Applied on each and every component in both the insecure and
the secure models. The following is its application on GCS1:

property prt ARCH 1 GCS1 is

start −− // recv GCS1 ANY / − > wait;

wait −− / pre GCS1 Idle // − > start;

wait −− / not pre GCS1 Idle // − > reject.

(18)

recv GCS1 ANY is detected when GCS1 receives any message. At this point, if
GCS1 was at Idle (pre GCS1 Idle), the property is respected and the observer
goes to start to wait for the next time GCS1 receives a message. If not, the
property is rejected and the configuration where this violation happened can be
easily traced. Notice that, at any configuration, the observer is either at start or
reject, this is important so that the property is verified each time GCS1 receives
a message.

• prt SAP C 2 NET2 (Figure 9): Applied on any component applying SAP C
which are NET1 and NET2. For example, its application on NET2 is as follows:

property prt SAP C 2 NET2 is

start −−// eve NET2 SAP true / − > at Sap;

at Sap −−/ not pre NET2 Available /eve NET2 Sending true / − > ver;

at Sap −−/ not pre NET2 Available /eve NET2 SAP false / − > reject;

at Sap −−/ pre NET2 Available /eve NET2 SAP false / − > start;

ver −−/ pre NET2 NAK /send NET2 ANY / − > start;

ver −−/ not pre NET2 NAK /send NET2 ANY / − > reject

(19)

Formal Verification of Security Pattern Composition: Application to SCADA 1173

Figure 9. Application of Property SAP C 2 on Net2

This means that, if NET2 goes to SAP state (eve NET2 SAP true), the ob-
server goes to at Sap. If the target is not available (not pre NET2 Available)
and NET2 goes to Sending, the observer goes to ver.

If the target is not available, and NET2 changes its state (other than going
to Sending), the property is rejected. However, if the target is available, the
observer goes back to start. This is because this property is only interested in
cases where the target is not available.

From ver, if NET2 has a NAK message and sends it, the property is respected,
and the observer goes back to start. However, if the message is not a NAK
message, the observer goes to reject the moment this message is sent (not be-
fore).

Notice that in this example, we can have configurations where the observer is
not at start nor reject, however it would still work each time SAP state is vis-
ited. This is because, from SAP, if NET 2 changes its state, the observer goes
to start, reject, or ver if NET2 went to Sending.

Moreover, from Sending, we already verify that the component cannot leave
without sending a message. NET2 either has pre NET2 NAK true or false, so
it either goes to start or reject. In short, at any point where NET2 can go to
SAP, the observer is either at start or reject.

• prt CHP 2: Applied on any component applying CHP which is every compo-
nent apart from DEVi devices. For example, on PLC1:

property prt CHP 2 PLC1 is

[](| pre PLC1 CHP ∧ ¬pre PLC1 conform

=><> | pre PLC1 TrigAct)|)
(20)

1174 F. Obeid, P. Dhaussy

The property verifies that if, at any configuration, PLC1 is at CHP and the
request is not conform to the policy, eventually PLC1 should go to TrigAct.

• prt ARCH 4: Applied on any component, its application on DEV1:

property prt ARCH 4 DEV1 is

assert not(pre DEV1 Idle and ¬DEV1.mess == MESS NULL).
(21)

Table 1 demonstrates for each property on which component this property is
applied. The application depends on the situation of the component, its character-
istics, and its type. In this table, when the component type is placed instead of the
component, it means the property is applicable on each component of this type.

For example, prt SAP C 2 is applied on any component of type NET, which
are NET1 and NET2. Also, ENVa means all entities in the environment.

Property Type Applied on Components

prt ARCH 1 safety all components GCS,NET,PLC,DEV

prt ARCH 2 safety all components GCS,NET,PLC,DEV

prt ARCH 3 safety all components GCS,NET,PLC,DEV

prt ARCH 4 safety all components GCS,NET,PLC,DEV

prt SAP C 1.a authenticity comps behind
a firewall

GCS2,NET2,PLC,DEV

prt SAP C 1.b authenticity comps behind
a firewall

GCS2,NET2,PLC,DEV

prt SAP C 2 availability secure commu-
nication comps

NET

prt SAP C 3 confidentiality all entities GCS,NET,PLC,DEV,ENV

prt SAP C 4 integrity all entities GCS,NET,PLC,DEV,ENV

prt SAP A 1 authenticity secure access
comps

GCS,PLC

prt SAP A 2 availability secure access
comps

GCS,PLC

prt CHP 1 availability secure comps GCS,NET,PLC

prt CHP 2 availability secure comps GCS,NET,PLC

prt CHP 3 authenticity secure comps GCS,NET,PLC

prt AUTH 1 authenticity secure access
comps

GCS,PLC

prt FWLL 1 authenticity secure commu-
nication comps

NET

Table 1. Properties application

7.4 Complexity Measurements

We use dedicated scenarios based on the simple actors of type CLTi. Here we are
interested in analyzing the complexity of our approach regarding the resulting con-

Formal Verification of Security Pattern Composition: Application to SCADA 1175

figurations. Therefore, scenarios should be normalized in a way that each request
takes (by itself) exactly the same amount of transitions to be fulfilled. When com-
bined, multiple requests from the same actor or multiple actors would have a great
impact on the resulting configurations. The main objective here is to confirm that
the impact of applying the security patterns is limited and predictable.

For the complexity measurements, we do not use the other actor types since we
have already confirmed that, when used on the secure model, their routes are less
important in terms of complexity. We have multiple scenarios noted A i j where i is
the number of actors (CLTi) included in the scenario and j is the number of messages
sent by this actor. Multiple actors can send requests in parallel, however, each actor
waits for a response before sending its following request. We have a maximum of
four requests per actor, which are (READ, res1), (WRITE, res1), (READ, res2),
and (WRITE, res2), We also have a maximum of four actors each sending requests
to the corresponding PLCi. Each received message cannot cause more than one
message sent (either forward the message or send a response or ignore). Therefore,
we know in advance that it is impossible for our model to have more than 4 messages
in its channels all at once. We fixed the size of all channels to 5 and observed that
no channel was ever full, this helped in the normalization between the scenarios so
they would not be affected by the size of the channels.

Table 2 contains the number of configurations, the number of transitions, and
the depth (D), for each scenario and for both secure and insecure models.

Figure 10 demonstrates the ratios between secure and insecure models in terms
of number of configurations, number of transitions, and depth. We compute these
ratios for different scenarios with different number of actors and number of messages
per actor. The depth ratio is completely stable. This is because the added number
of transitions to respond to a request is stable for legit requests. Both configuration
and transition ratios are stable in the case of one actor. These ratios increase by
around 0.3 points each time we add a new actor. However, their increase due to
messages per actor increase is much less significant.

These results show that using the security patterns, the complexity of our model
increases but in a stable and predictable fashion. Note that, in cases where both
legit requests and non-legit requests are used, the complexity may decrease since
most non-legit requests are treated with less transitions in the case of the secure
model than the insecure one.

8 CONCLUSION

Current SCADA systems have a shortage in security measures, while the interest
of attackers in these systems is constantly increasing. We do not limit our work
to the SCADA domain, however, we are interested in considering it in our simu-
lations since it represents a challenge when it comes to information security. The
reflections developed in this work are generic and could be adapted to other types
of architectures.

1176 F. Obeid, P. Dhaussy

Insecure Model Secure Model

Scn nb. confs nb. trans D nb. confs nb. trans D

A 1 1 49 48 48 63 62 62

A 1 2 97 96 96 125 124 124

A 1 3 145 144 144 187 186 186

A 1 4 193 192 192 249 248 248

A 2 1 2 344 4 415 96 3 686 6 977 124

A 2 2 11 207 21 424 192 17 755 34 028 248

A 2 3 26 590 51 027 288 42 208 81 153 372

A 2 4 48 493 93 224 384 77 045 148 352 496

A 3 1 110 137 299 913 144 204 621 560 051 186

A 3 2 1 394 467 3 871 044 288 2 623 843 7 301 556 372

A 3 3 5 396 320 15 039 747 432 10 183 726 28 435 959 558

A 3 4 13 605 189 37 982 760 576 25 707 157 71 886 920 744

A 4 1 5 114 765 17 939 618 192 10 953 437 38 624 884 248

A 4 2 180 143 913 646 742 856 384 392 578 705 1 412 820 112 496

A 4 3 1 150 191 955 4 145 224 977 576 2 515 317 972 9 082 222 251 744

Table 2. Complexity measurements

Figure 10. Ratios between secure and insecure models

Formal Verification of Security Pattern Composition: Application to SCADA 1177

[12] proposes to use security patterns to strengthen the security of SCADA
architectures. Security patterns allow us to implement current best found solutions
to resolve specific security issues. Our goal was to provide rules to generate a secure
model based on an insecure one, some security requirements, and some security
patterns to satisfy these requirements. These rules can be used to automatically
generate a secure model based on the insecure one.

We also looked into tools to formally verify validate the generated secure model
using model checking techniques. This validation goes through the verification of the
properties of the model, the properties of the security patterns, and the properties
related to the security requirements.

Our experiments have strengthened our ability to drive, by this method and
technique, a process of integration of the security patterns and formal validation
of the generated model. But given the large number of properties and scenarios
involved in this process, and to be taken into account in the verification process, the
approach only makes sense if we are able to generate these sets of properties and
scenarios.

During the experiments, we limited ourselves to four security patterns. But
a similar approach (formalization, composition, verification) could be used for the
integration of other patterns described in the literature. We also focused on sets of
properties that could be extended for each pattern.

Currently we are working on improving the combination and generation rules. In
our work, we opted for implementation choices which can be studied and optimized
further. In addition, we are updating our library to include more patterns. Finally,
we seek to include an attack library which, in addition to having generic attack
scenarios, allows us to have scenarios representing specific attacks and threats.

Acknowledgement

Partially supported by the Research Grant of the French Government Defense Pro-
curement and Technology Agency – Information Department (DGA-MI).

REFERENCES

[1] Alencar, P.—Cowan, D.—Dong, J.—Lucena, C.: A Pattern-Based Approach
to Structural Design Composition. Proceedings of the Twenty-Third Annual Inter-
national Computer Software and Applications Conference (COMPSAC ’99), IEEE,
1999, pp. 160–165, doi: 10.1109/CMPSAC.1999.812694.

[2] Alencar, P. S. C.—Cowan, D.D.—Lucena, C. J. P.: A Formal Approach to
Architectural Design Patterns. In: Gaudel, M. C., Woodcock, J. (Eds.): Industrial
Benefit and Advances in Formal Methods (FME ’96). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 1051, 1996, pp. 576–594, doi: 10.1007/3-
540-60973-3 108.

https://doi.org/10.1109/CMPSAC.1999.812694
https://doi.org/10.1007/3-540-60973-3_108
https://doi.org/10.1007/3-540-60973-3_108

1178 F. Obeid, P. Dhaussy

[3] Avalle, M.—Pironti, A.—Sisto, R.: Formal Verification of Security Protocol
Implementations: A Survey. Formal Aspects of Computing, Vol. 26, 2014, No. 1,
pp. 99–123, doi: 10.1007/s00165-012-0269-9.

[4] Berthomieu, B.—Bodeveix, J.-P.—Farail, P.—Filali, M.—Garavel, H.—
Gaufillet, P.—Lang, F.—Vernadat, F.: Fiacre: An Intermediate Language
for Model Verification in the Topcased Environment. 4th European Congress ERTS
Embedded Real Time Software (ERTS 2008), Toulouse, France, 2008, 8 pp.

[5] Byres, E.—Lowe, J.: The Myths and Facts Behind Cyber Security Risks for Indus-
trial Control Systems. Proceedings of the VDE Kongress, Vol. 116, 2004, pp. 213–218.

[6] Clarke, E.M.—Grumberg, O.—Peled, D.: Model Checking. MIT Press, 1999.

[7] Delessy-Gassant, N.—Fernandez, E. B.—Rajput, S.—Larrondo-
Petrie, M.M.: Patterns for Application Firewalls. Proceedings of the Conference
on Pattern Languages of Programs (PLoP), 2004.

[8] Dhaussy, P.—Boniol, F.—Roger, J.-C.—Leroux, L.: Improving Model
Checking with Context Modelling. Advances in Software Engineering, Vol. 2012, 2012,
Art. No. 547157, 13 pp., doi: 10.1155/2012/547157.

[9] Dhaussy, P.—Roger, J.-C.—Boniol, F.: Reducing State Explosion with Con-
text Modeling for Model-Checking. Proceedings of the 2011 IEEE 13th International
Symposium on High-Assurance Systems Engineering (HASE ’11), 2011, pp. 130–137,
doi: 10.1109/HASE.2011.24.

[10] Dong, J.—Alencar, P. S. C.—Cowan, D.D.: Ensuring Structure and Behavior
Correctness in Design Composition. Proceedings of the Seventh IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems (ECBS
2000), 2000, pp. 279–287, doi: 10.1109/ECBS.2000.839887.

[11] Dong, J.—Peng, T.—Zhao, Y.: Model Checking Security Pattern Compositions.
Proceedings of the Seventh International Conference on Quality Software (QSIC ’07),
IEEE, 2007, pp. 80–89, doi: 10.1109/QSIC.2007.4385483.

[12] Fernandez, E. B.—Larrondo-Petrie, M.M.: Designing Secure SCADA Sys-
tems Using Security Patterns. Proceedings of the 2010 43rd Hawaii Interna-
tional Conference on System Sciences (HICSS ’10), IEEE, 2010, pp. 1–8, doi:
10.1109/HICSS.2010.139.

[13] Fernandez, E. B.—Larrondo-Petrie, M.M.—Seliya, N.—Delessy-
Gassant, N.—Herzberg, A.: A Pattern Language for Firewalls. 2003.

[14] Fernandez, E. B.—Pan, R.: A Pattern Language for Security Models. Proceedings
of the PLoP Conference, Vol. 1, 2001.

[15] Fovino, I. N.—Coletta, A.—Carcano, A.—Masera, M.: Critical State-
Based Filtering System for Securing SCADA Network Protocols. IEEE Trans-
actions on Industrial Electronics, Vol. 59, 2012, No. 10, pp. 3943–3950, doi:
10.1109/TIE.2011.2181132.

[16] Fovino, I. N.—Coletta, A.—Masera, M.: Taxonomy of Security Solutions for
the SCADA Sector. Project ESCORTS Deliverable, Vol. 2, 2010.

[17] Hafiz, M.—Adamczyk, P.—Johnson, R. E.: Growing a Pattern Language (for
Security). Proceedings of the ACM International Symposium on New Ideas, New

https://doi.org/10.1007/s00165-012-0269-9
https://doi.org/10.1155/2012/547157
https://doi.org/10.1109/HASE.2011.24
https://doi.org/10.1109/ECBS.2000.839887
https://doi.org/10.1109/QSIC.2007.4385483
https://doi.org/10.1109/HICSS.2010.139
https://doi.org/10.1109/TIE.2011.2181132

Formal Verification of Security Pattern Composition: Application to SCADA 1179

Paradigms, and Reflections on Programming and Software (Onward! 2012), 2012,
pp. 139–158, doi: 10.1145/2384592.2384607.

[18] Igure, V.M.—Laughter, S.A.—Williams, R.D.: Security Issues in SCADA
Networks. Computers and Security, Vol. 25, 2006, No. 7, pp. 498–506, doi:
10.1016/j.cose.2006.03.001.

[19] Krutz, R. L.: Securing SCADA Systems. John Wiley and Sons, 2005.

[20] Viega, J.—McGraw, G.: Building Secure Software: How to Avoid Security Prob-
lems the Right Way. 1st Edition. Addison-Wesley Professional, 2001.

[21] Schumacher, M.—Fernandez-Buglioni, E.—Hybertson, D.—Busch-
mann, F.—Sommerlad, P.: Security Patterns: Integrating Security and Systems
Engineering. John Wiley and Sons, 2013.

[22] Taibi, T.—Ngo, D.C. L.: Formal Specification of Design Pattern Combination
Using BPSL. Information and Software Technology, Vol. 45, 2003, No. 3, pp. 157–170,
doi: 10.1016/S0950-5849(02)000195-7.

[23] Wang, Y.: sSCADA: Securing SCADA Infrastructure Communications. Interna-
tional Journal of Communication Networks and Distributed Systems, Vol. 6, 2011,
No. 1, pp. 59–78, doi: 10.1504/IJCNDS.2011.037328.

[24] Wassermann, R.—Cheng, B.H.: Security Patterns. Proceedings of the PLoP
Conference, Michigan State University, 2003, Citeseer.

[25] Yoder, J.—Barcalow, J.: Architectural Patterns for Enabling Application Secu-
rity. PLoP ’97 Conference, Urbana, Vol. 51, 1998, Art. No. 61801.

[26] Yoshioka, N.—Washizaki, H.—Maruyama, K.: A Survey on Security Patterns.
Progress in Informatics, Vol. 5, 2008, pp. 35–47, doi: 10.2201/NiiPi.2008.5.5.

[27] Zhu, B.—Joseph, A.—Sastry, S.: A Taxonomy of Cyber Attacks on
SCADA Systems. Proceedings of the 2011 International Conference on In-
ternet of Things and 4th International Conference on Cyber, Physical and
Social Computing (iThings/CPSCom 2011), IEEE, 2011, pp. 380–388, doi:
10.1109/iThings/CPSCom.2011.34.

[28] Zhu, B.—Sastry, S.: SCADA-Specific Intrusion Detection/Prevention Systems:
A Survey and Taxonomy. Proceedings of the 1st Workshop on Secure Control Systems
(SCS), 2010.

https://doi.org/10.1145/2384592.2384607
https://doi.org/10.1016/j.cose.2006.03.001
https://doi.org/10.1016/S0950-5849(02)000195-7
https://doi.org/10.1504/IJCNDS.2011.037328
https://doi.org/10.2201/NiiPi.2008.5.5
https://doi.org/10.1109/iThings/CPSCom.2011.34

1180 F. Obeid, P. Dhaussy

Fadi Obeid is consultant in cyber security, working on differ-
ent cyber security subjects, for multiple clients. He studied cy-
ber security in the University of Limoges, France, and obtained
his master’s degree in 2013. He started his Ph.D. at ENSTA
Bretagne in 2014 where he worked on model checking security
patterns implementations. In parallel to his Ph.D. at ENSTA
Bretagne, he created a new encryption protocol dedicated to the
low vocabulary of SCADA and IoT communications. After fin-
ishing his Ph.D. in 2018, he started working as Consultant for
Alter Solutions. He has a polyvalent profile, including model

checking, cryptography, side channel analysis, functional security.

Philippe Dhaussy is Professor at CNRS Lab-STICC within
ENSTA Bretagne. His expertise and his research interests in-
clude model-driven software engineering, formal validation for
real time systems and embedded software design. He has an
engineer degree in computer science from ISEN (French Insti-
tute of Electronics and Computer Science) in 1978 and received
his Ph.D. in 1994 at Telecom Bretagne (France) and his HDR
in 2014. From 1980 to 1991, he had been software engineer and
technical coordinator in consulting companies (Atlantide group),
mainly in real-time system developments. He joined ENSTA-

Bretagne in 1996 as Professor. He has over 100 publications in the areas of software
engineering and computer science. He co-supervised ten Ph.D. students and he was and
still is involved in several research projects as a work package coordinator.

