NEW APPROACH TO EDGE DETECTION ON DIFFERENT LEVEL OF WAVELET DECOMPOSITION

Vladimir MAKSIMOVIĆ, Branimir JAKŠIĆ, Mile PETROVIĆ Petar Spalević, Stefan Panić

Abstract. This paper proposes a new approach to edge detection on the images over which the wavelet decomposition was done to the third level and consisting of different levels of detail (small, medium and high level of detail). Images from the BSD (Berkeley Segmentation Dataset) database with the corresponding ground truth were used. Daubechies wavelet was used from second to tenth order. Gradient and Laplacian operators were used for edge detection. The proposed approach is applied in systems where information is processed in real time, where fast image processing is required and in systems where high compression ratio is used. That is, it can find practical application in many systems, especially in television systems where the level of details in the image changes. The new approach consists in the fact that when wavelet transform is applied, an edge detection is performed over the level 1 image to create a filter. The filter will record only those pixels that can be potential edges. The image is passed through a median filter that filters only the recorded pixels and 8 neighbors of pixel. After that, the edge detection with one of the operators is applied onto the filtered image. F measure, FoM (Figure of Merit) and PR (Performance Ratio) were used as an objective measure. Based on the obtained results, the application of the proposed approach achieves significant improvements and these improvements are very good depending on the number of details in the image and the compression ratio. These results and improvements can be used to improve the quality of edge detection in many systems where compressed images are processed, that is, where work with images with a high compression ratio is required.

Keywords: Edge detection, wavelet decomposition, compression, F measure, figure of merit, performance ratio

1 INTRODUCTION

In recent years, multimedia systems have recorded tremendous growth and progress, which means that image resolutions got higher increasing the complexity of the system and the complexity of the image. It is necessary to achieve as much compression as possible so these images can be streamed, stored and processed more easily. Today's trends require more technology to be involved, so in television systems we have a virtual reality (VR), augmented reality (AR) and a combination of them. Since it is necessary to have lower bitrate and achieve a high compression ratio and to process an image in VR or AR environment, it is necessary to perform certain operations over images such as segmentation, edge detection, etc. [1].

Edge detection is one of the fundamental processes in image processing. This also means the segmentation of the image where the segmentation of the desired object is performed by detecting the edge. Edge detection is based on the fact that there are sudden changes in the gray intensity between the objects. Edge detection significantly reduces the image analysis process by using less data and at the same time storing all the necessary information. Many edge detection techniques have been tried, but gradient and Laplacian methods have proved to be the best [2, 3]. Gradient methods for edge detection find the maximum and minimum gradient of the image intensity, all in the first derivative of the image. Laplacian methods are based on finding zero crossing in the second derivative of the image [4]. The gradient of the image can be calculated as [4, 5]:

$$\nabla f(x,y) = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j \tag{1}$$

where f(x, y) represents the image at the location (x, y) where x and y are the coordinates of the row and column. The gradient $\nabla f(x, y)$ contains the information about gray change. The gradient of $\nabla f(x, y)$ can be calculated [4, 5]:

$$e(x,y) = \sqrt{f_x^2 + f_y^2}$$
 (2)

where e(x, y) can be used as an edge detector and can also be defined as the sum of the absolute values of the partial derivative f_x and f_y [4, 5]:

$$e(x,y) = |f_x(x,y)| + |f_y(x,y)|.$$
(3)

Based on these theoretical principles, the gradient and Laplacian methods are proposed. The gradient methods include Sobel, Prewitt, Robert, while the Laplacian include LoG (Laplacian of Gaussian). The classic use of the Canny operator is a gradient method, but in some parts, it also contains elements of the Laplace approach [6, 7, 8].

The analysis of the frequency domain using Fourier transform is very useful for signal analysis because the frequency domain is very important for the consideration of the nature of the signal and the influence of the noise over it. The disadvantage of this technique is the loss of time domain information. When viewing the Fourier transform in a frequency domain, it is difficult to say when a certain event occurred, or when some frequencies occurred. To overcome this problem, only a small part ("window") of the signal is analyzed at a time, and this window slides over the signal applying the Fourier transform on it. In this way, part of the frequency information is lost in order to get an information about the time when a certain frequency has occurred. Wavelet transformation is used to solve this problem. It allows the use of different window sizes for different frequencies. The basic difference between the wavelet transformation and the short-time Fourier transform is that the window length changes at the wavelet transform and in this way the frequency and time resolution can be changed. The basic idea of each wavelet transform is to present an arbitrary function x(t) as a superposition of a wavelet set or basic functions. The basic functions are derived from a prototype called mother wavelet, by scaling or translating this function. The wavelet transformation of the x(t) signal is given in Equation (4) [9, 10]:

$$\psi(\tau, s) = \frac{1}{s} \int_{-\infty}^{\infty} x(t) * \psi^*\left(\frac{t-\tau}{s}\right) dt$$
(4)

where τ is a translation, and s is a scaling, while ψ is a "mother" wavelet, and ψ^* is conjugally complex of ψ . When processing images in a spatial domain, the operation is discretized. Discrete wavelet transformation (DWT) is defined as [9, 10]:

$$DWT_x^{\psi}(\tau, s) = \frac{1}{\sqrt{|s|}} \int_{-\infty}^{\infty} x(t) * \psi^*\left(\frac{t-\tau}{s}\right) \mathrm{d}t.$$
(5)

The discrete wavelet transformation (DWT) can be presented as a matrix $\psi(c)$ and DWT coefficients can be obtained by taking an internal product between the signal and the wavelet matrix [9, 10]:

$$DWT_x^{\psi}[n,s] = \frac{1}{\sqrt{|s|}} \sum_n x[n] \psi_{n,s}^*[n].$$
(6)

Special family of wavelet functions has been developed for DWT. They are generally divided into orthogonal or biorthogonal and are characterized by a highpass and low-pass filters [11]. Daubechies wavelet belongs to a family of orthogonal functions and the main feature is the possibility of the maximum number of vanishing moments for a predefined supported length. Types of Daubechies (db) wavelets that are most commonly used in practical applications are dbN, where N represents the order as well as the number of vanishing moments in the supported interval from 0 to 20. By increasing the order of the Daubechies wavelet, better characteristics are obtained, but the complexity of the implementation, the price of the system and errors in the calculations rise. In practical applications, orders 2 to 10 are most commonly used [10, 12, 13].

A very important advantage of the wavelet transform is that it uses a multiresolution analysis that allows analysis of different signal frequencies at different frequency resolutions. For high-frequency parts, shorter windows are used, which ensures good time domain resolution, while longer parts of the lower frequencies have longer windows, thus giving good information about the frequencies. If the signal is passed through a set of two filters, low-pass and high-pass, its frequency content will be split into two equal-width ranges. The output from these filters contains half the frequency of the original signal and the same number of samples as the original signal. By decimating, or by passing the input signal through the low-pass filter, the number of samples is halved so that the time resolution is also halved while the frequency resolution increases. The high-pass filter transmits high-frequency content, i.e. signal details. The low-pass signal transmits low-frequency content, or signal approximation. This approximation signal can be further fed through two filters and the process can be repeated until the desired decomposition level is reached. The complete information on the original signal is contained in the last approximation signal and all the detail signals [14, 15].

Higher compression ratio disrupts the quality of the image, resulting in a large loss of information, and hence makes it difficult to process them, for example, to do an edge detection or facial recognition [16, 17]. The decomposition significantly degrades the image quality, but besides this degradation there are various types of noise that further impair the image quality. To solve this problem or to control it, the various types of filters have been developed [18, 19].

In this paper we used the characteristics of wavelet transform in order to image compression, or as a method on which some algorithms for image compression is based, such as JPEG2000 and SPIHT. Images from the BSD database are compressed to the third decomposition level which resulted in a high degree of compression.

2 SYSTEM MODEL AND PROPOSED APPROACH

In this paper, the BSD (Berkeley Segmentation Dataset) image database was used for analysis, with its corresponding ground truth images [20]. Table 1 lists the selected images from the BSD database meeting the complexity criteria [16], that is, each image consists of a different level of detail: small, medium, and high level of detail. The number of details was calculated by making DCT and DWT on the high-frequency components (details), which are divided into four quadrants, along both directions (x and y). After that, the mean absolute value of the amplitude of the components belonging to the quadrants is calculated [16]: DCT in quadrant 1 (dctd); DCT in quadrants 2 and 3 (dctm); DWT in quadrant 1 (dwtd); DWT in quadrants 2 and 3 (dwtm).

	Images	dctd	dctm	dwtd	dwtm
Criterion L	#135069	1.544	2.517	0.181	0.354
Criterion M	#35010	3.838	6.197	1.199	2.048
Criterion H	#8143	7.868	15.241	3.181	6.336

Table 1. Criteria

Figure 1 gives a flow diagram of the proposed approach. In the proposed approach, firstly, the BSD and the ground truth images are read on which the DWT is applied to the third decomposition level using the Daubechies wavelet (optionally from 2 to 20). Since grayscale images are needed, a conversion is made, and variables are created for filters and new images. In order to assign input values to a filter, it is necessary to perform edge detection on level 1 images. Values stored in the filter are information about location of pixels pointing at the potential edge. The compressed image on which the detection is performed is a binary image and passing through the loop, each pixel is examined. If it is equal to the 1, that is, there is an edge, only those pixels that are relevant for the edge detection are passed through the filter. After that, the detection is applied and the results are compared, as shown in Figure 1. The algorithm is applied to all edge detection operators (Canny, LoG, Sobel, Prewitt, Robert).

The algorithm consists of the following steps:

- Step 1 (Read image): Read the original image. If it is a color image, converts it to a grayscale image.
- Step 2 (DWT): DWT is applied to the third decomposition level onto a read image, whereby as a result, three images are obtained: image from level 1, image from level 2 and image from level 3. The next steps in the algorithm are applied separately for an image from each level.
- Step 3 (Edge detection): On level 1 image, an edge detection is used by selecting one of detectors (Canny, LoG, Sobel, Prewitt, Roberts). The image with detected edges serves to create a filter that will contain only those pixel coordinates where the edges are located.
- **Step 4 (Filtering image):** Every pixel in the image is analyzed and if it is equal to 1, the filter records its coordinates.
- Step 5 (Filtering 8-neighbors of pixel): If the condition in step 4 is fulfilled, filtering is done by filtering 8 neighbors of pixel relative to the current pixel using the median filter (Figure 2). So, only those image pixels that can be edges are filtered. The neighbors of pixel are extracted using the following formula:

If current pixel P(i, j) is edge then use following neighbor pixels:

$$f(P_{i,j}) = f(P_{i-1,j-1}), f(P_{i-1,j}), f(P_{i-1,j+1}), f(P_{i,j-1}), f(P_{i,j}), f(P_{i,j+1}),$$

$$f(P_{i+1,j-1}), f(P_{i+1,j}), f(P_{i+1,j+1})$$
(7)

and use median filter only on those pixels.

Step 6 (Edge detection on filtered image): Edge detection is applied on a filtered image.

For filtering level 2 and level 3 images, coordinates from level 1 image are used.

The proposed algorithm has a quadratic complexity and can be represented as:

$$O(row, col) = 8(row - 2)(col - 2) + 1.$$
(8)

In Figure 3, the complexity of the algorithm is given, depending on the number of pixels in the row (row) and the number of pixel in columns (cols).

In order to accurately and precisely present how well the edge detection is done, it is necessary to calculate Precision, Specificity, Sensitivity and Accuracy or F measure [21]. F measure (F1 score) is a harmonic mean of precision and recall and it combines precision and recall according to the formula [21]:

$$F = \frac{2 * Precision * Recall}{Precision + Recall} \times 100.$$
 (9)

F is within the limits of $0 \le F \le 1$, ideally, F is equal to 1. In the results, F is multiplied by 100 and represents a percentage value.

Figure of Merit (FoM) was proposed by Pratt [22] and is a measure for estimating the accuracy of detected edges. In other words, it represents the deviation of the actual (calculated) point of the edge from the ideal point of the edge, and is defined as:

$$FoM = \frac{1}{\max[I_d, I_i]} \sum_{k=1}^{I_d} \frac{1}{1 + \delta e^2(k)}$$
(10)

where I_d is the number of points on the detected edge, and I_i is the number of points on the ideal edge, e(k) represents the distance between the detected edge and the ideal edge, and δ is scaling constant and is usually 1/9. FoM is within $0 \leq FoM \leq 1$. In this case, FoM is multiplied by 100 and represents a percentage value. The higher the FoM is, the better the detected edge is [22].

As an objective measure of the edge detection credibility, Performance Ratio (PR) was used too. The PR is ideally equal to infinity. The PR is calculated as the ratio of the true edges to false ones [23, 24]:

 $PR = \frac{\text{True Edge(Edge pixels identified as Edges)}}{\text{False Edges(Non Edge pixels identified as Edges)+(Edge pixels identified as Non Edge pixels)}} \times 100.$ (11)

3 RESULTS

3.1 F Measure

Tables 2, 3 and 4 show the F values before and after the application of the proposed approach on image with a small, medium and high number of details, respectively, over which db (from 2^{nd} to 10^{th} order) wavelet transform to the third decomposition level was applied. These tables show the values obtained for the five operators.

From Table 2 it can be seen that based on the obtained results, in the first decomposition level, using the proposed approach, improvements were achieved with the Canny operator in almost all cases, except for db4. A similar situation occurs when a LoG operator is used, with the exception that improvements have not been achieved in the case of db6. Using the proposed approach and image with low details, significant improvements have been achieved at the second level, where all operators record improvements in F values, except in the case of db8 with Prewitt and Sobel operators. In the third level, only Canny and LoG record improvements in F values using the proposed approach.

In the image with a medium number of details, very small improvements have been achieved in some operators at the first level, or the values are generally similar, without major deviations, as can be seen in Table 3. The situation is different with the second and third decomposition levels, where improvements are achieved by all operators, with the difference that improvements are higher in the third level.

In the case where the image consists of a high number of details, using the proposed approach, a similar or slightly better F value is obtained. At the second level, improvements are generally achieved with gradient operators, while at the third level, using the proposed approach, better values are obtained for all operators.



Figure 1. Proposed approach

$P_{_{i\text{-}1,j\text{-}1}}$	$\boldsymbol{P}_{i\text{-}1,j}$	$P_{i-1,j+1}$
$\mathbf{P}_{i,j-1}$	$\mathbf{P}_{i,j}$	$\boldsymbol{P}_{i,j^{+1}}$
$\boldsymbol{P}_{i^{+1},j^{-1}}$	$\boldsymbol{P}_{i^{+1},j}$	$\boldsymbol{P}_{i^{+1},j^{+1}}$

Figure 2. Extraction neighbors of pixel

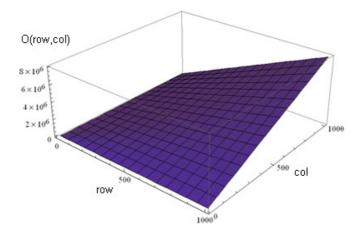


Figure 3. Complexity of proposed algorithm

Wavelet		lb	db2	ql	db4	ql	db6	ql	db8	qþ	db10
	Operator	Old	New								
	Canny	0.365	0.378	0.379	0.364	0.368	0.380	0.363	0.365	0.371	0.375
	LoG	0.311	0.314	0.313	0.317	0.311	0.299	0.300	0.303	0.311	0.315
Level1	$\mathbf{Prewitt}$	0.362	0.342	0.355	0.346	0.366	0.364	0.322	0.345	0.380	0.362
	Sobel	0.365	0.336	0.356	0.349	0.371	0.363	0.325	0.346	0.377	0.362
	Roberts	0.536	0.563	0.503	0.579	0.519	0.576	0.551	0.566	0.514	0.582
	Canny	0.278	0.305	0.246	0.269	0.203	0.225	0.189	0.194	0.194	0.211
	\mathbf{LoG}	0.256	0.274	0.235	0.256	0.191	0.211	0.205	0.207	0.186	0.202
Level2	$\operatorname{Prewitt}$	0.269	0.302	0.285	0.339	0.285	0.321	0.338	0.301	0.279	0.351
	\mathbf{Sobel}	0.264	0.306	0.284	0.320	0.281	0.314	0.333	0.303	0.278	0.333
	Roberts	0.299	0.416	0.350	0.453	0.397	0.456	0.448	0.486	0.433	0.495
	Canny	0.108	0.160	0.113	0.169	0.096	0.170	0.100	0.158	0.106	0.172
	\mathbf{LoG}	0.128	0.173	0.148	0.190	0.132	0.187	0.148	0.174	0.144	0.176
Level3	$\mathbf{Prewitt}$	0.147	0.203	0.189	0.241	0.184	0.247	0.180	0.251	0.194	0.256
	\mathbf{Sobel}	0.146	0.201	0.187	0.229	0.182	0.235	0.179	0.240	0.195	0.244
	Roberts	0.183	0.276	0.208	0.255	0.218	0.297	0.256	0.335	0.268	0.348

(ΓD)		
details		
of		
number of d		
low		
g		
with a		
image		
an		
for		
values for an in		
Ц		
i,		
Lable		
L '		

wavelet		lþ	db2	lb	db4	lb	db6	lb	db8	qp	db10
	Operator	old	New								
	Canny	0.318	0.316	0.322	0.318	0.321	0.317	0.321	0.319	0.321	0.320
	LoG	0.234	0.234	0.235	0.236	0.235	0.236	0.236	0.236	0.237	0.236
Level1	Prewitt	0.299	0.222	0.219	0.220	0.225	0.225	0.218	0.219	0.226	0.226
	Sobel	0.229	0.223	0.220	0.219	0.226	0.226	0.217	0.219	0.227	0.225
	Roberts	0.250	0.249	0.267	0.268	0.268	0.258	0.274	0.267	0.282	0.270
	Canny	0.295	0.302	0.299	0.312	0.297	0.312	0.298	0.312	0.300	0.309
	LoG	0.213	0.211	0.207	0.213	0.211	0.213	0.209	0.214	0.207	0.212
Level2	Prewitt	0.205	0.209	0.170	0.182	0.160	0.184	0.158	0.182	0.164	0.185
	Sobel	0.205	0.209	0.169	0.180	0.161	0.182	0.158	0.178	0.163	0.183
	Roberts	0.153	0.154	0.157	1.196	0.158	0.183	0.155	0.177	0.162	0.179
	Canny	0.186	0.238	0.199	0.246	0.215	0.252	0.203	0.250	0.204	0.250
	LoG	0.134	0.153	0.111	0.135	0.088	0.111	0.081	0.104	0.076	0.100
Level3	Prewitt	0.118	0.138	0.092	0.118	0.078	0.115	0.072	0.110	0.075	0.110
	Sobel	0.118	0.135	0.092	0.114	0.078	0.109	0.072	0.104	0.075	0.105
	Roberts	0.078	0.081	0.065	0.088	0.042	0.054	0.034	0.046	0.035	0.047

\widehat{D}		
M)		
$_{\mathrm{ils}}$		
eta		
ď		
r of		
be		
un		
u n		
iur		
ned		
аn		
$^{\mathrm{th}}$		
ΪW		
age		
im		
an		
or		
es f		
alue		
ŝ		
H.		
e S		
Table 3. F values for an image with a medium number of details (MD		
Ĥ		

Operator O Canny 0.2 Canny 0.2 Level1 LoG Sobel 0.1 Roberts 0.1	old									
Canny LoG Prewitt Sobel Roberts		New	old	New	Old	New	old	New	Old	New
LoG Prewitt Sobel Roberts	0.222	0.219	0.219	0.220	0.220	0.219	0.219	0.220	0.220	0.221
Prewitt (Sobel (Roberts (0.192	0.192	0.190	0.189	0.192	0.192	0.192	0.193	0.192	0.191
	0.171	0.167	0.164	0.166	0.178	0.175	0.165	0.166	0.172	0.169
	0.170	0.165	0.164	0.165	0.177	0.174	0.163	0.165	0.170	0.168
	0.161	0.152	0.166	0.163	0.163	0.157	0.170	0.162	0.164	0.157
	0207	0.207	0.216	0.224	0.205	0.215	0.215	0.220	0.214	0.220
LoG 0.1	0.177	0.176	0.182	0.183	0.172	0.176	0.174	0.175	0.179	0.182
Level2 Prewitt 0.1	0.159	0.166	0.139	0.145	0.127	0.143	0.135	0.141	0.133	0.150
Sobel 0.1	0.157	0.166	0.139	0.144	0.127	0.142	0.133	0.140	0.133	0.147
Roberts 0.1	0.123	0.123	0.129	0.167	0.125	0.143	0.135	0.149	0.142	0.159
Canny 0.1	0.145	0.184	0.154	0.175	0.154	0.197	0.161	0.190	0.162	0.190
LoG 0.1	0.121	0.148	0.104	0.133	0.094	0.114	0.084	0.108	0.077	0.102
Level3 Prewitt 0.1	0.110	0.136	0.077	0.102	0.078	0.114	0.073	0.103	0.077	0.111
Sobel 0.1	0.109	0.133	0.077	0.098	0.078	0.112	0.073	0.100	0.078	0.110
Roberts 0.0	0.087	0.089	0.064	0.088	0.067	0.084	0.064	0.079	0.070	0.087

(HD)	
ber of details	
б	
number	
high	
r G	
with a hig	
for an image	
an	
for	
values	
ы	
4.	
ē	
Tab]	

3.2 Figure of Merit

Tables 5, 6 and 7 show the FoM values before and after the application of the proposed approach on image with a small, medium and high number of details, respectively, over which db (from 2^{nd} to 10^{th} order) wavelet transform to the third decomposition level was applied. These tables show the values obtained for the five operators.

From Table 5 it can be seen that in the first decomposition level, the best values are obtained for the Canny operator, where in almost all cases it gives better values, except in the case of db4. By comparing Table 5 with Table 2, it can be seen that using FoM objective measurements, improvements have been made in the same or similar cases. By increasing the compression, that is, in Levels 2 and Levels 3, using the proposed approach, better FoM values were obtained, and greater improvements were achieved, especially in the third level.

In the case of an image with a medium number of details, in the first level, Canny gave the best results, in other words, better values were achieved. In the second level, in the case of db2, improvements were achieved only with the Canny operator, while other operators gave similar, but lower values. In other cases, the proposed algorithm records substantially better FoM values. For images with a medium number of details, the best edge detection enhancements have been achieved in the third level using the proposed algorithm.

Since the compression ratio is higher in the image with a high number of details, based on this fact, it can be concluded that the detection will be much worse. Also, in the case of images with a high number of details, the best improvements are achieved with the Canny operator at all levels. Based on the results obtained, it can be seen that the best improvements are achieved in the third level.

3.3 Performance Ratio

Tables 8, 9 and 10 show PR values before and after applying the proposed approach using five edge detection operators and three wavelet decomposition levels. Table 8 shows the values for an image with a low number of details. Based on the results obtained, it appears that improvements have been made with certain operators. However, based on the values obtained in Table 8, it can be seen that the old PR values and new PR values obtained using the proposed approach have greatest difference when using the Robert operator.

Table 9 contains the PR values obtained for an image with medium number of details. From Table 9 can be seen that the new values obtained are best in the second and third decomposition levels. In other words, the best improvements are achieved in the second and third levels, depending on the operator used and the order of the db wavelet.

Table 10 contains PR values obtained for an image with a high number of details. Based on these results, it can be seen that improvements have been achieved using the proposed approach, especially in the third decomposition level.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	New Old 928 89.461 9.024 90.209 937 92.341 1.712 92.678 387 89.419	New 89.272 90.514	old	^{ino} N	PIO	Now	ЫО	N.c
Canny 88.955 9 LoG 89.163 1 Prewitt 91.784 9 Sobel 91.784 9 Roberts 91.781 9 Canny 61.727 6 LoG 75.006 7 Drowitt 82.189 7		89.272 90.514			217			New
LoG 89.163 Prewitt 91.784 Sobel 91.61 Sobel 91.63 Roberts 95.150 Canny 61.727 LoG 75.006 Drowitt 82.189		90.514	85.982	91.960	86.025	86.914	88.767	89.626
Prewitt 91.784 9 Sobel 91.891 91.891 Roberts 95.150 9 Camp 61.727 6 LoG 75.006 7 Drowitt 82.189 7			86.915	85.582	83.605	85.108	89.779	88.556
Sobel 91.891 Roberts 95.150 9 Canny 61.727 6 LoG 75.006 7 Decentit 82.189 7		92.327	92.358	92.572	92.664	92.632	92.868	92.540
Roberts 95.150 Camp 61.727 LoG 75.006 Dromitt 89.189		92.695	92.423	92.466	93.031	92.934	92.891	92.742
Canny 61.727 LoG 75.006 Drawitt 89.189		95.816	86.680	95.561	93.837	95.613	83.259	95.653
LoG 75.006 Dumit 89.189	5.006 51.308	52.452	40.207	41.320	31.974	34.924	36.049	37.174
Duantitt 89 189	0.220 60.472	66.126	47.187	51.753	45.955	50.186	44.379	49.053
LTEWILL 02.102	76.052 88.824	92.094	88.654	91.490	89.074	91.115	88.676	91.615
Sobel 82.785 77.091	7.091 88.818	91.599	88.581	91.498	88.979	90.786	88.716	91.575
Roberts 82.494 85.980	.980 89.832	88.389	91.016	88.300	91.281	91.386	91.877	92.731
Canny 6.045 9.491	.491 34.316	38.640	27.035	34.575	25.158	33.672	26.926	33.476
LoG 42.385 48.432	.432 49.201	53.907	47.312	50.844	48.132	51.458	48.646	52.246
Level3 Prewitt 52.036 55.246	246 78.675	71.700	78.136	85.231	76.196	85.186	75.841	84.392
Sobel 52.113 55.991	.991 78.606	73.264	78.088	86.561	76.190	84.761	75.837	84.193
Roberts 57.384 74.222	1.222 78.821	81.909	77.951	81.587	78.839	82.599	78.901	82.152

Table 5. FoM values for an image with a low number of details (LD)

	Wavelet		q	db2	q	db4	q	db6	q	db8	dt	db10
		Operator	Old	New								
		Canny	83.334	82.917	83.593	83.835	83.633	83.926	83.596	83.773	83.715	84.068
Prewitt 65.096 64.526 63.403 63.351 63.694 63.564 63.058 62.834 63.696 Sobel 65.061 64.397 65.553 63.420 63.449 63.076 62.941 63.705 Roberts 58.484 58.800 60.477 58.903 56.160 55.423 58.046 56.431 57.563 Roberts 58.484 58.800 60.477 58.903 56.160 55.423 58.046 56.431 57.563 Canny 80.273 80.260 80.280 80.889 80.963 81.348 81.200 73.519 Drewitt 60.833 73.272 73.313 73.317 56.128 54.346 56.437 55.118 Prewitt 60.833 60.702 55.991 56.815 55.317 56.128 54.463 55.447 55.118 Noberts 54.327 50.265 51.5324 56.375 56.375 56.375 54.463 55.447 55.118 Noberts 54.327 50.858 50.265 51.5324 56.375 56.376 43.300 43.306 43.972 Robe		LoG	76.358	76.351	76.984	76.892	77.003	76.875	77.216	76.957	77.230	77.050
Sobel 65.061 64.397 65.533 63.420 63.420 63.440 63.076 62.941 63.705 Roberts 58.484 58.800 60.477 58.903 56.160 55.423 58.046 56.431 57.563 Roberts 58.433 58.200 60.477 58.903 56.160 55.423 58.046 56.431 57.563 Camp 80.273 80.250 80.260 80.289 80.963 81.348 81.200 73.519 LoG 73.433 73.272 73.300 73.418 73.511 73.261 73.002 73.519 Prewitt 60.830 60.702 55.991 56.815 55.317 56.128 54.463 55.447 55.118 Sobel 60.833 60.772 55.091 56.975 55.334 56.375 54.463 55.447 55.118 Roberts 54.327 50.858 50.265 51.582 46.033 46.891 43.300 43.996 43.972 Roberts 54.327 50.858 50.265 51.582 46.033 46.891 43.300 43.906 43.972 LoG 61.503 61.749 51.323 53.911 44.316 47.050 41.310 43.968 39.284 LoG 61.503 61.749 51.323 53.911 44.316 47.050 41.310 39.618 39.284 LoG 61.503 61.749 51.323 53.911 44.316 47.050 41.310 </th <th>Level1</th> <th>Prewitt</th> <th>65.096</th> <th>64.526</th> <th>63.403</th> <th>63.351</th> <th>63.694</th> <th>63.564</th> <th>63.058</th> <th>62.834</th> <th>63.696</th> <th>63.335</th>	Level1	Prewitt	65.096	64.526	63.403	63.351	63.694	63.564	63.058	62.834	63.696	63.335
Roberts 58.484 58.800 60.477 58.903 56.160 55.423 58.046 56.431 57.563 Camy 80.273 80.650 80.260 80.289 80.963 81.348 81.200 LoG 73.433 73.272 73.300 73.418 73.511 73.261 73.022 73.519 Prewitt 60.830 60.702 55.991 56.815 55.317 56.128 54.346 55.447 55.118 Prewitt 60.830 60.732 56.057 56.815 55.317 56.128 54.463 55.447 55.118 Sobel 60.830 60.732 56.057 56.815 55.317 56.375 54.463 55.447 55.118 Roberts 54.327 50.858 50.265 51.582 46.033 46.891 43.300 43.996 43.972 Roberts 54.327 50.858 50.265 51.582 46.033 46.891 43.300 43.996 43.972 LoG 61.503 61.749 51.323 53.911 44.316 47.050 41.310 43.968 39.284 LoG 61.503 61.749 51.323 53.911 44.316 47.050 41.303 32.934 Roberts 49.680 50.908 40.509 44.000 36.667 40.527 34.840 28.934 35.081 Roberts 42.288 38.790 31.990 34.236 19.143 20.251 15.979 16.983 <tr< th=""><th></th><th>Sobel</th><th>65.061</th><th>64.397</th><th>65.553</th><th>63.420</th><th>63.948</th><th>63.449</th><th>63.076</th><th>62.941</th><th>63.705</th><th>63.444</th></tr<>		Sobel	65.061	64.397	65.553	63.420	63.948	63.449	63.076	62.941	63.705	63.444
		Roberts	58.484	58.800	60.477	58.903	56.160	55.423	58.046	56.431	57.563	56.511
		Canny	80.273	80.650	80.260	80.889	80.963	81.348	80.921	81.384	81.200	81.295
Prewitt 60.830 60.702 55.991 56.815 55.317 56.128 54.346 55.447 55.118 Sobel 60.843 60.732 56.057 56.975 55.354 56.375 54.463 55.5398 55.177 Roberts 54.327 50.858 50.265 51.582 46.033 46.891 43.300 43.996 43.972 Roberts 54.327 50.858 50.265 51.582 46.033 46.891 43.300 43.996 43.972 Canny 70.628 75.211 68.835 73.034 68.847 73.556 66.794 71.193 66.968 LoG 61.749 51.323 53.911 44.316 47.050 41.310 43.968 39.284 Prewitt 49.680 50.908 40.509 44.000 36.667 40.527 34.840 28.934 35.081 Sobel 49.618 51.109 40.543 43.917 36.654 40.182 34.911 35.098 Roberts 42.298 38.790 31.990 34.236 19.143 20.251 15.979 16.216		LoG	73.433	73.272	73.300	73.418	73.474	73.511	73.261	73.002	73.519	73.504
Sobel 60.843 60.732 56.057 56.975 55.354 56.375 54.463 55.598 55.177 Roberts 54.327 50.858 50.265 51.582 46.033 46.891 43.300 43.996 43.972 Roberts 74.66 73.556 66.794 71.193 66.968 Canny 70.628 75.211 68.835 73.034 68.847 73.556 66.794 71.193 66.968 LoG 61.503 61.749 51.323 53.911 44.316 47.050 41.310 43.968 39.284 Prewitt 49.680 50.908 40.509 44.000 36.667 40.527 34.840 28.934 35.081 Sobel 49.618 51.109 40.543 43.917 36.654 40.182 34.910 35.011 35.098 Roberts 42.298 38.790 31.990 34.236 19.143 20.251 15.979 16.216	Level2	Prewitt	60.830	60.702	55.991	56.815	55.317	56.128	54.346	55.447	55.118	56.228
Roberts 54.327 50.358 50.265 51.582 46.033 46.891 43.300 43.996 43.972 Canny 70.628 75.211 68.835 73.034 68.847 73.556 66.794 71.193 66.968 LoG 61.503 61.749 51.323 53.911 44.316 47.050 41.310 43.968 39.284 Prewitt 49.680 50.908 40.509 44.000 36.667 40.527 34.840 28.934 35.081 Sobel 49.618 51.109 40.543 43.917 36.654 40.182 34.910 38.611 35.098 Roberts 42.298 38.790 31.990 34.236 19.143 20.251 15.979 16.216		Sobel	60.843	60.732	56.057	56.975	55.354	56.375	54.463	55.598	55.177	56.389
		Roberts	54.327	50.858	50.265	51.582	46.033	46.891	43.300	43.996	43.972	44.406
		Canny	70.628	75.211	68.835	73.034	68.847	73.556	66.794	71.193	66.968	71.698
Prewitt 49.680 50.908 40.509 44.000 36.667 40.527 34.840 28.934 35.081 Sobel 49.618 51.109 40.543 43.917 36.654 40.182 34.910 38.611 35.098 Roberts 42.298 38.790 31.990 34.236 19.143 20.251 15.979 16.983 16.216		\mathbf{LoG}	61.503	61.749	51.323	53.911	44.316	47.050		43.968	39.284	41.870
49.618 51.109 40.543 43.917 36.654 40.182 34.910 38.611 35.098 rts 42.298 38.790 31.990 34.236 19.143 20.251 15.979 16.983 16.216	Level3	$\mathbf{Prewitt}$	49.680	50.908	40.509	44.000	36.667	40.527	34.840	28.934	35.081	38.936
42.298 38.790 31.990 34.236 19.143 20.251 15.979 16.983 16.216		Sobel	49.618	51.109		43.917	36.654	40.182	34.910	38.611	35.098	38.686
-		$\operatorname{Roberts}$	42.298	38.790	31.990	34.236		20.251	15.979		16.216	17.198

(MD)
f details
\sim
number o
a medium 1
g
with
for an image with a
an
for an
values f
FoM
6.
Table

	2	Old	Nom						
Canny LoG Prewitt Sobel Roberts Canny	_)		Old	New	Old	New	old	New
LoG Prewitt Sobel Roberts Canny		69.127	71.555	67.787	70.466	68.057	69.417	68.420	70.459
Prewitt Sobel Roberts Canny	80.029	80.713	80.131	81.016	80.593	80.894	80.399	81.020	80.543
	63.895	58.063	58.180	62.165	61.852	59.804	59.969	60.513	60.454
	63.817	58.435	58.711	62.340	62.180	59.992	60.167	60.924	60.659
	52.351	56.121	53.588	49.446	47.979	53.204	51.154	49.377	47.762
	79.417	80.766	80.868	79.811	779.977	80.195	80.628	79.964	81.130
LoG 74.034	73.853	74.988	74.765	74.498	74.087	73.826	73.502	75.316	74.986
Level2 Prewitt 57.164	56.225	51.862	51.670	50.198	51.235	47.020	47.824	50.519	51.654
Sobel 57.186	56.503	51.594	51.833	50.409	51.258	47.040	47.927	50.545	51.554
Roberts 48.516	45.265	45.511	46.339	42.075	41.858	37.190	37.934	39.990	40.475
Canny 69.148	73.049	66.302	70.065	67.704	71.391	66.096	69.790	66.069	70.312
LoG 61.954	63.395	51.619	54.322	45.840	48.129	41.824	44.563	39.693	41.655
Level3 Prewitt 48.604	50.094	36.487	39.421	32.028	35.209	29.176	32.407	29.650	33.184
Sobel 48.670	50.230	36.407	39.104	32.080	35.073	29.309	32.294	29.656	32.994
Roberts 41.724	37.448	29.368	31.066	21.038	21.889	19.951	20.950	20.829	21.832

_
(HD
details
of
number
high
۲ ع
with
for an image
an
for
values
FoM
~
Table 7

Wavelet		lb	db2	lb	db4	p .	db6	q	db8	db	db10
	Operator	Old	New								
	Canny	28.695	30.234	30.519	28.649	29.164	30.704	28.526	28.800	29.527	29.945
	LoG	22.532	22.923	22.798	23.225	22.589	21.305	21.473	21.741	22.573	23.038
Level1	Prewitt	28.367	26.024	27.553	26.478	28.856	28.676	23.739	26.379	30.706	28.426
	Sobel	28.795	25.315	27.667	26.757	29.537	28.484	24.113	26.399	30.201	28.388
	$\operatorname{Roberts}$	57.813	64.519	50.543	68.677	53.857	67.983	61.243	65.303	52.937	69.606
	Canny	19.222	21.983	16.320	18.378	12.742	14.538	11.667	12.021	12.019	13.333
	LoG	17.165	18.843	15.345	17.218	11.803	13.387	12.855	13.068	11.443	12.642
Level2	Prewitt	18.380	21.641	19.978	25.675	19.899	23.619	25.535	21.490	19.300	26.996
	Sobel	17.914	22.085	19.811	23.516	19.587	22.875	24.922	21.730	19.224	24.930
	$\operatorname{Roberts}$	21.227	35.587	26.948	41.347	32.925	41.833	40.560	47.205	38.156	48.936
	Canny	6.045	9.491	6.356	10.141	5.286	10.217	5.549	9.375	5.909	10.356
	\mathbf{LoG}	7.358	10.470	8.717	11.731	7.600	11.502	8.702	10.541	48.646	52.246
Level3	$\mathbf{Prewitt}$	8.616	12.775	11.630	15.895	11.256	16.399	11.010	16.723	12.019	17.248
	\mathbf{Sobel}	8.517	12.598	11.485	14.844	11.135	15.399	10.871	15.795	12.077	16.171
	$\operatorname{Roberts}$	11.221	19.060	13.107	17.118	13.978	21.112	17.214	25.186	18.270	26.741

Ą
E
details
$_{\rm of}$
number
low
g
with
an image v
an
for
values
\mathbf{PR}
$\dot{\infty}$
Table

	Wavelet		lb	db2	dl	db4	q	db6	dl	db8	db	db10
		Operator	old	New								
		Canny	23.355	23.137	23.791	23.282	23.609	23.231	23.603	23.428	23.612	23.480
		LoG	15.246	15.296	15.399	15.421	15.350	15.459	15.426	15.413	15.538	15.431
Sobel 14.872 14.1320 14.108 14.003 14.558 14.568 13.888 14.006 14.651 Roberts 16.694 16.557 18.245 18.317 18.306 17.373 18.887 18.219 19.595 Roberts 16.694 16.557 18.245 18.317 18.306 17.373 18.887 18.219 19.595 Campy 20.906 21.648 21.376 22.659 21.166 22.678 21.246 22.690 21.387 LoG 13.539 13.402 13.020 13.546 13.3549 13.2610 13.059 21.387 Prewitt 12.883 13.215 10.217 11.158 9.525 11.10 9.390 10.842 9.730 Sobel 12.865 13.208 10.178 11.005 9.568 11.110 9.390 10.842 9.730 Roberts 9.013 9.132 9.337 12.206 9.369 11.179 9.167 10.777 9.362 Roberts 9.013 9.132 9.337 12.206 9.369 11.179 9.167 10.777 9.362 Roberts 9.013 9.132 12.706 9.369 11.179 9.167 10.777 9.362 Campy 11.428 15.604 68.835 73.034 13.660 16.821 10.777 9.362 Roberts 9.010 6.240 7.788 4.806 6.272 4.410 5.796 4.104 Sob	Level1	$\mathbf{Prewitt}$	14.814	14.285	14.024	14.098	14.485	14.477	13.920	14.028	14.634	14.595
Roberts16.69416.55718.24518.31718.30617.37318.88718.21919.595Campy20.906 21.648 21.376 22.659 21.166 22.678 21.246 22.690 21.387LoG13.53913.40213.02013.54613.54913.23413.61013.059Prewitt12.88313.21510.21711.1589.52511.2629.40411.0979.781Sobel12.86513.20810.17811.0559.56611.1109.39010.8429.730Roberts9.013 9.132 9.33712.2069.36911.1799.16710.7779.362Roberts9.013 9.132 9.33712.2069.36911.1799.16710.7779.362Campy11.42815.60468.83573.03413.66016.82112.74916.68612.776LoG7.4549.0106.2407.788 4.806 6.272 4.410 5.796 4.104 Verwitt 6.705 8.030 5.088 6.452 4.237 6.091 3.870 5.152 4.040 Roberts 4.250 4.427 3.472 4.805 2.185 2.855 1.765 4.040		Sobel	14.872	14.320	14.108	14.003		14.568	13.888	14.006	14.651	14.536
		Roberts	16.694	16.557	18.245	18.317	18.306	17.373	18.887	18.219	19.595	18.454
		Canny	20.906	21.648	21.376	22.659	21.166	22.678	21.246	22.690	21.387	22.407
Prewitt 12.883 13.215 10.217 11.158 9.525 11.262 9.404 11.097 9.781 3.781 Sobel 12.865 13.208 10.178 11.005 9.568 11.110 9.390 10.842 9.730 3.30 Roberts 9.013 9.132 9.337 12.206 9.369 11.179 9.167 10.777 9.362 3.362 Roberts 9.013 9.132 9.337 12.206 9.369 11.179 9.167 10.777 9.362 3.362 Canny 11.428 15.604 68.835 73.034 13.660 16.821 12.749 16.686 12.776 3.776 LoG 7.454 9.010 6.240 7.788 4.806 6.272 4.410 5.796 4.104 Prewitt 6.705 8.030 5.085 6.6770 4.245 6.477 3.867 6.152 4.040 Sobel 6.700 7.825 5.088 6.452 4.237 6.091 3.870 5.821 4.040 Roberts 4.250 4.427 3.472 4.805 2.185 2.855 1.816 1.816		LoG	13.539	13.402	13.020	13.546	13.366	13.549	13.234	13.610	13.059	13.478
	Level2	Prewitt	12.883	13.215	10.217	11.158	9.525	11.262	9.404	11.097	9.781	11.356
		\mathbf{Sobel}	12.865	13.208	10.178	11.005	9.568	11.110	9.390	10.842	9.730	11.182
		$\operatorname{Roberts}$	9.013	9.132	9.337	12.206	9.369	11.179	9.167	10.777	9.362	10.936
LoG 7.454 9.010 6.240 7.788 4.806 6.272 4.410 5.796 4.104 Prewitt 6.705 8.030 5.085 6.670 4.245 6.477 3.867 6.152 4.040 Sobel 6.700 7.825 5.088 6.452 4.237 6.091 3.870 5.821 4.040 Roberts 4.250 4.427 3.472 4.805 2.185 2.855 1.765 2.435 1.816		Canny	11.428	15.604	68.835	73.034	13.660	16.821	12.749	16.686	12.776	16.643
Prewitt 6.705 8.030 5.085 6.670 4.245 6.477 3.867 6.152 4.040 Sobel 6.700 7.825 5.088 6.452 4.237 6.091 3.870 5.821 4.040 Roberts 4.250 4.427 3.472 4.805 2.185 2.855 1.765 2.435 1.816		L_0G	7.454	9.010	6.240	7.788	4.806	6.272	4.410	5.796	4.104	5.568
6:700 7.825 5.088 6.452 4.237 6.091 3.870 5.821 4.040 4.250 4.427 3.472 4.805 2.185 2.855 1.765 2.435 1.816	Level3	$\mathbf{Prewitt}$	6.705	8.030	5.085	6.670	4.245	6.477	3.867	6.152	4.040	6.210
4.250 4.427 3.472 4.805 2.185 2.855 1.765 2.435 1.816		\mathbf{Sobel}	6.700	7.825	5.088	6.452	4.237	6.091	3.870	5.821	4.040	5.867
		Roberts	4.250	4.427	3.472	4.805	2.185	2.855	1.765	2.435	1.816	2.471

Table 9. PR values for an image with a medium number of details (MD)

Wavelet		lb	db2	[p	db4	q	db6	q	db8	db	db10
	Operator	old	New								
	Canny	70.111	71.230	69.127	71.555	67.787	70.466	68.057	69.417	68.420	70.459
	LoG	80.612	80.029	80.713	80.131	81.016	80.593	80.894	80.399	81.020	80.543
Level1	$\mathbf{Prewitt}$	64.338	63.895	58.063	58.180	62.165	61.852	59.804	59.969	60.513	60.454
	\mathbf{Sobel}	64.259	63.817	58.435	58.711	62.340	62.180	59.992	60.167	60.924	60.659
	$\operatorname{Roberts}$	52.692	52.351	56.121	53.588	49.446	47.979	53.204	51.154	49.377	47.762
	Canny	79.241	79.417	80.766	80.868	79.811	79.977	80.195	80.628	79.964	81.130
	L_0G	74.034	73.853	74.988	74.765	74.498	74.087	73.826	73.502	75.316	74.986
Level2	$\mathbf{Prewitt}$	57.164	56.225	51.862	51.670	50.198	51.235	47.020	47.824	50.519	51.654
	\mathbf{Sobel}	57.186	56.503	51.954	51.833	50.409	51.258	47.040	47.927	50.545	51.554
	$\operatorname{Roberts}$	48.516	45.265	45.511	46.339	42.075	41.858	37.190	37.934	39.990	40.475
	Canny	69.148	73.049	66.302	70.065	67.704	71.391	66.096	69.790	66.069	70.312
	L_0G	61.954	63.395	51.619	54.322	45.840	48.129	41.824	44.563	39.693	41.655
Level3	$\mathbf{Prewitt}$	48.604	50.094	36.487	39.421	32.028	35.209	29.176	32.407	29.650	33.184
	Sobel	48.670	50.230	36.407	39.104	32.080	35.073	29.309	32.294	29.656	32.994
	$\operatorname{Roberts}$	41.724	37.448	29.368	31.066	21.038	21.889	19.951	20.950	20.829	21.832

_
(HD)
details
of
number
t high
19
with
for an image v
an
for
values
\mathbf{PR}
10.
Table

4 CONCLUSIONS

This paper proposed a new approach to edge detection in the images on which the wavelet decomposition was applied to the third level. As mother wavelet, Daubechies was used from the second to the tenth order. The analyzed images are categorized into three complexity criteria, so they consist of a small, medium and high number of details. F measure, FoM, and PR were used for an objective measure. The proposed approach provides significant improvements in edge detection for almost all operators (Canny, LoG, Prewitt, Sobel).

Depending on the number of details in the image, the decomposition level as well as db wavelet, the improvements are different. With a small number of details, the greatest improvements were achieved with the Canny operator. Other operators also achieved improvement but depending on the db wavelet order. Based on the obtained results, in the image with a small number of details, it can be seen that best improvements are achieved in the third level using Laplacian operators. In the image with the medium number of details, in the first level similar results are generally obtained, while in the second and the third levels improvement is made using the proposed approach. For images with a high number of details, better or similar values are obtained using the proposed approach. What can be concluded is that in the second level, the best values are obtained by gradient operators.

Considering that the compression ratio is higher of the image with a higher number of details, based on this fact, it can be concluded that the detection will also be poorer, and consequently there will be a lower F values, FoM values and PR values. Since the proposed approach is intended for systems where compression is used, i.e. compressed image processing, it can be concluded that increasing the degree of compression also provides a better difference, or better value using the proposed approach.

Today's systems require image quality to be as good as possible, with as much compression as possible in order to process these images in real time, such as edge detection, segmentation, streaming, streaming in systems using augmented reality, etc. The proposed approach can find many practical applications in all systems where real-time information needs to be processed, especially in television systems, but it also provides a good basis for the direction of future research related to compression and edge detection.

Acknowledgment

This work was done within the research project of the Ministry of Science and Technological Development of Serbia TR35026 and III47016.

REFERENCES

- CHEN, Y.—WANG, D.—BI, G.: An Image Edge Recognition Approach Based on Multi-Operator Dynamic Weight Detection in Virtual Reality Scenario. Cluster Computing, Vol. 22, 2018, Suppl. 4, pp. 8069–8077, doi: 10.1007/s10586-017-1604-y.
- [2] SRIVASTAVA, D.—KOHLI, R.—GUPTA, S.: Implementation and Statistical Comparison of Different Edge Detection Techniques. In: Bhatia, S., Mishra, K., Tiwari, S., Singh, V. (Eds.): Advances in Computer and Computational Sciences. Springer, Singapore, Advances in Intelligent Systems and Computing, Vol. 553, 2017, pp. 211–228, doi: 10.1007/978-981-10-3770-2_20.
- [3] MAINI, R.—AGGARWAL, H.: Study and Comparison of Various Image Edge Detection Techniques. International Journal of Image Processing, Vol. 3, 2009, No. 1, pp. 1–11.
- [4] CHAGANTI, V. R.: Edge Detection of Noisy Images Using 2-D, Discrete Wavelet Transform. Thesis, Florida State University Libraries, 2005.
- [5] DONG, X.—LI, M.—MIAO, J.—WANG, Z.: Edge Detection Operator for Underwater Target Image. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), 2018, pp. 91–95, doi: 10.1109/ICIVC.2018.8492749.
- [6] KUANG, T.—ZHU, Q-X.—SUN, Y.: Edge Detection for Highly Distorted Images Suffering Gaussian Noise Based on Improve Canny Algorithm. Kybernetes, Vol. 40, 2011, No. 5-6, pp. 883–893, doi: 10.1108/03684921111142430.
- [7] JUN, L.: A Wavelet Approach to Edge Detection. Thesis, Sam Houston State University, Huntsville, Texas, 2003.
- [8] MUTHUKRISHNAN, R.—RADHA, M.: Edge Detection Techniques for Image Segmentation. International Journal of Computer Science and Information Technology, Vol. 3, 2011, No. 6, pp. 259–267, doi: 10.5121/ijcsit.2011.3620.
- YANG, T.—SUN, G.—DUAN, X.: A New Method of Wavelet Transform-Based Edge Detection. 2011 IEEE 13th International Conference on Communication Technology, Jinan, 2011, pp. 789–792, doi: 10.1109/ICCT.2011.6157985.
- [10] YELAMPALLI, P. K. R.—NAYAK, J.—GAIDHANE, V. H.: Daubechies Wavelet-Based Local Feature Descriptor for Multimodal Medical Image Registration. IET Image Processing, Vol. 12, 2018, No. 10, pp. 1692–1702, doi: 10.1049/ietipr.2017.1305.
- [11] WANG, S.-H.—ZHANG, Y.-D.—DONG, Z.—PHILLIPS, P.: Wavelet Families and Variants. Chapter 6. In: Wang, S.-H. et al.: Pathological Brain Detection. Springer, Singapore, Brain Informatics and Health, 2018, pp. 85–104, doi: 10.1007/978-981-10-4026-9_6.
- [12] BALACHANDRAN, A.—GANESAN, M.—SUMESH, E. P.: Daubechies Algorithm for Highly Accurate ECG Feature Extraction. 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, pp. 1–5, 2014, doi: 10.1109/ICGCCEE.2014.6922266.
- [13] RANA, K.—THAKUR, S.: Comparisons of Wavelets and Algorithms Based on Wavelets and Comparing the Results with JPEG. 2017 International Conference on

Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, 2017, pp. 3871–3876, doi: 10.1109/ICECDS.2017.8390189.

- [14] ZHAO, D.—SUN, G.: A Novel Edge Detection Approach Using Multi-Resolution Image. 2nd International Conference on Computer Engineering and Technology, Chengdu, 2010, pp. V2-692–V2-695, doi: 10.1109/ICCET.2010.5485706.
- [15] RAO, G. S. B.—PRASAD, P. M. K.—KUMAR, M. N. V. S. S.: Investigation of Various Orthogonal Wavelets for Precise Analysis of X-Ray Images. Journal of Engineering Research and Applications, Vol. 5, 2015, No. 2, Part 3, pp. 24–32.
- [16] ILIC, S.—PETROVIC, M.—JAKSIC, B.—SPALEVIC, P.—LAZIC, L.—MILOSE-VIC, M.: Experimental Analysis of Picture Quality after Compression by Different Methods. Przegląd Elektrotechniczny, Vol. 89, 2013, No. 11, pp. 190–194.
- [17] DELAC, K.—GRGIC, M.—GRGIC, S.: Effects of JPEG and JPEG2000 Compression on Face Recognition. In: Singh, S., Singh, M., Apte, C., Perner, P. (Eds.): Pattern Recognition and Image Analysis (ICAPR 2005). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 3687, 2005, pp. 136–145, doi: 10.1007/11552499_16.
- [18] RANI, K. S.—RAO, D. N.: A Comparative Study of Various Noise Removal Techniques Using Filters. Research and Reviews: Journal of Engineering and Technology, Vol. 7, 2018, No. 2, pp. 47–52.
- [19] WEN, X.—DENG, Z.—XUE, H.: An Improved Median Filtering Image De-Noising Algorithm. Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia, Vol. 39, 2016, No. 5, pp. 293–298, doi: 10.21311/001.39.5.38.
- [20] The Berkeley Segmentation Dataset and Benchmark. Available at: https://www2. eecs.berkeley.edu/Research/Projects/CS/vision/bsds/, accessed: 14.02.2019.
- [21] ARBELÁEZ, P.—MAIRE, M.—FOWLKES, C.—MALIK, J.: Contour Detection and Hierarchical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, 2011, No. 5, pp. 898–916, doi: 10.1109/TPAMI.2010.161.
- [22] HAGARA, M.—KUBINEC, P.: About Edge Detection in Digital Images. Radioengineering, Vol. 27, 2018, No. 4, pp. 919–929, doi: 10.13164/re.2018.0919.
- [23] KHAIRE, P. A.—THAKUR, N. V.: A Fuzzy Set Approach for Edge Detection. International Journal of Image Processing (IJIP), Vol. 6, 2012, No. 6, pp. 403–412.
- [24] JABBAR, S. I.—DAY, C. R.—HEINZ, N.—CHADWICK, E. K.: Using Convolutional Neural Network for Edge Detection in Musculoskeletal Ultrasound Images. Proceeding of the 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4619–4626, 2016, doi: 10.1109/IJCNN.2016.7727805.

Vladimir MAKSIMOVIĆ received his B.Sc. and M.Sc. degrees in electrical engineering from the Faculty of Technical Sciences in Kosovska Mitrovica, University of Priština, Serbia. He is Ph.D. candidate at the same faculty and his areas of research include image processing, telecommunications and multimedia systems. He has authored several scientific papers.

Branimir JAKŠIĆ received his B.Sc. and M.Sc. degrees in electrical engineering from the Faculty of Technical Sciences in Kosovska Mitrovica, University of Priština, Serbia, and his Ph.D. degree in electrical engineering from the Faculty of Electronic Engineering, University of Niš, Serbia in 2015. He is Assistant Professor at the Faculty of Technical Sciences in Kosovska Mitrovica. Areas of his research include telecommunications and multimedia systems. He has authored over 70 scientific papers on the above subject.

Mile PETROVIĆ is Full Professor at the Department of Electronics and Telecommunications Engineering at the Faculty of Technical Sciences in Kosovska Mitrovica, Serbia. He has extensive experience in digital broadcasting systems and multimedia applications, mobile technology and digital image processing. He is the author of over 100 scientific peer-reviewed papers, initiator of a number of international Tempus projects in the country and certified patents. He has participated in scientific research projects as well as in projects for the modernization and enhancing quality of higher education. He is author of many textbooks

and scientific articles in the field of mobile radio and telecommunication networks.

Petar SPALEVIĆ received his B.Sc. degree from the Faculty of Electronic Engineering, University of Priština, in 1997 and his M.Sc. and Ph.D. degrees from the Faculty of Electronic Engineering, University of Niš in 1999 and 2003, respectively. He is Professor at the Faculty of Technical Sciences, Department of Telecommunications in Kosovska Mitrovica. His primary research interests are statistical communications theory, optical and wireless communications, applied probability theory and optimal receiver design.

Stefan PANIć received his M.Sc. and Ph.D. degrees in electrical engineering from the Faculty of Electronic Engineering, Niš, Serbia, in 2007 and 2010, respectively. His research interests in mobile and multi-channel communications include statistical characterization and modelling of fading channels, performance analysis of diversity combining techniques, outage analysis of multi-user wireless systems subject to interference. Within digital communication, his current research interests include the information theory, source and channel coding, and signal processing. He has published over 40 SCI indexed papers. Currently

he is Associated Professor at the Department of Informatics, Faculty of Natural Science and Mathematics, University of Priština.