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Abstract. Compute Cloud comprises a distributed set of High-Performance Com-
puting (HPC) machines to stipulate on-demand computing services to remote users
over the internet. Clouds are capable enough to provide an optimal solution to ad-
dress the ever-increasing computation and storage demands of large scientific HPC
applications. To attain good computing performances, mapping of Cloud jobs to
the compute resources is a very crucial process. Currently we can say that several
efficient Cloud scheduling heuristics are available, however, selecting an appropri-
ate scheduler for the given environment (i.e., jobs and machines heterogeneity)
and scheduling objectives (such as minimized makespan, higher throughput, in-
creased resource utilization, load balanced mapping, etc.) is still a difficult task.
In this paper, we consider ten important scheduling heuristics (i.e., opportunistic
load balancing algorithm, proactive simulation-based scheduling and load balancing,
proactive simulation-based scheduling and enhanced load balancing, minimum com-
pletion time, Min-Min, load balance improved Min-Min, Max-Min, resource-aware
scheduling algorithm, task-aware scheduling algorithm, and Sufferage) to perform
an extensive empirical study to insight the scheduling mechanisms and the attain-
ment of the major scheduling objectives. This study assumes that the Cloud job
pool consists of a collection of independent and compute-intensive tasks that are
statically scheduled to minimize the total execution time of a workload. The ex-
periments are performed using two synthetic and one benchmark GoCJ workloads
on a renowned Cloud simulator CloudSim. This empirical study presents a detailed
analysis and insights into the circumstances requiring a load balanced schedul-
ing mechanism to improve overall execution performance in terms of makespan,
throughput, and resource utilization. The outcomes have revealed that the Suffer-
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age and task-aware scheduling algorithm produce minimum makespan for the Cloud
jobs. However, these two scheduling heuristics are not efficient enough to exploit
the full computing capabilities of Cloud virtual machines.

Keywords: Distributed computing, scheduling algorithm, high-performance com-
puting, scheduling
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1 INTRODUCTION

Cloud is a large pool of virtualized resources that are provisioned on-demand in
a scalable manner. The efficient job scheduling mostly increases the user’s satisfac-
tion, improves the system utilization, reduces the job execution time, and minimizes
the energy consumption. Scheduling heuristics are generally classified as static and
dynamic. A static scheduling heuristic forms a complete job mapping plan be-
fore execution while a dynamic scheduling technique generally relies on the runtime
parameters to schedule jobs in a best-effort with the use of resources in a more scal-
able manner as per user requirements. The static Cloud scheduling heuristics avoid
the migration of Virtual Machines (VMs) to avoid communication overheads to re-
duce the execution time. In addition, most of the static techniques produce good
turnaround time and irrefutable Quality of Service (QoS) because of the pre-ensured
availability of the computing resources for the workload execution [1]. However, the
static scheduling techniques may produce inefficient and lower resource utilization
due to runtime changes in workload and computing environment [2].

In Cloud environment, scheduling is employed at two levels:

1. VM scheduling is concerned with the mapping of virtual machines to the physical
hosts in a Cloud data-center, and

2. job scheduling is concerned with the assignment of jobs to the virtual machines.

Various metrics are harnessed to determine the performance of job scheduling algo-
rithms. These performance metrics include makespan, throughput, resource utiliza-
tion, response time, and energy consumption. A crucial aspect of scheduling is to
map Cloud jobs in a load balanced manner to reduce the makespan of a job pool.
Load balanced mapping refers to a distribution of jobs (among VMs) so that all the
VMs accomplish the execution of assigned workload within the approximately same
time duration. Importantly, a balanced load ensures improved resource utilization,
higher throughput, and lower execution time for a job pool.

Several Cloud scheduling heuristics [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
have been presented by the scientific community. However, the selection of an ap-
propriate scheduler according to a given environment (jobs computing requirements
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and the available computing resources) to achieve desired scheduling objectives (such
as reduced makespan, higher throughput, etc.) is still a difficult task. Since each
heuristic contains different underlying assumptions; therefore, a precise compari-
son cannot be made. In this regard, we empirically scrutinize and experimentally
compare ten state-of-the-art static scheduling heuristics (i.e., Opportunistic Load
Balancing (OLB) [1, 10, 13], Proactive Simulation-Based Scheduling and Load Bal-
ancing (PSSLB) [17], Proactive Simulation-Based Scheduling and Enhanced Load
Balancing (PSSELB) [17], Minimum Completion Time (MCT) [6, 18], Min-Min [7, 8,
9, 10, 11], Load Balance Improved Min-Min (LBIMM) [11, 17], Max-Min [5, 10, 13],
Resource-Aware Scheduling Algorithm (RASA) [12, 19], Task-Aware Scheduling Al-
gorithm (TASA) [16], and Sufferage [10, 14, 15]).

In an empirical analysis, Syed Hamid Hussain Madni et al. provides the in-
vestigation of First Come First Serve (FCFS), Minimum Execution Time (MET),
MCT, Min-Min, Max-Min, and Sufferage scheduling algorithms [3]. Based on their
analysis, Madni et al. concluded that the hybridization of these techniques may re-
sult in more improved results and overcome the limitations of each other to achieve
the optimization of task scheduling in cloud computing [3]. Therefore, in this re-
search work, some hybridized scheduling techniques (i.e. RASA [12, 19], TASA [16],
LBIMM [11, 17], PSSLB [17], and PSSELB [17] algorithms) are also considered for
performance investigation of resource utilization in cloud computing. Figure 1 shows
ten scheduling algorithms; where the techniques on the tail of each arrow are the
modified and hybridized techniques based on the scheduling techniques directed by
the arrow symbols (i.e., the mechanism of RASA is based on Max-Min and Min-Min,
the mechanism of TASA is based on Sufferage and Min-Min, LBIMM is the modified
version of Min-Min, PSSLB is the modified version of Max-Min, and PSSELB is the
modified version of PSSLB technique).

In this study, we consider the following assumptions for the empirical-based
comparison of the employed scheduling heuristics. One such assumption is that
a workload is referred to as a collection of independent and compute-intensive tasks
(without inter-task data dependencies). The mapping of these tasks is performed
statically to minimize the scheduling overhead and to evade job migrations [13].
This empirical study provides a detailed analysis of the scheduling heuristics and
insights of the scheduling mechanisms where a higher throughput and reduced ex-
ecution time is attained; however, a considerable load imbalance is observed in
the experimentation. We argue that the existing state-of-the-art static scheduling
heuristics should address the load-balancing issue to attain exquisite resource uti-
lization in Cloud computing. A near-optimal resource utilization will produce higher
throughput, reduced execution time (for the Cloud job pool), and energy efficient
execution.

In summary, we present an analysis of the resource utilization of virtual resources
in terms of workload distribution among all the VMs. The empirical investigation
reveals that most of the scheduling heuristics are not efficient enough to exploit
the full computing capabilities of virtual machines in Cloud infrastructure. This
empirical study has highlighted various pressing research gaps that must be overcome
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Figure 1. Hybridization of Cloud scheduling algorithms

to improve the scheduling performance and to reduce cost at Cloud service provider
level (discussed in Section 5). Major contributions of this work include:

1. a critical analysis and synthesis of the existing state-of-the-art static Cloud
scheduling algorithms to identify the pros and cons of each algorithm;

2. in-depth performance analysis (in terms of turnaround time, resource utiliza-
tion, and throughput) and empirical assessment of the existing static scheduling
algorithms using two synthetic datasets and one benchmark dataset for Cloud
and distributed computing [37];

3. identification of the potential research directions that could assist the scien-
tific community to cope with the challenges pertaining to the static scheduling
heuristics for Cloud computing.

The rest of the paper is organized as follows. Section 2 discusses the working
semantics of scheduling heuristics. Section 3 illustrates the experimental setup and
workload compositions. Section 4 examines the experimental results. The resource
utilization and load imbalance in workload distribution caused by scheduling heuris-
tics are presented in Section 5 and the potential research directions are identified.
Section 6 concludes this research work.
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2 CLOUD SCHEDULING HEURISTICS

In this study, we synthesize and evaluate ten prominent static Cloud scheduling
heuristics which are: MCT [3, 6], OLB [1, 10, 13], Min-Min [7, 8, 9, 10, 11], Max-
Min [5, 10, 13], Sufferage [10, 14, 15], RASA [12, 20], PSSLB [17], PSSELB [17],
LBIMM [11, 17], and TASA [16]. The working of these heuristics is delineated below.

2.1 OLB Algorithm [1, 4, 10, 13]

This scheduling technique assigns each job, in an arbitrary order, to the next avail-
able machine regardless of considering the job’s execution time on that particular
machine. OBL is a simple scheduling scheme having low scheduling overhead and
complexity. A major scheduling objective of the OBL scheme is to make all the
Cloud machines as busy as possible [13]. However, OBL scheduling heuristic mostly
results in poor makespan because it is not resource-aware.

2.2 MCT Algorithm [3, 8, 13]

MCT technique assigns a candidate job to a machine that consumes minimum time
for the job [13]. The MCT heuristic examines the current load of machines to find
a suitable target machine for job assignment [8]. At each scheduling step, MCT
heuristic has to scan all the available machines to find the most appropriate com-
puting resource (i.e., machine producing the minimum completion time for a job).
The expensive search mechanism employed by the MCT (at each scheduling step)
causes a significant scheduling overhead.

2.3 Min-Min Algorithm [11, 13, 21, 22]

Min-Min scheduling first determines the minimum completion time of all the un-
allocated jobs and proceeds with the assignment of a job having overall minimum
completion time on a certain machine. Both Min-Min and MCT scheduling heuris-
tics rely on the completion time of a job on a certain machine [6]. MCT considers
the current job only for scheduling decision (at a certain scheduling step), whereas
the Min-Min considers the minimum completion time for all the unallocated jobs
(in each scheduling decision). Min-Min scheduling heuristic favors (i.e., schedules
first) the small-sized jobs while penalizing (causing delayed execution) for larger
jobs [8, 9, 10, 11, 12]. Therefore, Min-Min mostly overloads the faster machines with
larger number of small-sized jobs, while the slower machines are assigned fewer but
larger jobs. Thus, the larger jobs mapped on slower resources often cause a higher
makespan for the execution of the job-pool [23].
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2.4 Max-Min Algorithm [3, 21, 24]

Max-Min scheduling first computes the expected minimum completion time for all
the jobs and then the job requiring a maximum completion time is assigned to the
concerned machine. The scheduling process is repeated until all the un-allocated
Cloud jobs are scheduled. To avoid longer response time (for the larger jobs), Max-
Min scheduling heuristic selects larger jobs to be executed early [6, 14]. Max-Min
heuristic mostly performs better in the scenario when there is a large number of
small-sized jobs with a few larger size jobs [11, 14, 15]. The inherent mechanism of
both Max-Min and Min-Min heuristics adversely affects the resource utilization in
Cloud (as evident in our experimental results presented in Section 4).

2.5 Sufferage Algorithm [11, 21, 22]

Sufferage scheduling calculates the sufferage value for each job. To calculate the
sufferage value (i.e., a penalty in terms of longer execution time), the minimum
completion time and the second best minimum completion time producing VMs are
determined for each job (in each scheduling iteration). Afterward, the job experi-
encing the highest sufferage value is assigned to the machine (producing minimum
completion time for that job). Sufferage heuristic produces good results often with
reduced makespan; however, this scheduling mechanism causes higher scheduling
overhead (due to the calculation of sufferage value for each job in each scheduling
iteration) as compared to OLB, MCT, Max-Min, and Min-Min [18, 21, 22].

2.6 RASA Algorithm [12, 19]

RASA technique contemplates both Min-Min and Max-Min heuristics in the alter-
nate scheduling decisions until all the jobs are scheduled. RASA exploits the merits
of both Min-Min and Max-Min to evade corresponding limitations of these two
scheduling algorithms in certain cases (as discussed above). Mostly, RASA results
in a lower makespan when it considers smaller and larger jobs in alternate scheduling
steps [12]. However, RASA penalizes smaller size jobs (causing delayed execution)
when the number of larger jobs is higher in the workload [24].

2.7 TASA Algorithm [16, 30]

TASA favors the smaller jobs in the first scheduling step (based on Min-Min heuris-
tic) and finds an appropriate machine for the job (using the Sufferage heuristic)
in the second scheduling step [16]. In most of the cases, TASA produces better
makespan as compared to other scheduling heuristics such as Min-Min, Max-Min,
and OLB [16].
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2.8 LBIMM Algorithm [11, 17]

LBIMM [11, 17] assigns jobs to machines using the Min-Min scheduling technique
in the first phase. In the subsequent phase, LBIMM finds the smallest job on the
most loaded machines and determines its completion time on the other machines.
After that, the minimum completion time of that job is compared with makespan.
If this time value is less than the makespan, the job is assigned to a new machine
and the ready time of both machines are modified. This procedure is repeated for
the next smallest job on the most loaded machine, too. The process is repeated
until there is no other machine that can produce the minimum completion time for
the smallest job on the heavily loaded machine than makespan on another machine.
This technique shares a load of heavy machines with the idle or lighter machines.
LBIMM produces better makespan and load balancing than Min-Min heuristic.

2.9 PSSLB Algorithm [17]

PSSLB and PSSELB Algorithms are proposed to assign the large-sized jobs to the
machines that can execute them faster than the other machines. PSSLB finds the
matrix (i.e., each row has a completion time of a specified job on all machines) of
completion time of each job on each machine. The matrix is sorted in a way that the
last column stores minimum completion time for each job. Therefore, the longest
job on the last column is selected and assigned to machine producing minimum
completion time for it.

2.10 PSSELB Algorithm [17]

PSSELB Algorithm is the modified version of PSSLB that produces a load balanced
schedule. The largest job among the unallocated jobs is assigned to the machine
using PSSLB, and completion time of this job is considered as a pivot. After that,
the jobs that produce completion time (i.e., on other machines) equal to or less than
the pivot are iteratively determined and assigned to the concerned machines (i.e.,
producing MCT for a job equal to or less than the pivot value). Next, the largest job
is assigned to the concerned machine using PSSLB, and the pivot is updated with
the completion time of the largest job. Again, the jobs with MCT on other machines
(i.e., except the machine with last largest job assigned) that is equal to or less than
the pivot are determined and assigned to the concerned machine. This scheduling
procedure is repeated till all the unallocated jobs are assigned to machines in the
same way.

Assuming N number of Cloud jobs to be scheduled on M machines, Table 1
presents the summary of strengths, weaknesses, and time-complexity of the eight
scheduling heuristics, and the employed simulation tool (by the authors of the men-
tioned research work).
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Heuristics Strengths Weaknesses Complexity Tools Used

OLB [5, 10,
13]

Low complexity,
Minimal overhead,
keeps machines
busy [5, 10]

Load-imbalance,
and No-fairness in
scheduling [4]

O(M) tGSF Sim-
ulator [18],
CloudSim Simu-
lator [4].

MCT [3, 8,
13]

Improved makespan
than OLB [9],
Machine-aware
scheduling [24]

Load-
imbalance [5, 15],
Overloads faster
VMs

O(M ·N) CloudSim [4],
NS Simulator [7]

MinMin [3,
24, 26]

Favors smaller
jobs [12], Reduced
makespan for
smaller jobs [1, 8]

Overloads faster
VMs with smaller
Jobs [12], Penalizes
larger jobs.

O(M ·N2) C-Language [24],
Matlab [15],
Java-based
Simulation

LBIMM
[11, 17, 27]

Improved makespan
than Min-Min [27],
improved resource
utilization than
Min-Min [11]

A few smaller jobs
are penalized while
rescheduled [11]

O(M ·N2) Matlab [11]

MaxMin [3,
21, 24]

Favors larger
jobs [1, 28], Re-
duced makespan for
larger jobs [22].

Penalizes smaller
jobs [16], Load-
imbalance for job
pool with more
larger jobs [12].

O(M ·N2) Matlab and
Java-based
Simulation [8]

RASA [12,
19, 20]

Fair treatment of
larger and smaller
jobs [14].

Penalizes smaller
jobs in dataset
with more larger
jobs [23]

O(M ·N2) GridSim [11].

Sufferage
[3, 9, 14]

Improved makespan
than MCT, Min-
Min, and Max-
Min [21], Job
allocation to appro-
priate VM [22].

High scheduling
overhead due to
Sufferage value
calculation [10].

O(M ·N2) C++ and Java
implemen-
tations [14],
Matlab

TASA [16,
30]

Improved makespan
than Max-Min,
Min-Min and
RASA [16], Favors
smaller jobs.

Load balancing is
not considered [16].

O(M ·N2) CloudSim [16].

PSSLB [17] Reduces completion
and response time
for larger jobs [17]

Penalizes smaller
jobs [17]

O(M ·N2) CloudSim [17].

PSSELB
[17]

Improved makespan
than PSSLB [17]

Results in load im-
balance compared
to PSSLB [17]

O(N2/2) CloudSim [17].

Table 1. Summary of scheduling algorithms in related work
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3 EXPERIMENTAL SETUP

Evaluation of scheduling and resource allocation policies on real Cloud (with a vary-
ing load and system size) is a challenging problem. The use of real testbeds restricts
the experiments to the scale of the test environment. Cloud computing model is
based on a pay-per-use model, thus repeatable experiments on real Cloud may incur
a high monetary cost. Therefore, an ideal alternative to evaluate resource manage-
ment related Cloud policies is to use a simulation environment that enables Cloud
developers to conduct experiments by employing the desired and varying configura-
tions related to computing infrastructure and dataset (i.e., Cloud jobs). In this work,
we use a renowned Cloud simulator called CloudSim [31] (version 3.0.2). A user job is
represented as cloudlet in CloudSim and the job’s size (computational requirement)
is measured in terms of Million Instructions (MI). We perform the simulation-based
experiments on a machine equipped with Intel Core i3-4030U Quad-core processor
(having 1.9 GHz clock speed) and 4 GB of main memory. Liu and Cho [32] charac-
terize the computing machines and workloads on a Google cluster and found that
93 % of the machines are fairly homogeneous on Google cluster with approximately
6 % of the machines with a greater computing capability [32]. Using the character-
istics of the real computing machines (found in Liu and Cho’s study [32]) we build
an experimental setup for empirical evaluation. Table 2 illustrates the configuration
details of the employed simulation environment. Figure 2 presents the overall statis-
tics of the employed VMs with computing powers in terms of Million Instructions
Per Seconds (MIPS).

Parameters Details

Power of Cloud Host Machines 4 Dual core (4 000 MIPS), 26 Quad core (4 000 MIPS)

Total Host Machines 30 Host Machines

Total VMs 50 Virtual Machines

Total Cloudlets 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600,
650, 700, 750, 800, 850, 900, 950, 1 000

Table 2. Configuration of simulation environment

3.1 Workload Generation

In this research work, one GoCJ benchmark dataset [37] and two synthetic datasets
are used for the performance assessment of scheduling algorithms in simulation-based
experimentation. The detail of these datasets are described as follows.

3.1.1 GoCJ Dataset [37]

The data confidentiality and other such policies maintained by the Cloud service
providers [33] hinder to acquire real Cloud workload for the empirical investigations.
The contemporary state-of-the-art has been scrutinized to explore a real workload
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Figure 2. VMs in the cloud datacenter

behavior in Google cluster traces [32, 33, 34, 35, 36] and MapReduce logs from the
M45 supercomputing cluster [36].

Liu and Cho studied a large-scale Google cluster usage traces of 29 days to
examine the machine properties, workload behavior, and resource utilization [32].
The analysis of the Google cluster traces affirms that the majority of jobs execute
for fairly a short duration (i.e., less than 15 minutes), while the low number of
jobs execute over 300 minutes [32]. Further, the study [32] establishes the fact that
approximately two thirds of the jobs in the Google cluster traces execute for less
than five minutes and approximately 20 % of the jobs execute for less than one
minute. The median length of a job in the Google cluster traces is approximately
3 minutes. Another similar study of Google cluster is presented by Chen et al. [35]
and Reiss et al. [34].

In addition, Kavulya et al. [36] have scrutinized MapReduce logs of the M45 su-
percomputing cluster (logs of 10 months released by Yahoo). The study of MapRe-
duce logs affirms that 95 % of the jobs complete the execution within 20 minutes and
approximately 4 % of the jobs exceed execution up to 30 minutes [36]. Literature
review [32, 33, 34, 35, 36] reveals that most of the Cloud jobs are of a short size and
execute for less than 5 minutes.

Based on the analysis, we have generated a benchmark workload entitled Google
Cloud Jobs (GoCJ) [37]. Considering the computing power of VMs in a Cloud data-
center (see Figure 1), the cloudlet completion time follows a long-tailed distribu-
tion (with 90 % of cloudlets in GoCJ workload completing their execution within
1.6 minutes). The longest executing cloudlet observed in the GoCJ workload lasts
up to 15 minutes (6 % cloudlets execute for less than 5 minutes and 4 % execute for
15 minutes). The average size of a job in GoCJ workload is 5 minutes. Figure 3
presents the ratios and sizes of cloudlets distribution in GoCJ workload in terms of
percentage and MIs, respectively.
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3.1.2 Synthetic Datasets

In addition to GoCJ dataset, we study the literature [28, 38, 39] to generate two
synthetic datasets containing fix-sized jobs. Mehdi et al. [28] conducted the experi-
mentation of a genetic scheduler with heterogeneous VMs (1.0 GHz to 4.0 GHz speed)
to execute up to 100 cloudlets. In another work, Mehdi et al. [38] have examined the
Cloud scheduling using 100 VMs (computing power of 1.0 GHz, 2.0 GHz, 2.5 GHz,
and 3.0 GHz) to execute up to 500 cloudlets. Behzad et al. [39] presented a compar-
ative analysis of different scheduling algorithms by using 7 000 and 15 000 jobs with
a varying number of CPUs (i.e., 4 to 64 processors).

The synthetic-I workload is created with five fixed-size cloudlets (see Figure 4).
The majority of cloudlets (i.e., 75 % of the cloudlets in synthetic-I workload) com-
plete execution within 2 seconds and a small tail of the cloudlet distribution exe-
cutes up to 45 seconds (i.e., 15 % of the cloudlets run for 15 seconds and 5 % of the
cloudlets run for 45 seconds). The fixed sizes of tiny, small, medium, large and extra-
large cloudlets in synthetic-I dataset are 200, 1 000, 5 000, 15 000, and 45 000 MIs,
respectively.

The synthetic-II workload is generated using a random number generation mech-
anism by employing five cloudlet-size ranges (see Figure 4). The majority of cloudlets
(i.e., 85 % in synthetic-II workload) are of a short size and a small tail of the cloudlet
distribution completes execution within 45 seconds (i.e., 10 % of the cloudlets run
for 10 seconds and 5 % of the cloudlets run for 45 seconds). The cloudlet-size
ranges of tiny, small, medium, large, and extra-large cloudlets are 1–200, 800–1 200,
1 800–2 500, 7 000–10 000, and 30 000–45 000 MIs, respectively.
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4 EXPERIMENTAL RESULTS

Three performance metrics are measured and presented for experimental evaluation,
i.e., makespan, Average Resource Utilization Ratio (ARUR), and throughput.

4.1 Makespan-Based Results

We use term makespan to represent the completion of all the cloudlets execution
in a workload. The smaller value of makespan represents a better execution perfor-
mance. The makespan is mathematically expressed as follows:

Makespan = max
∀j=1,2,3,...,m

(VM CT j) (1)

where m represents the total number of VMs (which is 50 in our experiments)
and VM CT j is the completion time of VM j by executing its assigned cloudlets.
VM CT j is computed as:

VM CT j =

nj∑
i=1

Cloudlet i.MI

VM j.MIPS
(2)

where Cloudlet i.MI represents the size of cloudlet i in terms of Million Instructions
(MIs), VM j.MIPS is the computing power of VM j in terms of Million Instructions
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Per Second (MIPS) and nj represents the total number of cloudlets assigned to
VM j.

Figure 5 shows the makespan results of 10 scheduling algorithms for Synthe-
tic-I, Synthetic-II, and GoCJ benchmark workloads. For more clarity, the average
makespan (i.e., separately for synthetic-I, synthetic-II, and GoCJ workloads) of all
the experiments using different number of cloudlets is calculated as follows:

Avg Makespan =

∑NE
i=1 Makespan i

NE
(3)

where NE represents the number of experiments performed for each scheduling
algorithm (i.e., using specified workload) and Makespani represents the makespan
of ith experiment. Each experiment is repeated using a varying number of cloudlets
(i.e., cloudlets 100–1 000, as presented in Table 2). The average makespan results
for all scheduling algorithms are presented in Figure 6. The LBIMM, TASA, and
Sufferage techniques produce the shortest makespan for Synthetic-I, Synthetic-II,
and GoCJ workload, respectively. However, there is a minor difference with respect
to makespan of LBIMM, TASA and sufferage algorithms for the three workloads.
On the other hand, OLB achieves the largest makespan for Synthetic-I, Synthetic-II,
and GoCJ benchmark workloads.

4.2 Throughput-Based Results

Throughput is the number of jobs executed during the span of per unit time. In
our experiments, the throughput is referred as the number of cloudlets executed per
second. Throughput can be calculated as follows:

Throughput =
n

Makespan
(4)

where n is the number of employed cloudlets. A scheduling technique producing
higher throughput value is assumed a better performing algorithm. For more clarity
in results, the average throughput for synthetic-I, synthetic-II, and GoCJ workloads
is calculted as:

Avg Throughput =

∑NE
i=1 Throughput i

NE
. (5)

Figure 7 presents the throughput results for execution of Synthetic-I,
Synthetic-II, and GoCJ benchmark workloads. While, for more clarity in the sim-
ulation results, Figure 8 represents the average throughput for all scheduling algo-
rithms using the given workloads. Likewise average makespan results, the LBIMM,
TASA, and Sufferage algorithms achieve the highest throughput for Synthetic-I,
Synthetic-II, and GoCJ benchmark workloads, respectively. Similarly, OLB tech-
nique achieves the least throughput using given three workloads.
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Figure 5. Makespan results
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Figure 1: Average Makespan Results 
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Figure 6. Average makespan results

4.3 ARUR-Based Results

ARUR shows the average resource utilization ratio for a compute Cloud. ARUR is
the ratio of average makespan to the makespan of the Cloud system and is calculated
as follows [10].

ARUR =

∑m
j=1 VM CTj

m

Makespan
. (6)

ARUR value remains between 0 and 1, where value close to 1 shows exceptional
resource utilization (i.e., nearest to 100 % resource utilization). Figure 9 shows
the ARUR-based experimental results of ten scheduling algorithms for Synthetic-I,
Synthetic-II, and GoCJ benchmark workloads. Mean ARUR value for each heuristic
is reported based on the following equation:

Mean ARUR =

∑NE
i=1 ARURi

NE
. (7)

Figure 10 presents the Mean ARUR results for the execution of Synthetic-I,
Synthetic-II, and GoCJ benchmark workloads. The LBIMM technique attains the
highest ARUR (76.5 % resource utilization), as compared to other scheduling al-
gorithms for Synthetic-I workload. However, in case of Synthetic-II and GoCJ
benchmark workloads, Sufferage algorithm produces the highest resource utiliza-
tion (75.7 % and 86.3 % resource utilization, respectively), as compared to other
scheduling techniques. The OLB scheduling produces the least resource utilization
among all scheduling techniques using given three workloads (i.e., 18.8 %, 20.7 %,
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Figure 7. Throughput results



Resource Utilization in Cloud Computing 541

 

Figure 1: Average Throughput Results 
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Figure 8. Average throughput results

and 41.2 % resource utilization for Synthetic-I, Sythetic-II, and GoCJ workloads,
respectively).

4.4 Comparative Discussion

OLB produces poor makespan and very low resource utilization. However, OLB
technique requires simple implementation, causes minimal scheduling overhead, and
results in lower time complexity. MCT provides improved makespan for the work-
load execution and minimal completion time for each job. However, MCT results
in low resource utilization for both skewed and non-skewed workloads because it
overloads the faster machines, what results in an imbalanced distribution of work-
load.

A workload is referred to as positively skewed if it contains a large number of
shorter size jobs with a few very long jobs [25]. On the other hand, if the workload
comprises a large number of longer jobs with a few shorter jobs then the work-
load is referred to as negatively skewed [25]. The skewness in synthetic and GoCJ
benchmark workloads used in this study is shown in Figures 3 and 4.

Min-Min and Max-Min do not produce good results (in terms of execution time)
for a skewed workload [25]. Min-Min scheduling attains improved execution time
when the workload has shorter size jobs or cloudlets. On the other hand, Min-Min
produces longer makespan for a positively skewed workload (due to the inherent
penalty for larger jobs). In case of workload containing most of the shorter jobs with
few longer jobs, Max-Min achieves improved makespan by executing longer jobs on
faster machines; and concurrently executing the shorter jobs on comparatively slower
machines. However, Max-Min and Min-Min perform worst for a skewed workload
and provide improved results for a non-skewed workload [25].
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Figure 9. ARUR results
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Figure 1: Mean ARUR Results 
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Figure 10. Mean ARUR results

RASA scheduling mechanism benefits from the merits of Min-Min and Max-Min
producing a lower response time for both smaller and larger size jobs [12]. TASA,
Sufferage, and LBIMM are modified versions of Min-Min [12, 16]. Therefore, these
scheduling techniques provide better results (for a non-skewed workload) as com-
pared to Min-Min. Additionally, TASA produces higher resource utilization (as
evident by the results shown in Section 4.3). Similarly, PSSLB and PSSELB al-
gorithms are the modified versions of Max-Min techniques (as shown in Figure 1).
PSSELB provides better resource utilization as compared to Max-Min, while it
introduces a slight degradation in makespan and throughput of PSSELB, as com-
pared to Max-Min. On the other hand, PSSLB shows resemblance in results (i.e.,
makespan, resource utilization and throughput results), as compared to Max-Min
technique.

5 RESOURCE UTILIZATION AND LOAD-IMBALANCE

We scrutinize the literature [1, 3, 4, 11, 12, 13, 16, 17] to examine the schedul-
ing aspects related to load balancing and resource utilization for Cloud computing
platform. The detailed analysis of the literature revealed that most of the existing
scheduling algorithms [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 21, 22, 23, 24, 25,
26, 28, 29] are more inclined towards the decrease in turnaround and response time
of a Cloud workload. For example, MCT, Min-Min, Max-Min, RASA, TASA, and
Sufferage algorithms are designed and proposed to minimize makespan of the Cloud
workload. The OLB, LBIMM, PSSLB, and PSSELB techniques consider additional
consideration of load balancing, too. However, most of these scheduling algorithms
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are still unable to fully utilize the computing resources and result in an imbalanced
work distribution among the virtual machines.

Our empirical analysis reveals that LBIMM, TASA, and Sufferage techniques
produce comparatively better utilization of computing resources (i.e., higher re-
source utilization), as compared to other scheduling algorithms presented in this
work. In Table 3, the results show that the LBIMM heuristic attains higher re-
source utilization (i.e., 8.36 % and 11.52 % higher, respectively), as compared to the
TASA and Sufferage for the execution of Synthetic-I workload. The Sufferage heuris-
tic attained higher resource utilization (i.e., 0.66 % and 9.24 % higher, respectively),
as compared to the TASA and LBIMM for the execution of Synthetic-II workload.
Similarly, the Sufferage scheduling achieves higher resource utilization (i.e., 2.01 %
and 8.55 % higher resource utilization, respectively), as compared to the LBIMM
and TASA for the GoCJ workload. Moreover, the Sufferage, Max-Min, and PSSLB
heuristics attain higher resource utilization too for the execution of a GoCJ work-
load. The Max-Min and RASA have achieved higher resource utilization of 5.40 %
and 6.29 %, respectively, as compared to TASA for GoCJ workload. This minor
improvement in resource utilization by RASA and Max-Min techniques over TASA
is due to the lower resource utilization incurred by the Min-Min heuristic (as com-
pared to Max-Min and RASA for the execution of GoCJ workload). Further, it
is observed that the LBIMM, TASA and Sufferage schedulers achieve the minimal
completion time and better resource utilization as compared to Max-Min, RASA,
Min-Min, MCT, OLB, PSSLB, and PSSELB techniques. The experimental results
reveal that the LBIMM, TASA and Sufferage mechanisms attain on average lower
makespan compared to the other state-of-the-art. However, the most of these mech-
anisms still lack a higher resource utilization (see Table 3) that could be improved
to further lessen the makespan for the execution of a Cloud workload.

Algorithms GoCJ Dataset Synthetic-I Dataset Synthetic-II Dataset

TASA 79.5 % 70.6 % 75.2 %

Sufferage 86.3 % 68.5 % 75.7 %

Max-Min 84.5 % 38.7 % 38.9 %

RASA 83.8 % 34.1 % 36.0 %

Min-Min 52.0 % 46.5 % 37.5 %

LBIMM 84.6 % 76.5 % 69.3 %

MCT 69.8 % 55.0 % 50.5 %

PSSLB 84.5 % 38.7 % 39.1 %

PSSELB 46.7 % 31.3 % 36.9 %

OLB 41.2 % 18.8 % 20.7 %

Table 3. Percentage of resource utilization of scheduling algorithms

Improving resource utilization is very crucial to reduce the cost and energy
consumption for workload execution in a Cloud datacenter [23, 40]. Therefore, the
issue concerning low resource utilization should be addressed in a comprehensive
manner, while designing a Cloud scheduling technique. For the optimal resource
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utilization, the workload should be assigned to the computing resources according
to the computing capabilities and application need. A resource- and application-
aware Cloud scheduling algorithm with load balancing will greatly benefit in terms
of reduced execution time and cost. Therefore, we have investigated machine-level
load balancing (i.e., VM category and VM-level load distribution) by using these
ten scheduling algorithms.

5.1 Discussion on VM Category and VM-wise Load Imbalance

For the empirical investigation, we employ the simulation environment based on
50 VMs (8 different sizes, as shown in Figure 2). For a balanced workload dis-
tribution, the cloudlets must be submitted to a compute Cloud for execution by
considering the computing capabilities of the employed VMs. Moreover, it is critical
to consider the current load of a VM, too. The computing load or share of each
VM j is presented as Sharej and can be calculated as:

Sharej =
n∑

i=1

Cloudlet i.MI × VM j.MIPS∑m
k=1VM k.MIPS

(8)

where Sharej is the amount of workload in terms of MI that needs to be allocated to
VM j to attain a load-balanced scheduling. The balance share for each VM category
in terms of percentage workload is represented as VMCat Sharec and is calculated
as follows:

VMCat Sharec =

∑cm
a=1 Sharea∑n

i=1 Cloudlet i.MI
× 100 (9)

where c represents the VM category and cm is the number of VMs in the VM
category c.

Percentage workload distribution by the 10 scheduling algorithms is presented
in a tabular form to highlight the load imbalance (see Figure 11). VMCat Sharec of
VM categories (see Figure 2) in a simulation environment is presented as a reference
for load distribution attained by the employed scheduling algorithms (see Figure 11,
presented in the last row). The imbalanced workload allocations are depicted such as
the underutilized resources are filled with orange-color background, heavily loaded
resources with red-background, and idle resources with a green background.

All VMs based on 100 MIPS (14 % of computing nodes in the experimental
setup) and a few of VMs with 500 and 750 MIPS remain idle when the GoCJ work-
load is scheduled using Min-Min algorithm. Additionally, the Min-Min overloads the
fastest VMs (based on 4 000 MIPS). On the other hand, the Max-Min scheduling
produces better workload distribution as compared to the Min-Min; however, only
a few VMs (both the slower and faster) are overloaded. This load mapping scenario
is mainly contributed by the composition of GoCJ workload; where a small portion
of large-sized cloudlets is present along with a majority of small-sized cloudlets. The
Max-Min algorithm overcomes the imbalance produced by the Min-Min due to the
presence of a few large-sized cloudlets which suits the Max-Min scheduling.
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Scheduling 
Heuristics 

No. of 
Cloudlets 

VMs  
100 

MIPS 

VMs 
500 

MIPS 

VMs 
750 

MIPS 

VMs 
1000 

MIPS 

VMs 
1250 

MIPS 

VMs 
1500 

MIPS 

VMs 
1750 

MIPS 

VMs 
4000 

MIPS 

O
L

B
 

100 6.58 % 7.15 % 6.61 % 9.90 % 12.09 % 14.45 % 15.42 % 27.80 % 

300 3.00 % 7.44 % 7.03 % 14.47 % 10.76 % 12.29 % 15.12 % 28.89 % 

500 1.96 % 6.61 % 7.70 % 9.83 % 11.16 % 13.23 % 15.90 % 33.62 % 

800 1.68 % 5.91 % 6.81 % 9.70 % 11.35 % 14.00 % 15.84 % 34.70 % 

1000 2.02 % 5.92 % 7.25 % 9.32 % 11.03 % 13.75 % 16.38 % 34.33 % 

M
C

T
 

100 0.00 % 3.07 % 4.54 % 6.92 % 8.83 % 10.66 % 13.81 % 52.16 % 

300 0.47 % 4.34 % 5.98 % 8.06 % 10.18 % 12.86 % 14.87 % 43.25 % 

500 0.65 % 4.72 % 6.29 % 8.67 % 11.00 % 13.37 % 15.92 % 39.38 % 

800 0.85 % 5.00 % 6.57 % 8.80 % 11.16 % 13.53 % 15.96 % 38.15 % 

1000 0.88 % 5.08 % 6.61 % 8.86 % 11.11 % 13.48 % 15.74 % 38.25 % 

M
in

-M
in

 100 0.00 % 0.00 % 0.00 % 4.34 % 3.64 % 7.68 % 11.93 % 72.40 % 

300 0.00 % 1.57 % 3.06 % 5.25 % 6.36 % 18.10 % 20.20 % 45.45 % 

500 0.00 % 3.28 % 4.33 % 4.99 % 11.49 % 12.56 % 17.74 % 45.62 % 

800 0.00 % 3.24 % 4.38 % 7.74 % 11.79 % 12.18 % 18.63 % 42.04 % 

1000 0.00 % 2.90 % 4.16 % 10.09 % 10.79 % 14.24 % 15.27 % 42.54 % 

L
B

IM
M

 100 0.00 % 1.95 % 3.43 % 4.34 % 7.95 % 10.69 % 11.93 % 60.07 % 
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500 0.88 % 5.10 % 6.63 % 9.09 % 11.49 % 13.81 % 16.05 % 36.96 % 
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1000 0.72 % 5.35 % 6.90 % 9.75 % 12.00 % 13.76 % 15.39 % 36.12 % 

P
S

S
L

B
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800 1.22 % 5.38 % 6.92 % 9.10 % 11.40 % 13.62 % 15.92 % 36.43 % 

1000 1.13 % 5.33 % 6.79 % 9.10 % 11.40 % 13.70 % 15.99 % 36.55 % 

Balanced workload for VM categories. 

%age Load of VMs 1.07 % 5.33 % 6.85 % 9.13 % 11.42 % 13.70 % 15.98 % 36.53 % 

Figure 11. VM Category-wise percentage workload distribution for GoCJ workload
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The PSSLB algorithm shows almost the same behavior for the workload dis-
tribution like Max-Min because both of these algorithms favor larger jobs. The
LBIMM, Sufferage, RASA, Max-Min, and TASA produce comparatively a load-
balanced schedule. Among these algorithms, Sufferage produces the highest resource
utilization because of the resource-aware mechanism. However, an interesting obser-
vation is that the VMs based on 100 MIPS remain idle. Moreover, the recourse-aware
mechanism employed by the Sufferage also produces a notable load imbalance, when
the scheduling is performed using lesser number of cloudlets (i.e., 100 cloudlets), as
shown in Figure 11. Similarly, LBIMM algorithm shows an improved load balanc-
ing in workload distribution. Also, RASA scheduling produces better load balancing
due to the inherent usage of Min-Min and Max-Min (in alternate scheduling steps).
However, the slowest machines remain idle (due to the inherent use of Min-Min al-
gorithm) and the fastest VMs remain overloaded when a small number of cloudlets
are scheduled by the RASA (see Figure 11). The employed alternate Min-Min and
Max-Min mechanisms (by the RASA) produce a fair scheduling for both the large
and small size cloudlets. Similarly, TASA technique produces the minimal makespan
among the ten employed scheduling heuristics. However, most of the slower VMs
(i.e., 100 and 500 MIPS based) become idle due to the use of Min-Min in alternate
scheduling steps. On the other hand, TASA overcomes the load imbalance (caused
by the Min-Min algorithm) to some extent with the help of inherent Sufferage based
mechanism (in alternate scheduling steps). The Sufferage scheduling heuristic pro-
duces a better load-balanced schedule; however, very few slow VMs (with 100 MIPS)
remain idle.

The results reveal that there is sufficient possibility of imbalance workload dis-
tribution (among VMs) even a scheduling technique attains an improved ARUR
value; (as presented in Section 4.3). It is empirically evident that most of the exist-
ing scheduling mechanisms produce a reduced makespan with a higher throughput.
However, often these algorithms result in a load imbalanced scheduling.

For example, Sufferage produces a higher ARUR value 0.863 (i.e., 86.3 % resource
utilization) using the GoCJ workload (see Figure 22). However, the scheduling by
Sufferage in this scenario does not utilize the VMs with computer power of 100 MIPS
(i.e., those VMs remained idle). In addition, VMs with the computing capability of
500 and 750 MIPS are underutilized too and the VMs with 4 000 MIPS are heavily
loaded (for the schedule of 100 cloudlets-based job pool (see Figure 11)). On the
other hand, the VMs with the computing power of 100 MIPS were being utilized by
the Sufferage scheduling when the number of cloudlets in the job pool increased.

Similarly, LBIMM algorithm attains 0.846 ARUR (i.e., 84.6 % resource utiliza-
tion); however, VMs with 100 MIPS remain idle. Moreover, VMs with 4 000 MIPS
are observed heavily overloaded and all the other VMs (in the employed experimen-
tal setup) are observed as underutilized (for 100 cloudlets-based scheduling). TASA
technique produces 0.795 ARUR (i.e., 79.5 % resource utilization) for the GoCJ
workload (see Figure 10); however, VMs with 100 MIPS remain idle (see Figure 11).
TASA utilizes the VMs with 100 MIPS; however, most of these VMs (100 MIPS
based) remained underutilized when the number of cloudlets to be scheduled are
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Figure 12. VM-wise percentage workload distribution by Min-Min using 250 cloudlets of
GoCJ workload
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increased in the experiments. Min-Min scheduling technique produces 0.52 ARUR
(i.e., 52 % resource utilization) for the GoCJ workload. Figure 11 depicts a load im-
balance profile of the workload distribution by the Min-Min scheduling algorithm.
The VMs with 100 MIPS remain idle due to the imbalanced scheduling by Min-Min
algorithm. The VMs with 500 and 750 MIPS are assigned with cloudlets; however,
these VMs are significantly underutilized (as shown in Figure 11), when the num-
ber of cloudlets increases. Similarly, VMs with 1 000, 1 250, 1 500, and 1 750 MIPS
also remain underutilized for the Min-Min based scheduling. Contrarily, VMs with
4 000 MIPS are heavily overloaded by Min-Min technique (see Figure 11).

This empirical investigation reveals that the scheduling algorithms producing
better ARUR value still result in a machine level load-imbalance for workload dis-
tribution. The imbalanced distribution of workload among the VMs within the
same VM category is also observed. Figure 12 presents the workload allocation
among all VMs by the Min-Min scheduling algorithm for the GoCJ workload (using
250 cloudlets). Figure 12 highlights the imbalanced distribution of workload. The
underutilized VM categories are highlighted in orange color. The heavily overloaded
or idle VM categories are highlighted with the yellow and green background, respec-
tively. Similarly, the load imbalance of VMs within a specific VM category is shown
with a light-blue color. Despite balancing the workload assigned to VM category
with 1 750 MIPS, it can be seen that the VM with ID 39 is heavily overloaded (i.e.,
4.198 % workload is assigned) and VMs with ID 41 and ID 45 are underutilized with
only 1.830 and 1.837 % workload assignment, respectively (see Figure 12).

A higher resource utilization can be attained if all the VMs in Cloud exhibit ap-
proximately the same completion time. The load balance execution guarantees that
all the computing resources (i.e., VMs) are being fully utilized and there are no idle
resources. Ultimately, the minimal makespan with maximal throughput will be en-
sured. The load balanced execution in a compute Cloud is a highly desirable aspect
that will ensure lower makespan in amalgamation with higher throughput, higher
resource utilization, and less energy cost. In summary, this empirical investigation
highlights the following issues and potential research directions:

• a balanced distribution of workload among computing resources to be accom-
plished to achieve improved resource utilization with reduced makespan, and
increased throughput in Cloud computing;

• designing and implementing a resource-aware holistic scheduling that not only
considers application’s computing requirements, but also contemplates virtual
machine level attributes to provide a higher ARUR and near-optimal load bal-
ancing for the Cloud workload execution.

6 CONCLUSIONS

The inefficient utilization of resources by investigating the static heuristics for work-
load execution is empirically analyzed in this study. For this purpose, ten renowned
Cloud scheduling heuristics are scrutinized and a comprehensive empirical study



550 A. Hussain, M. Aleem, M.A. Iqbal, M.A. Islam

is conducted using the CloudSim simulation tool. The experiments are conducted
using three workloads: two synthetics (i.e., Synthetic-I and Synthetic-II) and one
benchmark GoCJ workloads. All the three workloads are based on static, non-
pre-emptive, and compute-intensive Cloud jobs. Sufferage, LBIMM, Max-Min, and
RASA produced the higher ARUR (i.e., 86.3 %, 84.6 %, 84.5 %, and 83.8 % resource
utilization, respectively) using GoCJ workload. For LBIMM, Sufferage, and RASA
based scheduling, most of the VMs remain idle or underutilized and the faster VMs
(4 000 MIPS) are overloaded with the imbalanced workload. TASA scheduling mech-
anism has achieved a resource utilization of up to 79.5 % for the GoCJ workload while
the majority of machines (based on 100 to 500 MIPS) mostly remained idle or under-
utilized and the faster machines (i.e., 4 000 MIPS) were overloaded. Similarly, the
RASA scheduling mechanism produces a schedule that results in slower machines
being idle (for the small-sized job pool); however, a gradual improvement in load-
balanced was observed for the large size job pool. These results reveal that the out-
performing heuristics are also unable to utilize the full computing capacity of Cloud
resources. This empirical study carves out that the improper resource utilization
and load imbalance is a crucial research issue that needs to be addressed compre-
hensively. This study identifies that the workload should be mapped in a balanced
manner among the virtual machines considering both the computing capabilities of
the Cloud resources and the applications computing requirements. In a consequent
to this work, the authors are designing and implementing a resource-aware sched-
uler that considers the machines computing capabilities, the applications’ computing
requirements, and a balanced workload distribution constraint.
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