
Computing and Informatics, Vol. 38, 2019, 265–290, doi: 10.31577/cai 2019 2 265

SPECIFIC PARAMETER-FREE GLOBAL
OPTIMIZATION TO SPEED UP SETTING
AND AVOID FACTORS INTERACTIONS

Rafael Rodŕıguez-Reche, Roćıo P. Prado
Sebastián Garćıa-Galán, José Enrique Muñoz-Expósito
Nicolás Ruiz-Reyes

Telecommunication Engineering Department
University of Jaén
Science and Technology Campus of Linares
Jaén, Spain
e-mail: {rrreche, rperez, sgalan, jemunoz, nicolas}@ujaen.es

Abstract. Meta-heuristics utilizing numerous parameters are more complicated
than meta-heuristics with a couple of parameters for various reasons. In essence,
the effort expected to tune the strategy-particular parameters is far more promi-
nent as the quantity of parameters increases and furthermore, complex algorithms
are liable for the presence of further parameter interactions. Jaya meta-heuristic
does not involve any strategy-specific parameters and is a one-stage technique. It
has demonstrated its effectiveness compared to major types of meta-heuristics and
it introduces various points of interest, such as its easy deployment and set-up in
industrial applications and its low complexity to be studied. In this work, a new
meta-heuristic, Enhanced Jaya (EJaya) is proposed to overcome the inconsistency
of Jaya in diverse situations, introducing coherent attraction and repulsion move-
ments and restrained intensity for flight. Comparative results of EJaya in a set
of benchmark problems including statistical tests show that it is feasible to in-
crease the accuracy, scalability and exploitation capability of Jaya while keeping its
specific parameter-free feature. EJaya is especially suitable for a priori undefined
characteristics optimization functions or applications where the set-up time of the
optimization process is critical and parameters tuning and interactions must be
avoided.

Keywords: Soft computing, optimization, meta-heuristics, parameters complexity,
parameters interactions

Mathematics Subject Classification 2010: 90-08

266 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

1 INTRODUCTION

Meta-heuristics, in their genuine definition, are solution techniques that organize
an association between local solution methods and more complex methodologies
to make a procedure able to escape from local optima and playing out a vigor-
ous inquiry of a solution space [8]. Over time, these techniques have incorporated
new methodologies to avoid getting trapped on local optima in complex search
spaces, particularly those strategies that use at least one neighbourhood structure
as a method for characterizing permissible movements to change from a solution to
the next, or to implement or destroy solutions in diverse applications.

Some instruments and strategies that have risen up out of research in meta-
heuristic techniques have ended up being surprisingly viable, to such an extent that
meta-heuristics have moved into the spotlight lately as a favoured line of assault for
facing numerous sorts of complex issues, especially those of a combinatorial nature,
for example, optimization in robotics [16], cloud and grid computing [6, 7], energy
consumption [3], bioinformatics [18], manufacturing planning and scheduling [27],
image processing [17], filter modelling [1], etc. While meta-heuristics cannot confirm
the optimal character of their solutions, exact methods (which hypothetically can
give such an accreditation, if permitted to run long enough) have generally demon-
strated to be unable to discover solutions whose quality is near of that provided
by the main meta-heuristics, especially for real-world applications, which frequently
present a more complex nature. Additionally, a portion of the more effective uses
of exact techniques has come to fruition with consolidating meta-heuristic method-
ologies inside them. These results have propelled further research and utilization of
novel and enhanced meta-heuristic procedures.

It is known that there does not exist a single strategy to achieve the more ef-
ficient solution for all optimization problems, also explained as the no “free lunch”
theorems for optimization [24], and since the characteristics of the problems at hand
are unknown a priori in many real applications, the selection of the optimization
strategy could be arbitrary. Nevertheless, even considering that the selected strat-
egy is the most suitable for the problem in hand, generally a tuning process must be
considered to adjust the value of its control parameters, what delays or even makes
not feasible the consideration of optimization processes to increase the system’s effi-
ciency. All meta-heuristics are probabilistic strategies that make use of basic control
parameters such as population size, number of dimensions, etc. Beyond the regular
control parameters, most strategies use particular control parameters. In this way,
Genetic Algorithms (GA) consider mutation, crossover and selection rates [8, 9, 28],
Particle Swarm Optimization (PSO) requires the specification of inertia weight, so-
cial and cognitive controlling factors [10, 13], Artificial Bee Colony (ABC) [11, 12]
must define the amount of onlooker, employed and scout bees and also, a bound fac-
tor, Harmony Search (HS) makes use of memory and pitch adjusting rates, and the
amount of improvisations. Likewise, different algorithms, for example, Differential
Evolution (DE), Heat Transfer Search (HTS), Biogeography-Based Optimization
(BBO), Adaptive Segregational Constraint Handling Evolutionary Algorithm (AS-

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 267

CHEA), etc., require the tuning of strategy-particular parameters [8, 19, 20, 23]. The
tuning of the strategy-particular parameters is an exceptionally significant aspect
which highly influences the successful execution of most meta-heuristics. An inef-
ficient tuning of strategy-particular parameters either increases the computational
cost or offers local optimal solutions. Henceforth, if two meta-heuristics generate
comparable results but, however, one is fundamentally less complex than the other,
then the simplest is a better strategy [8]. Less complex algorithms have various
points of interest, including being easy to deploy and set up in an industrial setting
and being less complex to be studied.

Jaya [20] is an extremely simple algorithm, whose main virtue is given by the
fact that it is not necessary to configure any control parameter to make it work
beyond the own associated to the problem to be solved (e.g., delimitation of the
search space, number of variables, fitness function, etc.), which makes it especially
suitable for problems where characteristics are unknown a priori. Jaya efficiency
has been tested in a diverse test-bed of benchmark functions [20] and the outcomes
have been compared to the accomplishments of major types of algorithms, such
as GA [9], PSO [13], DE [23], ABC [11] and recent simple meta-heuristics such as
Teaching-Learning-Based Optimization (TLBO) [2, 21]. Results show the satisfac-
tory performance of Jaya in a wide range of optimization problems and statistical
tests additionally accredit the success of this technique. As stated before, there may
not exist a better algorithm for all different types of applications, but Jaya emerges
as a competitive strategy to be considered in the field of optimization. What can
be stated with certainty is that Jaya is a strategy easy to implement, it requires no
strategy-particular parameters and it gives the optimal solutions with slightly less
time complexity and exactly the same computational complexity than major types
of meta-heuristics such as the ones cited above. Thus, the optimization research
community is urged to make changes to Jaya in a way that the strategy can turn
out to be a great deal more accurate with a more efficient performance [20].

In this work, Jaya is redefined and the new proposal is called EJaya. EJaya over-
comes Jaya inconsistency in diverse conditions through the introduction of coherent
attraction and repulsion movements and restrained intensity for flight. The pro-
posal is tested considering a wide range of benchmark problems from the Congress
on Evolutionary Computation (CEC) [15]. The field of meta-heuristics, included
within what is known as Evolutionary Computation, has its own space within CEC
annually where the latest developments are discussed on this matter and a number
of objective functions or benchmark functions to be optimized by meta-heuristics
algorithms are presented as well as modifications to traditional functions in opti-
mization problems, each with a number of features that have different impacts on
the performance of meta-heuristics. Thus, benchmark functions from the CEC for
the single objective real-parameter numerical optimization 2014 [15] are considered
to test the enhanced strategy performance. Results including statistical tests show
that it is feasible to increase the accuracy, scalability and exploitation capability
of Jaya while keeping its control parameter-free feature, what makes it especially
suitable for a priori undefined characteristics optimization functions or applications

268 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

where the set-up time of the optimization is critical and tuning and interactions of
parameters must be avoided.

This paper is organized as follows. In Section 2, an analysis of the complexity
of meta-heuristics and related works are presented. Next, the fundamentals and
accomplishments of Jaya are presented in Section 3 and the proposed meta-heuristic
EJaya is explained in Section 4. In Section 5, the experimental results are presented
and discussed and finally, in Section 6, the main conclusions of the work are drawn.

2 BACKGROUND

Various measures of complexity exist for meta-heuristics [8]. Some measurements
incorporate the quantity of phases of pseudo-code expected to depict the strategy or
the quantity of lines of program expected to execute the meta-heuristic. In any case,
this kind of measurements are not especially helpful, as they differ in the light of
the programming language, the style and the level of the description of the pseudo-
code. A more relevant measure for the complexity nature of a meta-heuristic is
the quantity of parameters utilized as a part of the strategy. Parameters can be
defined as the adaptable factors of a meta-heuristic that can be tuned to adjust its
execution. They can be specified statically (e.g., selection rate of 0.4) or depending
on the specific case (e.g., selection rate of 0.01 n, where n is the number of variables
to be optimized for each individual in the population). In both of these cases, the
steady estimation of the parameter or its relation to other factor in the problem in
hand must be specified a priori by the strategy designer.

Most sorts of algorithms consider various specific parameters to be determined
before their execution.

Table 1 presents fundamental parameters required for main types of strategies.
Although these are just examples to show some typical specific parameters in vari-
ous sorts of algorithms, most meta-heuristics need a diverse amount of parameters.
For example, Tabu Search (TS) technique can only have one parameter, the Tabu
rundown length. Nevertheless, in [26] TS in the vehicle routing issue utilizes 32 pa-
rameters. Similarly, algorithms can require less than the “base” amount of param-
eters by joining parameters with similar esteem. For example, the GA strategy for
the spanning tree problem [25] utilizes only one specific parameter, which lets both
control the population size and fix the end criteria.

Meta-heuristics utilizing numerous parameters present further complexity than
the methodologies with a couple of parameters for various reasons. To begin with,
the cost expected to set up and comprehend a wide set of parameters is far more
prominent as the quantity of parameters increases. A brute force strategy aiming to
tune m parameter values for each of the n parameters in the problem in hand, must
test mn combinations for each problem instance. Let us consider that three values
can be assigned to each parameter of a strategy which requires the use of two pa-
rameters and seven parameters. In the first case, this would mean 9 evaluations and
in the second case, 37 = 2 187. If this number could be considered viable, the eval-

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 269

Meta-Heuristics Specific Control Parameters

Genetic Algorithms Mutation probability
Crossover probability
Selection operator

Particle Swarm Optimization Inertia weight
Social parameter
Cognitive parameter

Differential Evolution Mutation rate
Recombination rate

Artificial Bee Colony Onlooker bees
Employed bees
Scout bees
Limit

Harmony Search Distance bandwidth
Memory size
Pitch adjustment rate
Rate of choosing from memory

Table 1. Specific control parameters for major types of meta-heuristics

uations required for a 32 parameter meta-heuristic, 332 = 1 853 020 188 851 841, are
not feasible in most real-world applications. Moreover, the number of possibilities
for strategies with a higher number of parameters increases exponentially, making
the set-up of algorithms much harder. Despite the fact that there are approaches
to search for good combinations of parameters, the number of options still increases
with the quantity of parameters, which means that the set up is much more trou-
blesome. Greater quantities of parameters additionally make the understanding of
the optimization process much more difficult.

Furthermore, the complexity in setting up it is not the only drawback of complex
meta-heuristics. A major problem is given by the greater possibilities of a vast pa-
rameter set to present complicated parameter interactions. Complex interactions of
parameters can derive in, for example, finding numerous local solutions. In general,
it is proved that the optimization of parameters independently or in small sets is not
effective and the problem becomes harder as the number of parameters increases.
There exist a number of works related to parameter interactions. For example, in [4]
the researchers could appreciate non-trifling interactions in GA considering just three
parameters. It was observed that the adequacy of a given parameter combination
is frequently subject to the problem and functions to be optimized and so, it was
difficult to classify and automatize the analysis of interactions. Thus, it is frequently
extremely hard to keep away from parameter interactions and the level of these in-
teractions increases drastically with the quantity of parameters once again. This has
also aimed research in optimization. The recently presented TLBO [2, 20, 21] and
Jaya [20] meta-heuristics do not use any strategy-particular parameters. However,
it must be noted that TLBO requires two differentiated stages (i.e., educator and

270 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

learner stages), whereas Jaya considers only one stage and thus, it is more straight-
forward to use. Furthermore, as shown in the next section, results for Jaya in a wide
range of benchmark functions provide better results than TLBO.

Hence, considering the relevance of the parameters in the performance of meta-
heuristics, it is important to propose and analyse new ways of reducing the complex-
ity of meta-heuristics while offering good solutions and this work represents a new
effort in this sense.

3 FUNDAMENTALS AND ACCOMPLISHMENTS OF JAYA

Jaya could be defined as a swarm type strategy in which the attraction to the best
local is eliminated and replaced by a repulsion to the worst particle in the popu-
lation [20]. Moreover, the inertial weight of the particles is removed: its value is
fixed to the unity and it is not modified at any time during the execution of the
algorithm. In addition, particles have no memory: they do not keep a record of the
best solution found, neither globally nor locally (i.e., the best position of the swarm
and the best position of the particle, respectively), because the particles do not
move from their position if they do not find a better solution in the next iteration.
Thus, interaction with the best local position of the particle is not considered, but
instead a new relationship is added: a movement of escape from the worst position
within the swarm in the current iteration. On the other hand, the movement of
approach to the best particle in the population is preserved. The intensity of both
movements, attraction and repulsion, depends solely on the distance between the
particle that makes the movement and those that affect it, that is, the best and worst
positions in the swarm, respectively. Hence, there are no adjustment parameters to
tune the exploration of the search space (such as c1 and c2 in most swarm-based
strategies [14]).

Next, the algorithm Jaya is formulated formally. Consider f(x) the objec-
tive function to be optimized, m the number of design factors or variables (i.e.,
j = 1, 2, . . . ,m) and n the population size (i.e., k = 1, 2, . . . , n). Also, consider the
best individual of the population to be the candidate solution obtaining the current
optimal result of f(x) (i.e., f(x)best) and, analogously, the worst candidate to be the
individual obtaining the current optimal result of f(x) (i.e., f(x)worst) in the popu-
lation. If X t

j,k represents the value of the jth factor or variable for the kth solution

during the tth iteration, then this value is modified by following Equation (1):

X t+1
j,k = X t

j,k + r1,j,t
(
X t

j,best − |X t
j,k|

)
− r2,j,t

(
X t

j,worst − |X t
j,k|

)
(1)

where X t
j,best is the value of the jth factor of the best individual, X t

j,worst, is the value

of the jth variable of the worst candidate and X t+1
j,k is the updated value of X t

j,k,

r1,j,t, r2,j,t being random numbers in the range [0, 1]. The term r1,j,t
(
X t

j,best − |X t
j,k|

)
shows the leaning of the candidate to move towards the best solution or attraction
factor AF t

j,k and the term r2,j,t(X
t
j,worst−|X t

j,k|) indicates the leaning of the solution

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 271

to go away from the worst solution or rejection factor RF t
j,k. X t+1

j,k performance
is tested. All particles whose modification represents an improvement in the final
results are kept up and they are considered in the following steps of the strategy.
Jaya algorithm is detailed in Algorithm 1. As observed, the algorithm continuously
tries to get nearer to the best solution and tries to maintain a strategic distance
from the worst solution. Jaya aims to wind up successful in achieving the best
solution and thus, it is named Jaya (i.e., triumph). These characteristics provide
Jaya a strong convergent behaviour mainly due to its large exploration capacities
and the elimination of the possibility for particles to move towards positions offering
worse results than the current solution.

Algorithm 1 Jaya pseudo-code
1: —– Data
2: N: Number of individuals
3: D: Number of dimensions
4: —– Algorithm
5: Population initialization
6: while !end condition do
7: Find (Xt

j,best) and worst (Xt
j,worst) individual in the population

8: for k ¡ N do
9: for j ¡ D do

10: Xt+1
j,k = Xt

j,k + r1,j,t

(
Xt

j,best − |Xt
j,k|

)
− r2,j,t

(
Xt

j,worst − |Xt
j,k|

)
11: end for
12: if Better solution found over particle’s actual solution then
13: Update particle’s solution
14: else
15: Preserve previous particle’s solution
16: end if
17: end for
18: end while

In [20], Jaya is evaluated in a test-bed of well-known benchmark functions in
the optimization literature with diverse features like unimodality and multimodal-
ity, separability and non-separability, regularity and non-regularity, etc., where the
quantity of design factors and their extents are diverse for every case. To assess
the execution of the proposed algorithm based on Jaya in this work, the outcomes
obtained by Jaya are contrasted to the outcomes of diverse optimization meta-
heuristics, such as GA, PSO, DE, ABC and TLBO. This selection of strategies for
comparison considers both the more competitive and well-known strategies (e.g.,
GA, PSO and DE) and the more recent and simple optimization meta-heuristics
(e.g., ABC and TLBO) of those extensively analysed in [20]. Obtained mean results
are reproduced in Table 2 for the diverse strategies.

From Table 2 it is observed that the results of Jaya are either equal or more
accurate than the rest of the strategies in the test-bed. This can be further proved
considering statistical tests. The p-value of Friedman Ranks test of these results is

272 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

f GA PSO DE ABC TLBO Jaya

Sphere 1.11e+03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

SumSquares 1.48e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Beale 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Easom −1.00e+00 −1.00e+00−1.00e+00−1.00e+00−1.00e+00−1.00e+00

Matyas 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Colville 1.49e−02 0.00e+00 4.09e−02 9.29e−02 0.00e+00 0.00e+00

Trid 6 −4.99e+01 −5.00e+01−5.00e+01−5.00e+01−5.00e+01−5.00e+01

Trid 10 1.93e−01 0.00e+00 0.00e+00 0.00e+00 0.00e+00−2.10e+02

Zakharov 1.33e−02 0.00e+00 0.00e+00 2.47e−04 0.00e+00 0.00e+00

Schwefel 1.2 7.40e+03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Rosenbrock 1.96e+05 1.50e+01 1.82e+01 8.87e−02 1.62e−05 0.00e+00

Dixon-Price 1.22e+03 6.67e−01 6.67e−01 0.00e+00 6.67e−01 0.00e+00

Foxholes 9.98e−01 9.98e−01 9.98e−01 9.98e−01 9.98e−01 9.98e−01

Branin 3.97e−01 3.97e−01 3.97e−01 3.97e−01 3.97e−01 3.97e−01

Bohachevsky 1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Booth 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Michalewicz 2 −1.80e+00 −1.57e+00−1.80e+00−1.80e+00−1.80e+00−1.80e+00

Michalewicz 5 −4.64e+00 −2.49e+00−4.68e+00−4.68e+00−4.67e+00−4.68e+00

Bohachevsky 2 6.829e−02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Bohachevsky 3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

GoldStein-Price 5.87e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00

Perm 3.02e−01 3.60e−02 2.40e−02 4.11e−02 6.76e−04 0.00e+00

Hartman 3 −3.86e+00 −3.63e+00−3.86e+00−3.86e+00−3.86e+00−3.86e+00

Ackley 1.46e+01 1.64e−01 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Penalized 2 1.25e+02 7.67e−03 2.19e−03 0.00e+00 2.34e−08 0.00e+00

Langerman 2 −1.08e+00 −6.79e−01−1.08e+00−1.08e+00−1.08e+00−1.08e+00

Angerman 5 2.87e−01 2.13e−01 0.00e+00 2.08e−04 1.55e−05−1.24e+00

Langerman 10 −0.63e−01−2.566e−03−1.05e+00−4.46e−01−6.49e−01−6.20e−01

FletcherPowell 5 4.30e−03 1.45e+03 5.98e+00 1.73e−01 2.20e+00 1.59e−04

FletcherPowell 10 2.95e+01 1.36e+03 7.81e+02 8.23e+00 3.59e+01 5.43e−04

Table 2. Comparative results of Jaya with major types of meta-heuristics (mean)

1.475e−06, indicating that there are significant differences between the algorithms
(considering a level of significance of p-value = 0.05). Moreover, in Table 3 the
Friedman Ranks Post-Hoc test for Jaya against GA, PSO, DE, ABC and TLBO
is presented for peer analysis based on data in Table 2. As shown, Jaya algorithm
presents a statistically significant improvement over GA and PSO and no differences
are statistically significant for DE, ABC and TLBO. However, considering that Jaya
is a much simpler algorithm than DE, ABC and TLBO, it can be inferred that
Jaya provides equally good results, but with the difference of its noticeable greater
simplicity. Therefore, it can be said that Jaya is a better algorithm, what justifies
research to reach improvements like the ones presented in this work.

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 273

Also, it is important to highlight that the competitive results of Jaya in com-
parison to major types of optimization algorithms are achieved in fair conditions
in terms of computational effort. As known, the complexity of meta-heuristics can
be measured based on two different criteria. Time and computational complexity.
On the one hand, time complexity is based on the overall time taken by the differ-
ent steps of the algorithm involving the generation of initial population, updating
solution, etc. In short, Jaya is a swarm-type optimization algorithm directly de-
rived from PSO in which the attraction to the best local particle is eliminated and
replaced by a repulsion to the worst particle in the population, and in which the
consideration of the inertial weight in the update of particles and the step for its
modification is removed. Furthermore, particles have no record of the best solution
found and no adjustment parameters (denoted as c1 and c2 in PSO) in most swarm-
based strategies are considered. Hence, as a whole, the total time complexity is
slightly reduced from the canonical PSO in which it is based. On the other hand,
the computational complexity refers to the number of function evaluations required
to achieve the final result. Also, in [20], it is shown that to test the performance of
Jaya compared with the results obtained by the other optimization algorithms such
as GA, PSO, DE, ABC and TLBO it is done considering the exactly same amount
of function evaluations for the different meta-heuristics and the process is repeated
30 times for each algorithm and benchmark function. Thus, the consistency in the
comparison in time and complexity effort is kept in the comparison of the Jaya
algorithm with other meta-heuristics.

Algorithm of Study Comparison Algorithm p-Value

GA 2.137193e−06

PSO 2.527065e−03

Jaya DE 5.230299e−01

ABC 9.147621e−01

TLBO 8.438326e−01

Table 3. Friedman Ranks Post-Hoc test for Jaya and major types of meta-heuristics
(p-values)

4 PROPOSED META-HEURISTIC: EJAYA

From the study of Jaya, two incongruities between its philosophy and its implemen-
tation can be found. Firstly, it is an incoherence associated with the attraction and
repulsion factors that govern the fundamental equation of Jaya, Equation (1), and
secondly, an incoherence related to the intensity of the flight in relation to the dis-
tance to the worst particle. Considering these problems and the benefits associated
with the simplicity of Jaya, two new improvements are proposed in this work. And
the combination of them has resulted in the proposed strategy named EJaya.

274 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

4.1 Coherent Attraction and Repulsion Factors

In certain situations, it is possible that the design of Jaya goes against its own phi-
losophy: particles are attracted to the worst solution of the population and repulsed
of the best individual of the population. As explained in the previous section, Jaya
is designed to attract particles, X t

j,k, to the best particle found, X t
j,best, and move

them away from the worst particle found, X t
j,worst, as indicated in Equation (1).

However, derived from the analysis of its mathematical formulation, conditions may
appear where the opposite behaviour, i.e., a departure from the best particle or an
approach to the worst particle, may take place. As can be seen, both the attraction
and repulsion factors in Equation (1) involve the absolute value of the position of
the moving particle and this caused diverse incongruent situations. In case X t

j,k¡
0 and |X t

j,k| > |X t
j,best|, the proposed attraction factor moves the particle away

from the overall best one. The same applies to the second part of the equation, in
which a movement of rapprochement to the worst particle is suggested if X t

j,k¡ 0 and
|X t

j,k| > |X t
j,worst|.

In Table 4, we have presented four examples (i.e., cases A-D) of different sit-
uations where Jaya is wrong in its formulation to achieve its goal. Specifically,
a particle X t

k focusing in dimension j = 5 is considered in all cases for simplic-
ity (X t

5,k). In case A, the studied conditions are X t
j,k¡ 0, |X t

j,k| > |X t
j,best| and

X t
j,best < 0 when j = 5. In this case it can be deduced that being X t

5,k = −9
and X t

5,best = −6, the attraction factor or Jaya term inducing an approach to the

best particle, AF t
5,k = +r1,j,t

(
X t

5,best − |X t
5,k|

)
, should give a positive value to let an

approach of X t
5,k to X t

5,best.

However, the attraction factor given by Jaya provides a negative attraction
factor, AF t

5,k = −15 · r1,j,t , which would result in a departure from the best particle
when it should be an approach to it. On the other hand, case B corresponds to the
situation where X t

j,k¡ 0, |X t
j,k| > |X t

j,worst| and X t
j,worst < 0 when j = 5 . Considering

X t
5,k = −9 and X t

5,worst = −4 the factor inducing the particle to move away from the

worst particle or repulsion factor, RF t
5,k = −r2,j,t

(
X t

5,worst − |X t
5,k|

)
, should provide

a positive value to increase the distance. However, as can be seen, a positive value
for the repulsion factor is obtained, RF t

5,k = 13 · r2,j,t > 0, leading to an approach
to the worst particle X t

j,worst. Case C corresponds to the situation where X t
j,k¡ 0,

|X t
j,k| > |X t

j,best| and X t
j,best > 0 when j = 5. In this case X t

5,k = −9 and X t
5,best = 5,

therefore, in this case the attraction factor AF should be positive in order to attract
particle X t

5,k to X t
5,best but instead AF t

5,k = −4 · r1,j,t < 0. Finally, an example of
the situation presented when X t

j,k¡ 0, |X t
j,k| > |X t

j,worst| and X t
j,worst > 0 for j = 5, is

shown in case D. In this case, the RF should be negative to achieve a repulsion of X t
5,k

from X t
5,worst. However, once again, the original algorithm in this situation would get

the opposite effect, i.e., an approach to the worst particle, since RF t
5,k = 6 ·r2,j,t > 0.

Hence, from these examples it can be understood that although Jaya is designed
to approach particles to the best current solution and escape from the worst existing
solution in the population, the equation of motion that governs Jaya does not always

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 275

Xt
k = [2 7 4 8 − 9 1 3 4 6]⇒ Xt

5,k = −9

Case A: Xt
j,k < 0, |Xt

j,k| > |Xt
j,best|, Xt

j,best < 0

Xt
best = [8 1 3 4 − 6 7 2 3 1]⇒ Xt

5,best = −6

Xt
5,best − |Xt

5,k| = −6− 9 = −15

AF t
5,k = +r1,j,t

(
Xt

5,best − |Xt
5,k|

)
= −15 · r1,j,t; r1,j,t ∈ [0, 1]

AF t
5,k = −15 · r1,j,t < 0

⇒ AF t
5,k should be > 0 to attract Xt+1

5,k to Xt
5,best

Case B: Xt
j,k < 0, |Xt

j,k| > |Xt
j,worst|, Xt

j,worst < 0

Xt
worst = [2 5 7 2 − 4 9 8 5 9]⇒ Xt

5,worst = −4

Xt
5,worst − |Xt

5,k| = −4− 9 = −13

RF t
5,k = −r2,j,t

(
Xt

5,worst − |Xt
5,k|

)
= 13 · r2,j,t; r2,j,t ∈ [0, 1]

RF t
5,k = 13 · r2,j,t > 0

⇒ RF t
5,k should be < 0 to move away Xt+1

5,k fromXt
5,worst

Case C: Xt
j,k < 0, |Xt

j,k| > |Xt
j,best|, Xt

j,best > 0

Xt
best = [8 1 3 4 5 7 2 3 1]⇒ Xt

5,best = 5

Xt
5,best − |Xt

5,k| = 5− 9 = −4

AF t
5,k = +r1,j,t

(
Xt

5,best − |Xt
5,k|

)
= −4 · r1,j,t; r1,j,t ∈ [0, 1]

AF t
5,k = −4 · r1,j,t < 0

⇒ AF t
5,k should be > 0 to attract Xt+1

5,k to Xt
5,best

Case D: Xt
j,k < 0, |Xt

j,k| > |, Xt
j,worst > 0

Xt
worst = [2 5 7 2 3 9 8 5 9]⇒ Xt

5,worst = 3

Xt
5,worst − |Xt

5,k| = 3− 9 = −6

RF t
5,k = −r2,j,t

(
Xt

5,worst − |Xt
5,k|

)
= 6 · r2,j,t; r2,j,t ∈ [0, 1]

RF t
5,k = 6 · r2,j,t > 0

⇒ RF t
5,k should be < 0 to move away Xt+1

5,k from Xt
5,worst

Table 4. Incoherent cases in Jaya (A-D)

276 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

meet the premise of the algorithm. According to the sign and relative position of
each particle to the best and worst particles in the population, situations occur in
which the particles go far away from the leader and closer to the worst individual,
as studied in the previous examples. Alternatively, in this paper we have proposed
to eliminate the absolute values of the equation of motion of Jaya, formulating it in
the following terms:

|X t
j,k| → X t

j,k,

X t+1
j,k = X t

j,k + r1,j,t
(
X t

j,best −X t
j,k

)
− r2,j,t(X

t
j,worst −X t

j,k).
(2)

This change ensures that regardless of X t
j,k is greater or lower than 0, X t

j,best or
X t

j,worst are greater or lower than 0 and |X t
j,k| is greater or lower than |X t

j,best| or
|X t

j,worst|, a coherent attraction AF t
j,k or coherent repulsion RF t

j,k is obtained. In
Table 5, the new values obtained considering the adopted solution in the cases A-D
(Table 4) are presented. As can be seen, in all the cases the proposed amendment
manages to offer a coherent response to the value of the particles. Thus, this first
variant, Convergent Jaya (CJaya), allows to enhance the convergence of the original
algorithm slightly sacrificing its ability to explore.

4.2 Restrained Intensity for Flight

If Equation (2) is analysed, it could be observed that the flight movement, governed
by |X t

j,worst−X t
j,k|, wins intensity when the distance is longer to the worst particle,

which gives rise to contradictory situations: when a particle is close to the overall
worst, it moves away from it very slowly, while if it is far from it, it will move
away very quickly. In addition, the first proposed variant of Jaya (CJaya), can still
lead to situations in which each individual can see its approach to the best particle,
whose intensity is governed by |X t

j,best − X t
j,k|, diminished by the presence of the

worst particle. This problem can be analysed considering the example presented in
Table 6, case E. In case E, it can be observed that the escape movement of particle
X t

5,k = −900 from the worst particle X t
5,worst = 40 000 is more intense than the

attraction movement of the particle X t
5,k = −900 to the best X t

5,best = −6, although
it is much farther away from the worst particle. That is, when |X t

j,best − X t
j,k| <

|X t
j,worst−X t

j,k| (in this particular case 894 ¡ 40900) the flight movement overshadows
the approach towards the best particle. In case E, it is shown that after the proposed
movements of approach and flight, the resulting particle, X t+1

5,k = −20 012, is farther
from the best particle X t

5,best = −6 than before carrying out such operations. As
can be inferred, it is incoherent that moving a particle away from a bad distant
individual can harm its approach to a good nearby solution.

Hence, this work also proposes to perform a moderate flight movement that
takes into account a balance between attraction and repulsion between particles.
The second variant of the proposal (EJaya) raises the same equation of motion
that the first variant (CJaya), Equation (2), but it performs an additional checking
of the movement of the particles. Specifically, to prevent the approach to the best

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 277

Xt
k = [2 7 4 8 − 9 1 3 4 6]⇒ Xt

5,k = −9

Solved case A: Xt
j,k < 0, |Xt

j,k| > |Xt
j,best|, Xt

j,best < 0

Xt
best = [8 1 3 4 − 6 7 2 3 1]⇒ Xt

5,best = −6

Xt
5,best −Xt

5,k = −6 + 9 = 3

AF t
5,k = +r1,j,t

(
Xt

5,best −Xt
5,k

)
= 3 · r1,j,t; r1,j,t ∈ [0, 1]

AF t
5,k = 3 · r1,j,t > 0

⇒ AF t
5,k attracts Xt+1

5,k to Xt
5,best

Solved case B: Xt
j,k < 0, |Xt

j,k| > |Xt
j,worst|, Xt

j,worst < 0

Xt
worst = [2 5 7 2 − 4 9 8 5 9]⇒ Xt

5,worst = −4

Xt
5,worst −Xt

5,k = −4 + 9 = 5

RF t
5,k = −r2,j,t

(
Xt

5,worst −Xt
5,k

)
= −5 · r2,j,t; r2,j,t ∈ [0, 1]

RF t
5,k = −5 · r2,j,t < 0

⇒ RF t
5,k moves away Xt+1

5,k from Xt
5,worst

Solved case C: Xt
j,k < 0, |Xt

j,k| > |Xt
j,best|, Xt

j,best > 0

Xt
best = [8 1 3 4 5 7 2 3 1]⇒ Xt

5,best = 5

Xt
5,best −Xt

5,k = 5 + 9 = 14

AF t
5,k = +r1,j,t

(
Xt

5,best −Xt
5,k

)
= 14 · r1,j,t; r1,j,t ∈ [0, 1]

AF t
5,k = 14 · r1,j,t > 0

⇒ AF t
5,k attracts X

t+1
5,k to Xt

5,best

Solved case D: Xt
j,k < 0, |Xt

j,k| > |, Xt
j,worst > 0

Xt
worst = [2 5 7 2 3 9 8 5 9]⇒ Xt

5,worst = 3

Xt
5,worst −Xt

5,k = 3 + 9 = 12

RF t
5,k = −r2,j,t

(
Xt

5,worst −Xt
5,k

)
= −12 · r2,j,t; r2,j,t ∈ [0, 1]

RF t
5,k = −12 · r2,j,t > 0

⇒ RF t
5,k moves away Xt+1

5,k from Xt
5,worst

Table 5. Incoherent cases in Jaya solved with the first improvement of EJaya (CJaya)

278 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

Xt
k = [2 7 4 8 − 900 1 3 4 6]⇒ Xt

5,k = −900

Xt
best = [8 1 3 4 − 6 7 2 3 1]⇒ Xt

5,best = −6

Xt
worst = [2 5 7 2 40 000 9 8 5 9]⇒ Xt

5,worst = 40 000

r1,j,t = r2,j,t = 0.5

Case E: |Xt
j,best −Xt

j,k| < |Xt
j,worst −Xt

j,k|

Xt
5,best −Xt

5,k = −6 + 900 = 894

Xt
5,worst −Xt

5,k = 40 000 + 900 = 40 900

Xt+1
5,k = Xt

5,k + r1,j,t(X
t
j,best −Xt

5,k)− r2,j,t(X
t
j,worst −Xt

5,k)

= −9 + r1,j,t · 894− r2,j,t · 40 900 = −20 012

⇒ Xt+1
5,k moves away from Xt

5,best

Table 6. Incoherent cases in Jaya (E)

particle being eroded by the distance to the worst particle, a check of the movements
of attraction and repulsion for each dimension is included, in a way that if the
movement of repulsion is greater than the movement of attraction, the movement
of repulsion is halved in consecutive iterations (bisection technique or binary-search
method) until its magnitude is lower than the movement of attraction, avoiding
oscillations of particles in problems with numerous dimensions. Analytically:

while |X t
j,best −X t

j,k| < |X t
j,worst −X t

j,k|

|X t
j,worst −X t

j,k| =
|Xt
j,worst−Xt

j,k|
2

end

X t+1
j,k = X t

j,k + r1,j,t
(
X t

j,best −X t
j,k

)
− r2,j,t

(
X t

j,worst −X t
j,k

)

In Table 7, the results of applying EJaya for case E are presented.

It can be observed that when the movement of flight is moderated in relation
to the movement towards the best particle, a departure from the worst particle,
X t

5,worst = 40 000, can be achieved simultaneously to an approximation to the best

one, X t
5,best = −6, being the resulting solution X t+1

5,k ' 118.4687 instead of X t+1
5,k =

−20 012, which was obtained by only applying the first improvement of Jaya, CJaya.
The pseudocode of EJaya is shown in Algorithm 2.

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 279

Xt
k = [2 7 4 8 − 900 1 3 4 6]⇒ Xt

5,k = −900

Xt
best = [8 1 3 4 − 6 7 2 3 1]⇒ Xt

5,best = −6

Xt
worst = [2 5 7 2 40 000 9 8 5 9]⇒ Xt

5,worst = 40 000

r1,j,t = r2,j,t = 0.5

Solved case E: |Xt
j,best −Xt

j,k| < |Xt
j,worst −Xt

j,k|

Xt
5,best −Xt

5,k = −6 + 900 = 894

Xt
5,worst −Xt

5,k = 40 000 + 900 = 40 900

while |Xt
5,best −Xt

5,k| < |Xt
5,worst −Xt

5,k| ⇒

|Xt
j,worst −Xt

j,k| =
|Xt
j,worst−Xt

j,k|
2

end

|Xt
j,worst −Xt

j,k| =
40 900
26 = 639.0625

Xt+1
5,k = Xt

5,k + r1,j,t(X
t
j,best −Xt

5,k)− r2,j,t(X
t
j,worst −Xt

5,k)

= −9 + 0.5 · 894− 0.5 · 639.0625 ' 118.4687

⇒ Xt+1
5,k is attracted to Xt

5,best

Table 7. Incoherent case in Jaya solved with EJaya

5 EXPERIMENTAL EVALUATION AND DISCUSSION

To make an extensive comparison of the proposed improvements to Jaya, experi-
ments of global optimization with functions of various kinds, including low, medium
and high number of dimensions D (10, 50, 100), unimodal and multimodal functions,
with and without random components and with a search space with restricted and
unrestricted areas have been conducted in a way that the reader is provided with
a wide range of data to distinguish the strengths and weaknesses of the proposal.
Some functions are retrieved from the classic literature on global optimization (uni-
modal functions) and most of them have been presented in CEC 2014 (multimodal
functions) [15]. The characteristics that make up each function are described briefly
in Table 8. For each meta-heuristic to be examined, the objective functions are
tested considering 40 runs. In each run, 50 random initial solutions are generated
and meta-heuristics can evaluate possible solutions up to 2 000 per number of dimen-
sion of the objective function times. The set of 40 runs is called an experiment and
each experiment is configured to evaluate the objective functions considering 10,
50 and 100 dimensions or variables. For each dimension, solutions in the range

280 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

Algorithm 2 EJaya pseudocode
1: —– Data
2: N: Number of individuals
3: D: Number of dimensions
4: —– Algorithm
5: Population initialization
6: while !end condition do
7: Find

(
Xt

j,best

)
and worst

(
Xt

j,worst

)
individual in the population

8: for k ¡ N do
9: for j ¡ D do

10: while |Xt
j,best −Xt

j,k| < |Xt
j,worst −Xt

j,k| do

11: |Xt
j,worst −Xt

j,k| =
|Xt
j,worst−Xt

j,k|
2

12: end while
13: Xt+1

j,k = Xt
j,k + r1,j,t

(
Xt

j,best −Xt
j,k

)
− r2,j,t

(
Xt

j,worst −Xt
j,k

)
14: end for
15: if Better solution found over particle’s actual solution then
16: Update particle’s solution
17: else
18: Preserve previous particle’s solution
19: end if
20: end for
21: end while

[−100, 100] are accepted unless the objective function specifies a different range, as
indicated in Table 8.

This section presents the results obtained by each of the algorithms differenti-
ating the evaluation of unimodal and multimodal functions and finally, conducting
a global analysis of all of them. Results for 10, 50 and 100 dimensions (Tables 9, 10
and 11, respectively) are listed by objective functions (rows) and each function con-
tains four sub-rows indicating the average of the found solutions, the best solution
reached, the average runtime and the classification of those heuristics depending
on the quality of the average reached solution. Finally, a statistical analysis of the
results is presented.

Unimodal Functions Analysis

In Tables 9, 10 and 11 it can be observed that the most appropriate heuristic for
solving benchmark unimodal functions (f01, f02, f03) is EJaya, which obtains for all
dimensions D (10, 50 and 100) results at least an order of magnitude better than
its competitor in second place, CJaya. Unimodal functions are simple functions in
which algorithms with high qualities for exploitation render exceptionally. Thus,
these results are an indication of the high exploitation capability of EJaya, what
makes this heuristic particularly suitable for problems with a reduced or limited
search space.

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 281

Benchmark
Function

Formulation Minima

High-
Conditioned
Elliptic

f1(x) =
∑D
i=1(106)

i−1
D−1 x2i 0

Bent-Cigar f2(x) = x21 + 106∑D
i=2 x

2
i 0

Discus f3(x) = 106x21 +
∑D
i=2 x

2
i 0

Rosenbrock f4(x) =
∑D−1
i=1

(
100

(
x2i − xi+1

)
+ (xi − 1)2

)
0

Ackley’s path f5(x) = −20exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos(2πxi)

)
+ 20 + e 0

Weierstrass f6(x) =
∑D
i=1

(∑kmax
k=0

[
ak cos

(
2πbk(xi + 0.05)

)])
−D

∑kmax
k=0

[
ak cos

(
πbk

)]
4

Griewank’s
Function 8

f7(x) =
∑D
i=1

x2i
4000

−
∏D
i=1 cos

(
xi√
i

)
+ 1 0

Rastrigin f8(x) =
∑D
i=1

(
x2i − 10 cos(2πxi) + 10

)
0

Modified
Swchefel

f9(x) = 418.9829D −
∑D
i=1 g(zi), zi = xi + 4.209687462275036e+002 –

g(zi) =


zi sin(

√
|zi|), |zi| ≤ 500,

(500−mod(zi, 500)) sin
(√
|500−mod(zi, 500)|

)
− (zi−500)2

10000D
, zi > 500,

(mod(|zi|, 500)− 500) sin
(√
|mod(|zi|, 500)− 500|

)
− (zi+500)2

10000D
, zi < −500

–

Katsuura f10(x) = 10
D2

∏D
i=1

(
1 + i

∑32
j=1

|2jxi−round(2
jxi)|

2j

) 10
D1.2 − 10

D2 0

HappyCat f11(x) =
∣∣∣∑D

i=1 x
2
i −D

∣∣∣ 14 +
0.5

∑D
i=1 x

2
i+
∑D
i=1 xi

D
+ 0.5 –

HGBat f12(x) =

∣∣∣∣(∑D
i=1 x

2
i

)2
− (
∑D
i=1 xi)

2
∣∣∣∣1/2 +

0.5
∑D
i=1 x

2
i+
∑D
i=1 xi

D
+ 0.5 –

Expanded
Griewank’s plus
Rosenbrock’s

f13(x) = f7(f4(x1, x2)) + f7(f4(x2, x3)) + . . . + f7(f4(xD−1, xD)) + f7(f4(xD, x1))

Expanded
Schaffer Func-
tion 6

f14(x) = g(x1, x2) + g(x2, x3) + . . . + g(xD−1, xD), g(xD, x1) –

g(x, y) = 0.5 +

(
sin2

(√
x2+y2

)
−0.5

)
(
1+0.001

(
x2+y2

))2
Langermann f15(x) = −

∑5
i=1

ci cos
{
π
[
(x1−ai)

2+(x2−bu)2
]}

e

(x1−ai)2+(x2−bu)2

π

−5.1621259

Eggholder f16(x) = −x1 sin
(√
|x1− x2− 47|

)
− (x2 + 47) sin

(√
| 1
2
x1 + x2 + 47

)
−959.64066

Holder’s table f17(x) = −

∣∣∣∣∣∣∣∣∣e
∣∣∣∣∣∣1−

√
x21+x22
π

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ sin(x1) cos(x2) –

DropWave f18(x) = −
1+cos

(
12
√∑D

i
x2
i

)
2+0.5

∑D
i=1

x2
i

0

Bohachevsky f19(x) =
∑D−1
i

[
x2i + 2x2i+1 − 0.3 cos(3πxi)− 0.4 cos(4πxi+1) + 0.7

]
0

Whitley f20(x) =
∑D
i=1

∑D
j=1

 (100(x2i−xj)2+(1−xj)
2
)2

4 000
− cos

(
100

(
x2i − xj

)2
+ (1− xj)2

)
+ 1

 0

Table 8. Benchmark functions testbed

282 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

f Stats Jaya CJaya EJaya
f01 Mean 2.163e−02 8.794e−06 4.893e−11

Best 5.739e−03 1.352e−06 8.380e−12
Runtime (s) 2.101e+00 2.081e+00 2.127e+00
Rank 3 2 1

f02 Mean 7.577e+00 2.714e−03 1.559e−08
Best 1.907e+00 5.027e−04 1.769e−09
Runtime (s) 2.071e+00 2.049e+00 2.151e+00
Rank 3 2 1

f03 Mean 1.436e−04 3.124e−08 1.633e−13
Best 2.060e−05 5.067e−09 2.139e−14
Runtime (s) 2.081e+00 2.064e+00 2.130e+00
Rank 3 2 1

f04 Mean 8.751e+11 9.059e+11 9.203e+11
Best 1.237e+11 1.558e+11 2.087e+11
Runtime (s) 2.081e+00 2.054e+00 2.128e+00
Rank 1 2 3

f05 Mean 2.000e+01 2.000e+01 2.000e+01
Best 2.000e+01 2.000e+01 2.000e+01
Runtime (s) 2.084e+00 2.092e+00 2.115e+00
Rank 1 2 3

f06 Mean 1.800e+02 1.800e+02 1.800e+02
Best 1.800e+02 1.800e+02 1.800e+02
Runtime (s) 2.090e+00 2.049e+00 2.123e+00
Rank 2 3 1

f07 Mean 5.802e−01 5.232e−01 4.015e−01
Best 3.096e−01 2.868e−01 2.256e−01
Runtime (s) 2.047e+00 2.059e+00 2.115e+00
Rank 3 2 1

f08 Mean 4.250e+01 3.932e+01 2.619e+01
Best 2.954e+01 1.975e+01 9.750e+00
Runtime (s) 2.084e+00 2.070e+00 2.129e+00
Rank 3 2 1

f09 Mean 1.325e−04 1.273e−04 1.273e−04
Best 1.280e−04 1.273e−04 1.273e−04
Runtime (s) 2.057e+00 2.068e+00 2.117e+00
Rank 3 2 1

f10 Mean 0.000e+00 0.000e+00 0.000e+00
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 2.095e+00 2.110e+00 2.149e+00
Rank 1 2 3

f Stats Jaya CJaya EJaya
f11 Mean 3.709e−01 1.633e−01 1.456e−01

Best 3.011e−01 8.737e−02 5.084e−02
Runtime (s) 9.867e+00 9.849e+00 1.036e+01
Rank 3 2 1

f12 Mean 2.411e−01 1.331e−01 1.279e−01
Best 1.490e−01 6.492e−02 7.453e−02
Runtime (s) 9.645e+00 9.525e+00 1.021e+01
Rank 3 2 1

f13 Mean 1.487e−01 9.338e−02 5.099e−02
Best 1.273e−02 4.638e−02 2.637e−03
Runtime (s) 9.847e+00 9.663e+00 9.967e+00
Rank 3 2 1

f14 Mean 0.000e+00 5.551e−18 0.000e+00
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 3.057e+00 3.085e+00 3.163e+00
Rank 1 3 2

f15 Mean −5.162e+00 −5.162e+00 −5.162e+00
Best −5.162e+00 −5.162e+00 −5.162e+00
Runtime (s) 1.036e+01 1.030e+01 1.059e+01
Rank 1 2 3

f16 Mean −9.596e+02 −9.596e+02 −9.596e+02
Best −9.596e+02 −9.596e+02 −9.596e+02
Runtime (s) 2.971e+00 3.094e+00 3.147e+00
Rank 3 2 1

f17 Mean −9.140e+18 −9.140e+18 −9.140e+18
Best −9.140e+18 −9.140e+18 −9.140e+18
Runtime (s) 3.068e+00 3.040e+00 3.066e+00
Rank 1 2 3

f18 Mean −9.362e−01 −9.362e−01 −9.362e−01
Best −9.362e−01 −9.362e−01 −9.362e−01
Runtime (s) 1.039e+01 1.015e+01 1.058e+01
Rank 2 3 1

f19 Mean 2.776e−17 5.551e−17 3.886e−17
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 1.038e+01 1.016e+01 1.044e+01
Rank 1 3 2

f20 Mean 4.039e+01 4.852e+01 3.604e+01
Best 0.000e+00 0.000e+00 9.894e+00
Runtime (s) 1.040e+01 1.031e+01 1.059e+01
Rank 2 3 1

Table 9. Benchmark functions f01-f20 results with Jaya and improvements of Jaya, CJaya
and EJaya, D = 10

Multimodal Functions Analysis

Multimodal functions have many local minima, and they are more difficult to op-
timize than unimodal functions. Hence, the end results of this type of functions
are more relevant since they mirror the capacity of the strategy to get away from
local optima and finding a result close to the global optimum [22]. In this case,
although there is no clear supremacy of an algorithm, CJaya and EJaya emerge as
the most effective meta-heuristics in optimizing the benchmark functions. This can
be observed from Tables 9, 10 and 11 for functions f04 − f20. CJaya and EJaya
are also more scalable than Jaya, since increasing the number of dimensions in the
experiments significantly improves their efficiency, and they scale positions in the
rank.

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 283

f Stats Jaya CJaya EJaya
f01 Mean 3.005e+02 5.849e+00 1.007e−05

Best 2.404e+00 2.258e−03 7.029e−07
Runtime (s) 4.572e+01 4.531e+01 4.708e+01
Rank 3 2 1

f02 Mean 3.828e−03 1.674e−05 3.141e−09
Best 1.453e−03 3.388e−06 9.776e−10
Runtime (s) 4.546e+01 4.536e+01 4.761e+01
Rank 3 2 1

f03 Mean 3.828e−03 1.674e−05 3.141e−09
Best 1.453e−03 3.388e−06 9.776e−10
Runtime (s) 4.546e+01 4.536e+01 4.761e+01
Rank 3 2 1

f04 Mean 4.979e+12 4.988e+12 4.987e+12
Best 4.747e+12 4.749e+12 4.708e+12
Runtime (s) 4.568e+01 4.514e+01 4.686e+01
Rank 1 3 2

f05 Mean 2.000e+01 2.000e+01 2.000e+01
Best 2.000e+01 2.000e+01 2.000e+01
Runtime (s) 4.612e+01 4.568e+01 4.732e+01
Rank 3 1 2

f06 Mean 4.900e+03 4.900e+03 4.900e+03
Best 4.900e+03 4.900e+03 4.900e+03
Runtime (s) 4.540e+01 4.494e+01 4.693e+01
Rank 3 1 2

f07 Mean 2.628e−02 1.441e−02 4.800e−03
Best 2.090e−05 6.990e−08 3.203e−11
Runtime (s) 4.655e+01 4.605e+01 4.724e+01
Rank 3 2 1

f08 Mean 4.780e+02 4.330e+02 4.191e+02
Best 3.802e+02 3.059e+02 3.465e+02
Runtime (s) 4.689e+01 4.648e+01 4.794e+01
Rank 3 2 1

f09 Mean 2.768e+01 9.228e+00 6.364e−04
Best 7.062e−04 6.367e−04 6.364e−04
Runtime (s) 4.636e+01 4.554e+01 4.737e+01
Rank 3 2 1

f10 Mean 4.231e−05 0.000e+00 0.000e+00
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 4.550e+01 4.529e+01 4.705e+01
Rank 3 1 2

f Stats Jaya CJaya EJaya
f11 Mean 1.307e+00 6.960e−01 6.543e−01

Best 1.083e+00 4.676e−01 4.874e−01
Runtime (s) 4.517e+01 4.584e+01 4.736e+01
Rank 3 2 1

f12 Mean 1.382e+00 6.722e−01 6.740e−01
Best 1.125e+00 2.959e−01 3.345e−01
Runtime (s) 4.567e+01 4.549e+01 4.699e+01
Rank 3 1 2

f13 Mean 2.396e+04 1.277e+00 3.971e−01
Best 1.869e+01 5.963e−01 7.343e−03
Runtime (s) 4.551e+01 4.522e+01 4.740e+01
Rank 3 2 1

f14 Mean 2.776e−18 0.000e+00 5.551e−18
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 3.013e+00 3.016e+00 3.057e+00
Rank 2 1 3

f15 Mean −5.162e+00 −5.162e+00 −5.162e+00
Best −5.162e+00 −5.162e+00 −5.162e+00
Runtime (s) 4.538e+01 4.533e+01 4.698e+01
Rank 1 2 3

f16 Mean −9.589e+02 −9.580e+02 −9.596e+02
Best −9.596e+02 −9.596e+02 −9.596e+02
Runtime (s) 2.936e+00 2.976e+00 3.026e+00
Rank 2 3 1

f17 Mean −9.140e+18 −9.140e+18 −9.140e+18
Best −9.140e+18 −9.140e+18 −9.140e+18
Runtime (s) 2.972e+00 2.926e+00 3.075e+00
Rank 1 2 3

f18 Mean −5.885e−03 −2.969e−02 −1.862e−01
Best −1.651e−02 −7.774e−02 −2.888e−01
Runtime (s) 4.544e+01 4.550e+01 4.711e+01
Rank 3 2 1

f19 Mean 7.752e+00 5.088e+00 2.512e+00
Best 2.554e+00 4.720e−01 3.801e−07
Runtime (s) 4.607e+01 4.565e+01 4.716e+01
Rank 3 2 1

f20 Mean 1.998e+05 2.250e+03 2.184e+03
Best 1.715e+03 1.256e+03 1.940e+03
Runtime (s) 4.536e+01 4.550e+01 4.684e+01
Rank 3 2 1

Table 10. Benchmark functions f01-f20 results with Jaya and improvements of Jaya,
CJaya and EJaya, D = 50

From this analysis, it is noteworthy that CJaya and EJaya obtain better or
equal (when all the algorithms reach the global minimum) results than Jaya more
than half of the times: for D = 10 this condition occurs in 14 functions, and for
D = 50 and D = 100 this occurs in 17 functions out of 20. Moreover, EJaya
reaches the top position in the rank in most cases, sometimes with a lead of several
orders of magnitude over Jaya, and most of the time providing an improvement
between 20 and 60 percentage points over. Although statistical tests results are to
be presented in the next section, it can be concluded in view of these experiments
that both CJaya as EJaya, and especially the latter, offer an improvement in the
performance of Jaya, with very small increases in runtime (around 5 % in the case
of EJaya).

284 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

f Stats Jaya CJaya EJaya
f01 Mean 9.525e+03 1.689e+00 1.147e−04

Best 1.978e+01 3.283e−02 4.053e−06
Runtime (s) 1.792e+02 1.775e+02 1.866e+02
Rank 3 2 1

f02 Mean 1.621e+04 7.249e+00 7.974e−03
Best 2.506e+03 1.578e+00 1.622e−03
Runtime (s) 1.788e+02 1.784e+02 1.872e+02
Rank 3 2 1

f03 Mean 3.689e−02 2.463e−05 1.684e−08
Best 6.813e−03 4.110e−06 5.686e−09
Runtime (s) 1.793e+02 1.776e+02 1.870e+02
Rank 3 2 1

f04 Mean 1.000e+13 9.936e+12 1.003e+13
Best 9.701e+12 9.527e+12 9.524e+12
Runtime (s) 1.811e+02 1.803e+02 1.845e+02
Rank 2 1 3

f05 Mean 2.001e+01 2.000e+01 2.000e+01
Best 2.000e+01 2.000e+01 2.000e+01
Runtime (s) 1.803e+02 1.798e+02 1.852e+02
Rank 3 1 2

f06 Mean 1.980e+04 1.980e+04 1.980e+04
Best 1.980e+04 1.980e+04 1.980e+04
Runtime (s) 1.800e+02 1.780e+02 1.846e+02
Rank 3 2 1

f07 Mean 7.049e−03 3.078e−03 2.772e−03
Best 6.537e−05 2.726e−08 3.404e−11
Runtime (s) 1.802e+02 1.784e+02 1.852e+02
Rank 3 2 1

f08 Mean 1.100e+03 7.472e+02 9.940e+02
Best 6.421e+02 4.371e+02 4.835e+02
Runtime (s) 1.789e+02 1.785e+02 1.858e+02
Rank 3 1 2

f09 Mean 3.285e−03 1.846e+01 3.691e+01
Best 1.809e−03 1.273e−03 1.273e−03
Runtime (s) 1.790e+02 1.776e+02 1.840e+02
Rank 1 2 3

f10 Mean 2.367e−04 1.637e−07 2.447e−06
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 1.806e+02 1.783e+02 1.852e+02
Rank 3 1 2

f Stats Jaya CJaya EJaya
f11 Mean 1.581e+00 7.363e−01 7.407e−01

Best 1.377e+00 5.524e−01 6.278e−01
Runtime (s) 1.796e+02 1.789e+02 1.872e+02
Rank 3 1 2

f12 Mean 1.574e+00 7.183e−01 7.068e−01
Best 1.405e+00 3.325e−01 3.416e−01
Runtime (s) 1.795e+02 1.834e+02 1.938e+02
Rank 3 2 1

f13 Mean 1.437e+07 1.281e+01 1.682e+00
Best 3.025e+05 4.059e+00 1.359e+00
Runtime (s) 1.802e+02 1.776e+02 1.848e+02
Rank 3 2 1

f14 Mean 2.776e−18 0.000e+00 2.776e−18
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 5.908e+00 5.886e+00 6.021e+00
Rank 2 1 3

f15 Mean −5.162e+00 −5.162e+00 −5.162e+00
Best −5.162e+00 −5.162e+00 −5.162e+00
Runtime (s) 1.802e+02 1.798e+02 1.847e+02
Rank 1 2 3

f16 Mean −9.558e+02 −9.580e+02 −9.596e+02
Best −9.596e+02 −9.596e+02 −9.596e+02
Runtime (s) 6.016e+00 5.971e+00 6.005e+00
Rank 3 2 1

f17 Mean −9.140e+18 −9.140e+18 −9.140e+18
Best −9.140e+18 −9.140e+18 −9.140e+18
Runtime (s) 5.861e+00 5.918e+00 6.016e+00
Rank 1 2 3

f18 Mean −5.684e−04 −2.680e−03 −1.271e−02
Best −9.462e−04 −5.352e−03 −3.199e−02
Runtime (s) 1.780e+02 1.770e+02 1.841e+02
Rank 3 2 1

f19 Mean 2.986e+01 2.553e+01 1.492e+01
Best 1.966e+01 1.680e+01 8.398e+00
Runtime (s) 1.782e+02 1.781e+02 1.857e+02
Rank 3 2 1

f20 Mean 3.600e+08 9.062e+03 7.475e+03
Best 8.277e+06 4.638e+03 9.412e+02
Runtime (s) 1.784e+02 1.777e+02 1.843e+02
Rank 3 2 1

Table 11. Benchmark functions f01-f20 results with Jaya and improvements of Jaya,
CJaya and EJaya, D = 100

Statistical Tests

The best known procedure for multiple comparison to check differences between
more than two related samples is the Friedman Ranks test [5]. Given a certain
value of statistical significance limit (generally, p-value = 0.05) it is determined
whether the null hypothesis H0 (H0: algorithms have a similar behaviour) can be
rejected. On the other hand, it must be born in mind that the main drawback is
that Friedman Ranks test can only detect significant differences with respect to any
multiple comparison, but it is unable to establish appropriate comparisons between
some considered algorithms. When the goal is not only to know whether there are
differences between the methods, but to compare which relations have more statis-
tical significance, a series of ad-hoc hypotheses using a post-hoc test must be done
after the Friedman Ranks test. In this work, the Friedman Ranks Post-Hoc test

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 285

is used to get the unadjusted p-values that allow the comparison of the statistical
significance among all the implemented algorithms. The Friedman Ranks Post-Hoc
test obtains a set of p-values that determine the degree of rejection of each null hy-
pothesis for each pair of algorithms. It must be noted that for this analysis it is not
possible to make a comparison between pairs by type, such as in the Wilcoxon test
because they involve a set of results where the Family-Wise Error Rate (FWER) is
not controlled.

The Friedman Ranks and Friedman Ranks Post-Hoc tests are conducted in this
work for the set of algorithms in the case of 10, 50 and 100 dimensions for average
value, better results as well as runtime.

Stats D = 10 D = 50 D = 100

Mean 3.379e−04 1.008e−04 4.800e−04

Best 2.410e−02 5.615e−04 2.390e−02

Runtime 6.772e−07 7.126e−08 1.219e−08

Table 12. Friedman Ranks test p-values for mean, best and runtime results

First, in Table 12, Friedman Ranks test results are presented. It can be observed
that for all the cases the Friedman Ranks test indicates that the null hypothesis
should be rejected, that is, there are statistically significant differences (considering
a statistical significance limit of p-value = 0.05) between the strategies for the dif-
ferent analysed results (i.e., mean, best and runtime) and dimensions (i.e., 10, 50
and 100), so it makes sense to conduct a Friedman Ranks Post-Hoc test in each case.
Table 13 shows p-values for 10, 50 and 100 dimensions, for all the parameters to be
analysed and for all the possible comparisons. First, regarding mean results, it is ob-
served that EJaya improves Jaya with statistical significance in all dimensions while
CJaya improves Jaya with statistically significance for medium and high dimensions,
50 and 100, respectively. In addition, it can be seen that EJaya and CJaya show
similar results in a statistical significance sense. As for the best results analysis,
the statistical significance corroborates the results related to the mean, being EJaya
once again the strategy presenting the best behaviour. Finally, as expected, the
introduction of modifications to achieve coherent attraction and repulsion factors
and restrained intensity for flight slows down Jaya variants as more control checks
are introduced. In this way, it can be observed that statistically significant differ-
ences are found in runtime between EJaya and both Jaya and CJaya, except for
high dimensions case (i.e., 100), no statistical significance is found between CJaya
and Jaya.

6 CONCLUSIONS

In recent years, several meta-heuristics have been proposed and research in this sense
is still in the spotlight due to the wide range of applications requiring more efficient
optimization procedures in industrial and scientific areas. A major issue in the im-
plementation and comparison of meta-heuristics is given by their simplicity, which

286 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

Stats Comparison D = 10 D = 50 D = 100

EJaya-CJaya 2.305e−01 1.709e−01 8.521e−01
Mean Jaya-CJaya 6.895e−02 5.116e−02 3.522e−03

Jaya-EJaya 4.097e−04 9.807e−05 5.1319e−04

EJaya-CJaya 5.882e−01 5.891e−01 4.602e−01
Best Jaya-CJaya 2.302e−01 1.656e−02 3.097e−03

Jaya-EJaya 2.391e−02 5.763e−04 3.070e−05

EJaya-CJaya 5.571e−07 7.333e−08 1.051e−08
Runtime Jaya-CJaya 3.289e−01 2.537e−01 1.965e−02

Jaya-EJaya 4.184e−04 2.468e−04 4.474e−03

Table 13. Friedman Ranks Post-Hoc test p-values for mean, best and runtime results

is directly related to the number of parameters and their associated interactions.
Jaya algorithm is a recent and simple meta-heuristic offering better or comparable
results to a large set of major meta-heuristics nowadays such as GA, PSO, DE,
ABC and TLBO. In this work, Jaya algorithm is improved to offer a more efficient
specific parameter-free meta-heuristic of one phase, EJaya. EJaya includes coherent
attraction and repulsion movements and restrained intensity for flights that over-
come limitations of Jaya and the contributions of these improvements to general
success are analysed gradually (CJaya and EJaya) to valid each of the suggested
incremental solutions. The proposal has been tested on a set of various standard
benchmark functions from CEC. The results obtained by EJaya offer more efficient
results than Jaya in terms of mean and best accomplishments, as proved by sta-
tistical tests showing statistical significance, a higher exploitation capability and
scalability. Finally, it must be highlighted that EJaya does not require tuning of al-
gorithm specific parameters what may be beneficial to applications where the setup
of optimization may be critical for the whole performance of the systems. Hence,
this work presents one more step towards the development of simpler and fast opti-
mization strategies.

In future works, EJaya will be applied to a problem of practical importance
nowadays that can greatly benefit from the simplicity and speed of EJaya in its
set-up. Specifically, EJaya will be considered for the learning of Fuzzy Rule-Based
Schedulers in Cloud Computing. Cloud Computing is a very dynamic environment
where a fast knowledge acquisition strategy can achieve significant improvement
in terms of time and power saving in the allocation of workload among the large
number of involved computational resources. Further, results will be compared to
other meta-heuristics.

Acknowledgments

This work was financially supported by the Research Projects TEC2015-67387-C4-2
and 2011-TIC-7278.

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 287

REFERENCES

[1] Bindiya, T. S.—Elias, E.: Meta-Heuristic Evolutionary Algorithms for the De-
sign of Optimal Multiplier-Less Recombination Filter Banks. Information Sciences,
Vol. 339, 2016, pp. 31–52, doi: 10.1016/j.ins.2015.12.018.

[2] Chinta, S.—Kommadath, R.—Kotecha, P.: A Note on Multi-Objective Im-
proved Teaching-Learning Based Optimization Algorithm (MO-ITLBO). Information
Sciences, Vol. 373, 2016, pp. 337–350, doi: 10.1016/j.ins.2016.08.061.

[3] Chou, J.-S.—Ngo, N.-T.: Time Series Analytics Using Sliding Window Meta-
heuristic Optimization-Based Machine Learning System for Identifying Building En-
ergy Consumption Patterns. Applied Energy, Vol. 177, 2016, pp. 751–770, doi:
10.1016/j.apenergy.2016.05.074.

[4] Deb, K.—Agrawal, S.: Understanding Interactions Among Genetic Algorithm
Parameters. Foundations of Genetic Algorithms V, Morgan Kaufmann, 1999,
pp. 265–286.

[5] Derrac, J.—Garćıa, S.—Molina, D.—Herrera, F.: A Practical Tutorial on
the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolu-
tionary and Swarm Intelligence Algorithms. Swarm and Evolutionary Computation,
Vol. 1, 2011, No. 1, pp. 3–18, doi: 10.1016/j.swevo.2011.02.002.

[6] Garćıa-Galán, S.—Prado, R. P.—Expósito, J. E. M.: Swarm Fuzzy Systems:
Knowledge Acquisition in Fuzzy Systems and Its Applications in Grid Comput-
ing. IEEE Transactions on Knowledge and Data Engineering, Vol. 26, 2014, No. 7,
pp. 1791–1804, doi: 10.1109/TKDE.2013.118.

[7] Garćıa-Galán, S.—Prado, R. P.—Expósito, J. E. M.: Rules Discovery
in Fuzzy Classifier Systems with PSO for Scheduling in Grid Computational
Infrastructures. Applied Soft Computing, Vol. 29, 2015, pp. 424–435, doi:
10.1016/j.asoc.2014.11.064.

[8] Gendreau, M.—Potvin, J.-Y.: Handbook of Meta-Heuristics. Springer US, 2010.

[9] Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. 1st Edition. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1989.

[10] Jordehi, A. R.: Enhanced Leader PSO (ELPSO): A New PSO Variant for Solving
Global Optimisation Problems. Applied Soft Computing, Vol. 26, 2015, pp. 401–417,
doi: 10.1016/j.asoc.2014.10.026.

[11] Karaboga, D.—Basturk, B.: A Powerful and Efficient Algorithm for Numerical
Function Optimization: Artificial Bee Colony (ABC) Algorithm. Journal of Global
Optimization, Vol. 39, 2007, No. 3, pp. 459–471, doi: 10.1007/s10898-007-9149-x.

[12] Karaboga, D.—Basturk, B.: On the Performance of Artificial Bee Colony
(ABC) Algorithm. Applied Soft Computing, Vol. 8, 2008, No. 1, pp. 687–697, doi:
10.1016/j.asoc.2007.05.007.

[13] Kennedy, J.—Eberhart, R.: Particle Swarm Optimization. Proceedings of the
IEEE International Conference on Neural Networks (ICNN ’95), Vol. 4, 1995, pp.
1942-1948, doi: 10.1109/ICNN.1995.488968.

[14] Kennedy, J.—Eberhart, R. C.—Shi, Y.: Swarm Intelligence. Springer, 2001.

https://doi.org/10.1016/j.ins.2015.12.018
https://doi.org/10.1016/j.ins.2016.08.061
https://doi.org/10.1016/j.apenergy.2016.05.074
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1109/TKDE.2013.118
https://doi.org/10.1016/j.asoc.2014.11.064
https://doi.org/10.1016/j.asoc.2014.10.026
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1016/j.asoc.2007.05.007
https://doi.org/10.1109/ICNN.1995.488968

288 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

[15] Liang, J. J.—Qu, B. Y.—Suganthan, P.: Problem Definitions and Evaluation
Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-
Parameter Numerical Optimization. Technical Report, Zhengzhou University, China
and Nanyang Technological University, Singapore, 2013, IIT Kanpur, India, 2014.

[16] Liu, S. Q.—Kozan, E.: A Hybrid Metaheuristic Algorithm to Optimise a Real-
World Robotic Cell. Computers and Operations Research, Vol. 84, 2017, pp. 188–194,
doi: 10.1016/j.cor.2016.09.011.

[17] Mesejo, P.—Ibáñez, Ó.—Cordón, Ó.—Cagnoni, S.: A Survey on Image
Segmentation Using Metaheuristic-Based Deformable Models: State of the Art
and Critical Analysis. Applied Soft Computing, Vol. 44, 2016, pp. 1–29, doi:
10.1016/j.asoc.2016.03.004.

[18] Minetti, G.—Leguizamón, G.—Alba, E.: An Improved Trajectory-Based Hy-
brid Metaheuristic Applied to the Noisy DNA Fragment Assembly Problem. Infor-
mation Sciences, Vol. 277, 2014, pp. 273–283, doi: 10.1016/j.ins.2014.02.020.

[19] Patel, V. K.—Savsani, V. J.: Heat Transfer Search (HTS): A Novel Op-
timization Algorithm. Information Sciences, Vol. 324, 2015, pp. 217–246, doi:
10.1016/j.ins.2015.06.044.

[20] Rao, R. V.: Jaya: A Simple and New Optimization Algorithm for Solv-
ing Constrained and Unconstrained Optimization Problems. International Jour-
nal of Industrial Engineering Computations, Vol. 7, 2016, No. 1, pp. 19–34, doi:
10.5267/j.ijiec.2015.8.004.

[21] Rao, R. V.: Teaching-Learning-Based Optimization Algorithm. Springer Interna-
tional Publishing, Cham, 2016, pp. 9–39.

[22] Rashedi, E.—Nezamabadi-Pour, H.—Saryazdi, S.: GSA: A Gravitational
Search Algorithm. Information Sciences, Vol. 179, 2009, No. 13, pp. 2232–2248, doi:
10.1016/j.ins.2009.03.004.

[23] Storn, R.—Price, K.: Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces. Journal of Global Optimization,
Vol. 11, 1997, No. 4, pp. 341–359, doi: 10.1023/A:1008202821328.

[24] Wolpert, D. H.—Macready, W. G.: No Free Lunch Theorems for Optimization.
IEEE Transactions on Evolutionary Computation, Vol. 1, 1997, No. 1, pp. 67–82.

[25] Xiong, Y.—Golden, B.—Wasil, E.: A One-Parameter Genetic Algorithm for
the Minimum Labeling Spanning Tree Problem. IEEE Transactions on Evolutionary
Computation, Vol. 9, 2005, No. 1, pp. 55–60, doi: 10.1109/4235.585893.

[26] Xu, J.—Kelly, J. P.: A Network Flow-Based Tabu Search Heuristic for the Vehicle
Routing Problem. Transportation Science, Vol. 30, 1996, No. 4, pp. 379–393, doi:
10.1287/trsc.30.4.379.

[27] Zhang, L.—Wong, T. N.: Solving Integrated Process Planning and Scheduling
Problem with Constructive Metaheuristics. Information Sciences, Vol. 340-341, 2016,
pp. 1–16, doi: 10.1016/j.ins.2016.01.001.

[28] Zhu, Q.—Lin, Q.—Du, Z.—Liang, Z.—Wang, W.—Zhu, Z.—Chen, J.—
Huang, P.—Ming, Z.: A Novel Adaptive Hybrid Crossover Operator for Multiob-
jective Evolutionary Algorithm. Information Sciences, Vol. 345, 2016, pp. 177–198,
doi: 10.1016/j.ins.2016.01.046.

https://doi.org/10.1016/j.cor.2016.09.011
https://doi.org/10.1016/j.asoc.2016.03.004
https://doi.org/10.1016/j.ins.2014.02.020
https://doi.org/10.1016/j.ins.2015.06.044
https://doi.org/10.5267/j.ijiec.2015.8.004
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/4235.585893
https://doi.org/10.1287/trsc.30.4.379
https://doi.org/10.1016/j.ins.2016.01.001
https://doi.org/10.1016/j.ins.2016.01.046

Specific Parameter-Free Optimization to Speed Up Setting and Avoid Interactions 289

Rafael Rodr��guez-Reche received his B.Eng. degree in com-
puter science engineering from University of Jaén, Jaén, Spain,
in 2014 and his M.Sc. degree in telecommunication engineer-
ing in 2016. At present, he collaborates as a researcher at the
Telecommunication Engineering Department of the University of
Jaén. His current research interests include blockchain, artificial
intelligence, cloud computing, scheduling, machine learning and
optimization.

Roćıo P. Prado received her M.Sc. degree in telecommunica-
tion engineering from Seville University, Seville, Spain, in 2008
and her Ph.D. degree in telecommunication engineering with Eu-
ropean Mention from University of Jaén, Jaén, Spain, in 2011.
At present, she is Associate Professor with the Telecommunica-
tion Engineering Department of the Jaén University. Her current
research interests include artificial intelligence, machine learning,
grid/cloud computing and scheduling. She is an active member
of the research group “Signal Processing for Telecommunication
Systems” (TIC-188 of the PAI) and she is in the editorial board

of 19 JCR-indexed international journals such as IEEE Transactions on Fuzzy Systems,
Applied Soft Computing and IEEE Transactions on Data and Knowledge Engineering.

Sebastián Garc��a-Gal�an received his M.Sc. and Ph.D. de-
grees in telecommunication engineering from the Málaga Univer-
sity and the Technical University of Madrid (UPM), in 1995 and
2004, respectively. Since 1999, he is Associate Professor at the
Telecommunication Engineering Department of the Jaén Univer-
sity. He is a member of the research group “Signal Processing
for Telecommunication Systems” (TIC-188 of the PAI) and the
European Society for Fuzzy Logic And Technology (EUSFLAT).
His areas of research interest are artificial intelligence, grid/cloud
computing, speech and audio analysis. Also, he is a reviewer of

several journals indexed in JCR. He is involved in research projects of the Spanish Ministry
of Science and Education and of private companies.

290 R. R. Reche, R. P. Prado, S. G. Galán, J. E. M. Expósito, N. R. Reyes

José Enrique Mu~noz-Exp�osito received his M.Sc. degree in
telecommunication engineering from Málaga University, Spain
and Ph.D. in telecommunication engineering from Jaén Univer-
sity, Spain. Since 2003, he has been Associate Professor at the
Telecommunication Engineering Department of the Jaén Uni-
versity. His research interests include speech and audio analy-
sis, artificial intelligence, grid and cloud computing. He is cur-
rently Senior Researcher with the chair for “Signal Processing
and Telecommunication Systems” (TIC-188 of the PAI). He is
involved in research projects and works also for the editorial

reviewer board of the Annual Telematics Engineering Conferences (JITEL).

Nicolás Ruiz-Reyes received his M.Sc. and Ph.D. degrees in
telecommunication engineering from the Technology University
of Madrid and the University of Alcalá, in 1993 and 2001, re-
spectively. Since 2010 he has been Full Professor at the Telecom-
munication Engineering Department of the University of Jaén,
he is also the head of the research group TIC-188-PAI. He is
a member of the IEEE Signal Processing Society and Audio En-
gineering Society. His areas of research interest are signal pro-
cessing and its applications to communications. He is involved in
research projects of the Spanish Ministry of Science, European

Commission and private companies.

