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1 INTRODUCTION

The Roman domination problem (RD problem) was introduced by ReVelle and
Rosing [1] and Cockayne et al. [2] and can be interpreted as follows.

Assuming that any province of the Roman Empire is considered to be safe if
there is at least one legion (of maximum 2) stationed within it, the RD problem
requires that every unsafe province must be adjacent to a province with at least
two legions stationed within it and the total number of stationed legions within all
provinces of the Roman Empire is minimal.

In a graph terminology, let G = (V,E) be a simple undirected graph with a ver-
tex set V such that each vertex u ∈ V represents a province of the Roman Empire
and each edge, e ∈ E, represents an existing connection between two provinces.
Let f be a function f : V → {0, 1, 2} and let the weight of the vertex u, denoted
by f(u), represent the number of legions stationed at province u. Further, let the
weight of the function f be calculated by a formula

∑
v∈V f(v). Function f is called

a Roman dominating function (RD function) if every vertex u such that f(u) = 0
is adjacent to a vertex v such that f(v) = 2. The Roman domination problem is to
find an RD function f of a graph G with the smallest weight. The smallest weight of
the RD function f , denoted by γR(G), is known as the Roman domination number.

We illustrate the Roman domination problem in the example below.

Example 1. Let us assume that the Roman Empire can be described by a graph
G = (V,E) as it is presented below, in Figure 1.
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Figure 1: Graph G = (V,E)

The optimal number of legions necessary to defend the given graph is 4, provinces
represented by vertices v1 and v5 are with one stationed legion, province represented
by vertex v3 is with two stationed legions and all other provinces are without sta-
tioned legions. With the given schedule, vertices v1, v3 and v5 are defended be-
cause they have at least one legion stationed within it, while v2, v4, v6, v7 and v8
are defended since they are in the neighborhood of the vertex v3, which is with
two stationed legions. The optimal solution to the proposed problem is illustrated
in Figure 2, where vertices are marked by black squares if they are representing
provinces with two stationed legions, marked by red circles if they are represent-
ing provinces with one stationed legion, and marked by white circles if they are
representing provinces without stationed legions.
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Figure 2: Illustrated solution of the RD problem on a graph G defined in the Ex-
ample 1

In order to reduce the number of legions necessary to defend the Roman Empire
against a single attack, Henning and Hedetniemi [3] introduced the weak Roman
domination problem (WRD problem) as a variant of the RD problem. First, they
assumed that every province of the Roman Empire is safe if there is at least one legion
stationed within it and every unsafe province is defended if it is adjacent to a safe
province. Then they required that for every unsafe province there exists at least one
adjacent safe province whose legion could move and protect it in case it is attacked,
such that this particular legion movement does not affect the Empire’s safety, i.e.,
all provinces are considered to be defended before and after the movement.

Similarly as for the RD problem, for a graph G = (V,E) and a function f :
V → {0, 1, 2}, every vertex with positive weight is considered to be defended, and
a vertex u with property f(u) = 0 is considered to be defended if it is adjacent
to a vertex v ∈ V with positive weight. A function f is called a weak Roman
dominating function (WRD function) on a graph G if every vertex u with property
f(u) = 0 is adjacent to a vertex v with property f(v) > 0 and, with respect to
the function f ′, f ′ : V → {0, 1, 2} defined by f ′(u) = 1, f ′(v) = f(v) − 1 and
f ′(w) = f(w), w ∈ V \ {u, v}, all vertices are defended. The problem of finding
the WRD function f with the minimal weight for a given graph G is referred to
as the weak Roman domination problem (WRD problem). The minimum weight
of the WRD function f , denoted by γr(G), represents the weak Roman domination
number.

We illustrate the weak Roman domination problem in the example below.

Example 2. Let us assume that the Roman Empire can be described by the graph
G = (V,E) presented on Figure 1. The optimal solution value for the WRD problem
on the given graph is 3. Legions are stationed such that provinces represented by
vertices v1, v5 and v7 are with one stationed legion while all other provinces are
without stationed legions, see Figure 3 (vertices are marked by red circles if they
are representing provinces with one stationed legion and marked by white circles if
they are representing provinces without stationed legions).

With the given strategy, in case of an attack, provinces represented by vertices v2
and v8 are defended by the legion stationed at the province represented by the
vertex v1. In case of attack, movements of legion stationed at province v1 to province
v2 or to v8 does not affect Empire’s safety. Similarly, provinces v4 and v6 are defended
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Figure 3: Illustrated solution of the WRD problem for a graph G defined in the
Example 2

by the legion from province v5, province v3 is defended by the legion from province v7,
etc.

Ivanović [6] showed that neither the CPLEX nor the Gurobi optimization solvers
were able to solve the WRD problem on a huge number of instances with more than
100 vertices. Since there is only one algorithm for solving the WRD problem (see [7]),
which is written only for block graphs, we present a Variable Neighborhood Search
solution for solving the WRD problem on any types of graphs.

We also show that the same algorithm can be applied to the RD problem,
although Burger et al. [8] showed that there are significant differences in solving
these two problems (their assumption was based on the fact that the RD problem
involves static configuration of legions on the vertices of G, while the WRD problem
involves moving a legion between the adjacent vertices).

This paper is organized as follows. Previous work is given in Section 2. The
Variable Neighborhood Search algorithm is proposed in Section 3. Computational
results are summarized in Section 4.

2 PREVIOUS WORK

The Roman domination problem was introduced by Stewart [9] and ReVelle and
Rossing [1]. Inspired by Stewart’s paper, Cockayne et al. [2] gave some properties
of the Roman domination sets. Later Henning et al. [3] introduced the WRD prob-
lem as special variant of the RD problem and observed that every RD function in
a graph G is also a WRD function in G. In the same paper they proved relation
γ(G) ≤ γr(G) ≤ γR(G) ≤ 2γ(G), where γ(G) represents cardinality of the minimum
dominating set on the graph G (dominating set is a set of vertices such that each of
the other vertices has a neighbor in the dominating set). Relations between several
different domination numbers were summarized by Chellali et al. [10].

Upper and lower bounds for γR for special types of graphs were determined,
for instance, in [2, 11, 13, 14, 15, 16, 17]. Exact values for γR for paths, cycles,
complete, complete n-partite and Petersen P (n, 2) graphs were given in [2, 11, 15,
16, 18, 19, 20, 21, 22], while cardinal and Cartesian products of paths and cycles
and lexicographic product of some graphs were given in [15, 16, 19]. Exact values of
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the γr(G) for paths, cycles, complete, complete n-partite, 2×n grid and web graphs
and values of γr(G) of corona and products of some special types of graphs were
given in [3, 12, 23, 24].

The complexity of computing γR when restricted to interval graphs was men-
tioned as an open question in [2]. In the same paper it was shown that the problem
of computing γR on trees can be solved in linear time and that it remains NP-
complete even when restricted to split graphs, bipartite graphs, and planar graphs.
Linear-time algorithm for computing γR on bounded tree-width graphs was pro-
posed in [25]. In [20] it was shown that γR can be computed in linear time on
interval graphs and co-graphs. In the same papers, the authors give a polynomial
time algorithm for computing γR on AT-graphs and graphs with d-octopus. Linear-
time approximation algorithm and a polynomial time approximation scheme for the
RD problem on unit disk graphs was given in [22]. If we assume that the size
of G is a given constant, Pavlič and Žerovnik provided algorithm for computing γR
for polygraphs, including rota-graphs and fascia-graphs, that run in constant time
in [19]. Some variants of the algorithm for solving the RD problem on a grid graph
together with theoretical properties of γR of grid graphs were given in [13]. In [13]
Currò also showed that the same algorithm can be applied to some other types of
graph.

A binary programing formulations for the RD problem, which can be used for
computing γR on arbitrary graphs by using standard optimization solvers, were
provided by ReVelle and Rossing [1] and Burger et al. [4]. Burger et al. [4] also gave
a binary programming formulations for the WRD problem. Recently Ivanović [6]
gave another formulation for the WRD problem. Ivanović compared formulations
for the WRD problem in [6], showing that neither CPLEX nor Gurobi optimization
solvers were able to solve the WRD problem, regardless of the used formulation, on
many instances with more than 100 vertices.

Peng [7] gave a linear time algorithm for computing γr on block graphs. Provid-
ing two faster algorithms, Chapelle et al. [26] broke trivial enumeration barrier of
O∗(3n) for calculating γr(G) (the notation O∗(f(n)) suppresses polynomial factors).
With the first algorithm they proved that the WRD problem can be solved in O∗(2n)
time needing exponential space. The second algorithm uses polynomial space and
time, O∗(2.2279n).

For some special classes of graphs (interval graphs, intersection graphs, co-graphs
and distance-hereditary graphs) the RD problem can be solved in linear time [15],
but in the general case, the RD problem is NP-complete, [11]. Proof that the WRD
problem is NP-complete, even when restricted to bipartite and chordal graphs, is
given in [3].

Now, since both the Roman and the weak Roman domination problems are NP-
complete problems, creating a heuristic that could be successful in finding an optimal
solution value, providing legions schedule as well, represents a challenge.

Therefore, in [13] a genetic algorithm for solving the RD problem was proposed
by Currò, and that was the only heuristic written for any type of Roman domination
problem known to the authors. In the mentioned paper, the author proposes a set
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of instances on random generated graphs which will be used in experimental results
of this paper.

In the next section we propose the Variable Neighborhood Search algorithm for
solving both the Roman and the weak Roman domination problems on graphs. The
VNS heuristic is chosen because it was previously proven to be successful for some
problems on graphs, for example [27, 28].

3 VARIABLE NEIGHBORHOOD SEARCH APPROACH
FOR SOLVING ROMAN AND WEAK ROMAN DOMINATION
PROBLEMS

The Variable Neighborhood Search (VNS) is a heuristic method, which starts from
some point from the search space, explores its neighborhoods, then changes the
starting point through some search procedures such that it moves to another point
of the search space, explores its neighborhoods, and repeats the whole procedure in
order to find a better solution. The VNS heuristic was proposed by Mladenović [29]
and later studied by Mladenović and Hansen [30] and Hansen and Mladenović in [31].

With respect to the problems’ definitions, let us assume that all Roman provinces
are represented by a set of vertices V , n = |V |, and all existing roads by the set of
edges E = {e = (i, j), i, j ∈ V, i and j are connected}, m = |E|, of some simple
undirected graph G = (V,E). Given that graph G is undirected, we will say that
e = (i, j) ∈ E implies (j, i) ∈ E. Moreover, for every vertex i ∈ V let the set of all
vertices adjacent to the vertex i be marked by Ni. Furthermore, let us assume that
each province is represented by a number i = 1, . . . , n, and the number of legions
stationed within a province i is represented by value xi. Vector X = (x1, . . . , xn) of
values xi, i = 1, . . . , n, is a feasible solution to the RD problem (WRD problem) if
f , f : V → {0, 1, 2} defined by

f(i) = xi, i ∈ V (1)

is a Roman domination function (weak Roman domination function).

Given that a feasible solution to the WRD problem does not have to be a feasible
solution to the RD problem, we define a function feasibleSolution(X, problem) which
checks if X is a feasible solution for the problem ∈ {RD, WRD}.

In order to check if vector X is a feasible solution to the RD problem, for every
element xi (i = 1, . . . , n) feasibleSolution(X, RD) checks if xi is a positive value, or
xi = 0 and there is at least one vertex vj connected to vi such that xj = 2.

In order to check if vector X is a feasible solution to the WRD problem, for
every element xi (i = 1, . . . , n) feasibleSolution(X,WRD) checks if it is a positive
value, or xi = 0 and at least one of the following two conditions holds:

1. there exists at least one element xj (j = 1, . . . , n, j 6= i) with properties xj = 2
and j ∈ Ni, i.e.
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• after a single legion movement from a province j to a province s (s 6= i, j)
there still is one legion stationed at a province j which defends provinces i
and j;

• after a single legion movement from a province j to a province i, both
provinces i and j are defended by stationed legions.

2. there exists at least one element xj, j ∈ Ni, such that xj = 1 and swapping the
values of xi and xj does not affect the feasibility of the vector X. More precisely,
after the swap, for every element xs, s ∈ Nj, with property xs = 0, there exists
at least one xk, k ∈ Ns, k 6= j, with property xk > 0, i.e.

• in order to move a single legion from a province j to a province i, all provinces
s, which are neighbors with j and which are without any stationed legion,
must have another neighbor k (k 6= j) with at least one stationed legion.

We will say that the function feasibleSolution(X, problem) is satisfied if there are
no undefended provinces with respect to the problem.

Also, we create function penalty(X, problem), which calculates the number of
undefended provinces with respect to the problem.

Further, we will say that two solutions, X and X ′, have difference of the first
order if one legion was moved from one province to another (value of one element,
with value lower than 2, of the vector X, is increased by one, while value of the other
element, with positive value, of the vector X, is decreased by one) or disbanded
(value of one element, with positive value, of the vector X, is decreased by one).
Respectively, two solutions have difference of the kth order if at most k legions were
moved, including possible disbanding.

Now, let us define a setNk(X), k = kmin, . . . , kmax as the set of all vectorsX ′ that
have difference of the kth order from the solutionX and call that set kth Neighborhood
to the solution X.

The VNS-based heuristic can be defined in such a way that it starts from the
initial feasible solution X, shakes it by creating another solution X ′ ∈ Nk(X)
(by the expression shake we mean movement of a certain number of legions) and
then applies local search method in order to create a better feasible solution X ′′.
If the feasible solution X ′′, obtained by the local search procedure, is not better
than the current incumbent X (F (X ′′) ≥ F ∗), the VNS algorithm repeats the
procedure of shaking, but in neighborhood Nk+kstep(X) (i.e., k increments by kstep)
and local search within it and so on until k reaches its maximum kmax. Otherwise,
if F (X ′′) < F ∗, X∗ becomes X ′′, F ∗ becomes F (X ′′) and k becomes kmin. Changing
neighborhoods enables one to get out from the local minima. The VNS algorithm is
presented as Algorithm 1. Functions InitialSolution(), Shake(), LocalSearch() and
StoppingCondition() are described below.

Function InitialSolution() (pseudo code is presented as Algorithm 2) is defined
so that it produces an initial feasible solution X∗ by applying random changes to
elements of the zero vector X. That is, InitialSolution() assigns randomly generated
number from the set {1, 2} to a randomly chosen element of the vector X until X
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Algorithm 1 Variable Neighborhood Search metaheuristic

1: X∗ ← InitialSolution();
2: F ∗ ← F (X∗);
3: repeat
4: k ← kmin;
5: repeat
6: X ← X∗;
7: X ′ ← Shake(X, k);
8: X ′′ ← LocalSearch(X ′);
9: if F (X ′′) < F ∗ then

10: F ∗ ← F (X ′′);
11: X∗ ← X ′′;
12: k ← kmin;
13: else
14: k ← k + kstep;

15: until k > kmax

16: until StoppingCondition()

Algorithm 2 InitialSolution()

1: X ← {0, . . . , 0};
2: repeat
3: i← random number ∈ {1, . . . , n};
4: xi ← random number ∈ {1, 2};
5: until (feasibleSolution(X, problem))
6: for i = 1, . . . , n do
7: if xi > 0 then
8: xi ← xi − 1;
9: if not(feasibleSolution(X, problem)) then

10: xi ← xi + 1;

becomes a feasible solution. Then, given that the function InitialSolution() finds
a feasible solution, and our goal is to find a feasible solution such that the objective
function value F (X) (F (X) =

∑n
i=1 xi) is minimal, the found solution will be, for

now, saved as the best one (X∗ ← X, F ∗ ← F (X∗)).

Further, in order to lower the value F ∗, i.e., to improve the incumbent, among
the elements of the vector X with positive value, InitialSolution() searches for an el-
ement whose value could be decreased by one such that the resulting vector remains
a feasible solution. If such an element is found, InitialSolution() will decrease its
value by one, and then continue to search for an element of the incumbent with
the same property. Whenever the procedure of decreasing a value of one element
produces a feasible vector, the resulting vector will be stored as the best one and
objective function value F (X) will be stored as F ∗. This procedure repeats until
there are no elements whose decreased value will result with feasible X.
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Algorithm 3 Shake()

1: X ← X∗

2: DecreasingProcedure(X);
3: for j = 1, . . . , k do
4: a← random number ∈ {1, . . . , n} such that xa 6= 0;
5: b← random number ∈ {1, . . . , n} such that xb 6= 2;
6: xa ← xa − 1;
7: xb ← xb + 1;

8: if feasibleSolution(X, problem) then
9: X∗ ← X;

10: DecreasingProcedure(X);

Now, if it is possible to find a feasible solution with the same or smaller objec-
tive function value than F ∗, the resulting solution will be better than the current
incumbent. Hence, we define the following two functions, Shake() and LocalSearch().
These two functions are defined to search for a better feasible solution than the one
with which they start the searching process.

Therefore, Shake(X∗, k) function (presented as Algorithm 3) starts with a fea-
sible solution X∗, stores it as X (X ← X∗) and then randomly chooses an ele-
ment of the solution X with positive value and decreases its value by one. If the
resulting vector is again a feasible solution, it stores it as the new best solution
and repeats the process until an infeasible solution is found. We call this process
DecreasingProcedure(). Then, among the elements of the current solution X with
value lower than 2, shake function randomly choses one element, and among the ele-
ments with positive value of the incumbent X, it randomly chooses another element
and increases a value of the first chosen element by one and decreases the value of
the second chosen element also by one (i.e., it moves one legion) and repeats this
process k times. If the resulting vector X ′ is a feasible one, given that F (X ′) < F ∗

the new best feasible is found. Therefore, X ′ will be stored as the new best feasi-
ble (X∗ ← X ′). Also, if X

′
is feasible, we will apply DecreasingProcedure() to the

vector X
′

and resulting vector denote as X ′ (note that in this case it follows that
F (X ′) ≤ F ∗ − 1).

Now, the LocalSearch(X ′) function (presented as Algorithms 4 and 5) starts with
an infeasible incumbent X ′, calculates its penalty(X ′, problem) value and stores it as
ndmin. Then it searches a neighborhood N1(X

′) of the incumbent X ′ in order to find
a feasible solution. If a solution with lower penalty value is found it will be stored
as incumbent and search for a better solution continues. If a solution with penalty
value equal to zero is found, it means that a feasible solution is found. If there is no
solution with penalty value lower or equal to ndmin within the neighborhood N1(X

′)
of the incumbent, local search procedure will continue its search in the neighborhood
N2(X

′) of the incumbent. In both cases, whenever a feasible solution is found, it
will be stored as the new best feasible solution. Also, local search procedure will
continue to search for a feasible solution within the neighborhoods of the incumbent
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Algorithm 4 LocalSearch()

1: ndmin ← penalty(X ′, problem);
2: while some improvement is made do
3: for i = 1, . . . , n such that x

′
i > 0 do

4: x
′
i ← x

′
i − 1;

5: if feasibleSolution(X ′, problem) then
6: X∗ ← X ′;
7: DecreasingProcedure(X ′);
8: ndmin ← penalty(X ′, problem);
9: go to line 3;

10: else
11: for j = 1, . . . , n, j 6= i such that x

′
j < 2 do

12: x
′
j ← x

′
j + 1;

13: nd← penalty(X ′, problem);
14: if nd = 0 then
15: execute lines 6-9;
16: else
17: if nd < ndmin then
18: X

′
better ← X ′;

19: ndmin ← nd;

20: if nd = ndmin then
21: X

′
same ← X ′ with some probability;

22: x
′
j ← x

′
j − 1;

23: x
′
i ← x

′
i + 1;

24: if X
′
better is found then

25: X
′ ← X

′
better;

26: else
27: if X

′
same is found then

28: with some probability X
′ ← X

′
same;

29: else
30: run LS2();

31: X ′′ ← X∗;

(i.e., a decreasing procedure will be applied to the feasible incumbent) until there is
no better feasible solution.

In other words, local search procedure consists of three steps. In the first step,
local search procedure searches for an element (of the incumbent X ′) with positive
value, decreases its value by one and checks if the resulting vector is a feasible
one. If the resulting vector is a feasible solution, it will be stored as X∗. If the
resulting vector is infeasible, the procedure goes to the second step of the local
search. In the second step, the local search procedure searches for an element x

′
j

of the incumbent of the local search procedure with property x
′
j < 2, such that

increasing its value by one creates a feasible solution. If the required element is



VNS Approach for Solving the RD and the WRD Problems on Graphs 67

found, its value will be increased by one and the resulting feasible solution stored
as X∗. If a feasible solution is found (both in the first and in the second step),
DecreasingProcedure() will be applied to that feasible incumbent, ndmin will be
set to be equal to penalty(X ′, problem) and the local search procedure will restart
from the beginning of the first step (lines 6-9 and 15 of Algorithm 4). If the required
element of the second step was not found, solution with the smallest penalty value
penalty(X ′, problem) will be stored as X

′

better and the solution with the penalty
value equal to the incumbent will be stored as X

′
same. Then, when the second step

is finished, in case that a better solution than the incumbent is found, it will be
set as the incumbent solution and the second step will restart from the beginning.
Similarly, if at least a solution of the same quality is found, it will be set as the
incumbent solution with some probability and the second step will restart from
the beginning. Otherwise, if there is no better solution nor a solution of the same
quality, the third step of the local search procedure will start.

In the third step of the local search procedure, we explore a neighborhoodN2(X
′)

of the incumbent in order to find a feasible solution. We denoted the third step of
the local search procedure as LS2() only because we want to make algorithm of
LocalSearch() function easier for reading.

In the third step (which is presented as Algorithm 5), the local search procedure
searches for an element x

′
i with value x

′
i = 2 and for an element x

′
j with value x

′
j < 2

(i, j = 1, . . . , n). Then, it decreases the value of x
′
i by two and increases a value of

x
′
j by one and then checks if a feasible solution is found, or if there exists an element

x
′
s < 2 such that increasing its value by one results with a feasible solution or

with a better infeasible solution. Similarly as in the first two steps, LS2() function
computes penalty() value before and after each change and stores an incumbent
solution X ′ with smaller penalty value than ndmin as X

′

better and the incumbent
with the same penalty value as X

′
same. Again, whenever a better incumbent is

found, ndmin will be set to be equal to penalty(X
′

better, problem) and the incumbent
solution of the same quality will be stored with some probability. Then, if a process
of decreasing a value of an element x

′
i by two and increasing a value of each pair

of elements x
′
j and x

′
s by one does not create a feasible solution, values of elements

xi, xj and xs will be restored and the third step will continue its search with the
next element whose value is equal to 2. In case that all element combinations are
checked and better solution is found, it will be set as the incumbent and LS2() will
restart its search within the new incumbent. Similarly, in case that all elements
combinations are checked and only a solution of the same quality is found, it will
be set as the incumbent with some probability and LS2() will restart.

During all the steps of the local search procedure we are also checking if moves
from one solution to the solution of the same quality will not make a loop, i.e., we
will not store the incumbent of the same quality if it will take us to some previous
incumbent. Given that the size of a loop may vary, we do not allow moves from
one incumbent to the incumbent of the same quality for more then kmax successive
times. This means that the second and the third step will restart with the solution
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Algorithm 5 LS2()

1: ndmin ← penalty(X ′, problem)
2: while some improvement is made do
3: for i = 1, . . . , n such that x

′
i = 2 do

4: x
′
i ← x

′
i − 2

5: for j = 1, . . . , n such that x
′
j < 2 do

6: x
′
j ← x

′
j + 1

7: if feasibleSolution(X ′, problem) then
8: X∗ ← X ′

9: DecreasingProcedure(X ′)
10: ndmin ← penalty(X ′, problem)
11: go to line 2
12: else
13: for s = 1, . . . , n, such that x

′
s < 2 do

14: x
′
s ← x

′
s + 1

15: if feasibleSolution(X ′, problem) then
16: apply lines 8− 11
17: else
18: nd← penalty(X ′)
19: if nd < ndmin then
20: X ′better ← X ′

21: ndmin ← nd

22: if nd = ndmin then
23: X ′same ← X ′ with some probability

24: x
′
s ← x

′
s − 1

25: x
′
j ← x

′
j − 1

26: x
′
i ← x

′
i + 2

27: if X
′
better is found then

28: X
′ ← X

′
better

29: else
30: if X

′
same is found then

31: with some probability X
′ ← X

′
better

32: else
33: finish LS2()

of the same quality for no more than kmax successive times. If some improvements
are made within LS2(), the local search procedure restarts from the beginning of the
first step with the new incumbent. Finally, when all three steps are finished and no
improvement is made, LocalSearch() function will finish its search and the feasible
solution X∗ will be returned as X ′′. Now, if a better feasible solution is obtained
(F (X

′′
) < F ∗), its objective function value will be stored (F ∗ ← F (X

′′
)) and k will

be set to kmin, otherwise k will be increased by kstep. The VNS algorithm continues
until k reaches its maximum or some other stopping condition occurs.
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Input parameters for the VNS heuristic are the problem, the minimal (kmin)
and the maximal (kmax) numbers of neighborhoods that should be searched, the
increment of the parameter k (kstep) and the maximum CPU time allowed (tmax).
In our implementation StoppingCondition() finishes the VNS algorithm if either
kmax or maximal CPU time allowed is reached.

The parameters used for the proposed VNS algorithm are kmin = 1, kmax = 30,
kstep = 1 and tmax = 7 200 s and probability is set to p = 0.5.

The VNS algorithm cannot guarantee finding global optima because of its non-
deterministic nature. Therefore, in order to find solution of sufficiently high quality
it is necessary to run the VNS heuristic algorithm on the same instance more than
once. Hence, in out experiments each instance was run 20 times.

4 COMPUTATIONAL RESULTS

Experimental results obtained by the proposed VNS algorithm for solving the RD
and the WRD problems are presented in this section. The VNS algorithm was im-
plemented in C++. All computational experiments have been performed on Intel R©
CoreTM i7-4700MQ CPU@2.40 GHz with 8 GB RAM, under Windows 10 operating
system.

CPLEX optimizations solver was run on all five formulations of the RD problem
presented in [5] on grid, planar, net and randomly generated sets of graphs. The
set of randomly generated graphs is the same as the one generated and proposed
by Currò in [13] (names of instances consist of the number of vertices and of the
probability that edge is incident to vertices expressed in percentage) while grid, net
and planar sets are well known sets of graphs and also provided by Currò. Since
there are several different ILP formulations of the Roman and the weak Roman
domination problems (see [5] and [6]), and that performance of CPLEX differs in
accordance with used ILP formulation, for the RD problem we present only instances
for which optimal solution value is found, while for the WRD problem the results
are presented on all instances with some known solution. In case that CPLEX was
successful in finding an optimal solution value by using more than one formulation,
the smallest running time is presented.

The results are summarized in Tables 1–8.

Tables 1–4 contain instances where CPLEX optimization solver was able to
find and prove optimality of the found solution value for the RD problem (CPLEX
was run for all five formulations of the RD problem presented in [5]). Tables 5–8
contains instances where CPLEX and Gurobi optimization solvers were success-
ful in finding some solution value by using at least one ILP formulation presented
in [6] within the given time. In all tables, whenever the optimal solution value is
found by more than one formulation, the smallest running time is shown. Also,
whenever optimization solver was unable to prove optimality of the found solution
either because of time limit or “out of memory” status, in the column tsol we put
sign “–”.
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Instances are sorted by the number of vertices and the number of edges, in
that order. Tables are organized as follows: The name of the instance is given in
the first column. The next two columns (|V |, |E|) represent the number of ver-
tices and the number of edges. In tables that correspond to the RD problem for
all instances we have optimal solution values. Therefore, in the next two columns,
opt and tcpl, optimal solution value and minimal running time are given. In tables
that correspond to the WRD problem we have three columns, the optimal solu-
tion value, the best solution value and the smallest running time, which is given
regardless the optimization solver and ILP formulation. It should be noted that for
the WRD problem optimal solution values and minimal running times of standard
optimization solvers are taken from [6]. Also note that, in case that optimization
solver could not provide an optimal solution value, a symbol “-” stands in the col-
umn tsol.

For both problems, the VNS algorithm was run 20 times for each problem in-
stance and informations of the best solution values obtained in these 20 runs are
given in the final four columns (sol, t, err, σ) of all the tables. The best solution
value obtained by the VNS algorithm is given in the column sol and whenever the
VNS solution value was equal to the optimal solution value (from opt column), it
was marked as “opt”. The best time in 20 runs, necessary for the VNS algorithm to
reach the corresponding solution in the first occurrence is given in the column t. The
final two columns err and σ contains informations on the average solution quality:
err stands for average relative error of found solutions from the best found solution,
which is calculated as err = 1

20

∑20
i=1 erri, where erri = |VNSi − sol|/|VNSi|, and

VNSi is the VNS solution obtained in the ith run. Parameter σ is the standard

deviation of the err obtained by the formula σ =
√

1
20

∑20
i=1 (erri − err)2.

The VNS algorithm for the RD problem is tested on 231 different instances and
achieves the optimal solution on 218 of them. All solutions are found within the time
limit (running time for 99 instances is lower than 1 second and only for 29 larger
than 100 seconds). For majority of instances (on 214 instances), percentage average
relative error from the found solution is lower than 2.5 %. Also, for the majority
of instances (for 121 instances) the VNS heuristic running time is lower than the
best CPLEX running time. Detailed informations of these testings are given in
Tables 1–4.

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

grid04x10 40 66 20 0.081 opt 0.01 0 0
grid05x08 40 67 21 0.081 opt 0.005 0 0
grid08x05 40 67 21 0.062 opt < 0.01 0 0
grid10x04 40 66 20 0.077 opt 0.013 0 0
grid03x14 42 67 22 0.042 opt < 0.01 0 0
grid06x07 42 71 22 0.119 opt < 0.01 0 0
grid07x06 42 71 22 0.115 opt < 0.01 0 0
grid14x03 42 67 22 0.062 opt 0.031 0 0
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Table 1 continues . . .

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

grid04x11 44 73 22 0.057 opt 0.013 0 0
grid11x04 44 73 22 0.046 opt < 0.01 0 0
grid03x15 45 72 24 0.046 opt 0.012 0 0
grid05x09 45 76 23 0.168 opt < 0.01 0 0
grid09x05 45 76 23 0.148 opt 0.013 0 0
grid15x03 45 72 24 0.061 opt 0.022 0 0
grid04x12 48 80 24 0.058 opt 0.034 0 0
grid06x08 48 82 24 0.05 opt 0.033 0.0040 0.0120
grid08x06 48 82 24 0.098 opt 0.012 0.0040 0.0120
grid12x04 48 80 24 0.076 opt 0.019 0 0
grid07x07 49 84 24 0.098 opt 0.029 0.0060 0.0143
grid05x10 50 85 26 0.147 opt < 0.01 0 0
grid10x05 50 85 26 0.166 opt < 0.01 0 0
grid04x13 52 87 26 0.162 opt 0.104 0 0
grid13x04 52 87 26 0.099 opt 0.017 0.0019 0.0081
grid06x09 54 93 27 0.111 opt 0.436 0.0143 0.0175
grid09x06 54 93 27 0.179 opt < 0.01 0.0071 0.0143
grid05x11 55 94 28 0.153 opt 0.013 0 0
grid11x05 55 94 28 0.184 opt < 0.01 0 0
grid04x14 56 94 28 0.059 opt 0.035 0.0017 0.0075
grid07x08 56 97 28 0.131 opt < 0.01 0 0
grid08x07 56 97 28 0.153 opt 0.033 0 0
grid14x04 56 94 28 0.06 opt 0.438 0.0356 0.0109
grid04x15 60 101 30 0.092 opt < 0.01 0.0016 0.0070
grid05x12 60 103 30 0.13 opt 0.036 0.0194 0.0158
grid06x10 60 104 30 0.092 opt 0.041 0.0048 0.0115
grid10x06 60 104 30 0.152 opt 0.163 0.0097 0.0148
grid12x05 60 103 30 0.177 opt 0.078 0.0129 0.0158
grid15x04 60 101 30 0.075 opt 0.04 0 0
grid07x09 63 110 31 0.066 opt 0.135 0.0094 0.0143
grid09x07 63 110 31 0.162 opt 0.082 0 0
grid08x08 64 112 32 0.118 opt 0.031 0.0015 0.0066
grid05x13 65 112 33 0.173 opt 0.171 0.0029 0.0088
grid13x05 65 112 33 0.204 opt 0.054 0.0044 0.0105
grid06x11 66 115 33 0.137 opt 0.045 0.0059 0.0118
grid11x06 66 115 33 0.169 opt 0.246 0.0029 0.0088
grid05x14 70 121 35 0.207 opt 0.264 0.0083 0.0127
grid07x10 70 123 34 0.146 opt 0.164 0.0171 0.0140
grid10x07 70 123 34 0.119 opt 0.699 0.0171 0.0165
grid14x05 70 121 35 0.191 opt 0.19 0.0083 0.0127
grid06x12 72 126 36 0.169 opt 0.198 0.0054 0.0108
grid08x09 72 127 35 0.153 opt 0.017 0.0069 0.0120
grid09x08 72 127 35 0.125 opt 0.037 0.0110 0.0181
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Table 1 continues . . .

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

grid12x06 72 126 36 0.186 opt 0.161 0.0014 0.0059
grid05x15 75 130 38 0.214 opt 0.352 0.0026 0.0077
grid15x05 75 130 38 0.247 opt 0.101 0 0
grid07x11 77 136 38 0.169 opt 0.094 0.0013 0.0056
grid11x07 77 136 38 0.186 opt 0.102 0.0026 0.0077
grid06x13 78 137 38 0.148 opt 1.553 0.0242 0.0148
grid13x06 78 137 38 0.209 opt 38 0.0256 0.0079
grid08x10 80 142 39 0.128 opt 0.132 0.0113 0.0124
grid10x08 80 142 39 0.142 opt 0.039 0.0075 0.0115
grid09x09 81 144 38 0.073 opt 2.937 0.0226 0.0236
grid06x14 84 148 41 0.134 opt 22.542 0.0306 0.0128
grid07x12 84 149 41 0.168 opt 1.727 0.0083 0.0114
grid12x07 84 149 41 0.192 opt 1.062 0.0024 0.0071
grid14x06 84 148 41 0.231 opt 7.766 0.0225 0.0116
grid08x11 88 157 42 0.192 opt 11.391 0.0275 0.0151
grid11x08 88 157 42 0.141 opt 0.778 0.0206 0.0187
grid06x15 90 159 44 0.247 opt 5.733 0.0188 0.0125
grid09x10 90 161 43 0.223 opt 1.224 0.0279 0.0184
grid10x09 90 161 43 0.237 opt 0.672 0.0102 0.0133
grid15x06 90 159 44 0.264 opt 3.141 0.0133 0.0109
grid07x13 91 162 44 0.178 opt 0.801 0.0177 0.0112
grid13x07 91 162 44 0.178 opt 0.882 0.0177 0.0131
grid08x12 96 172 46 0.21 opt 1.527 0.0178 0.0176
grid12x08 96 172 46 0.191 opt 5.175 0.0159 0.0113
grid07x14 98 175 47 0.247 opt 1.621 0.0247 0.0149
grid14x07 98 175 47 0.214 opt 2.929 0.0196 0.0137
grid09x11 99 178 47 0.194 opt 3.737 0.0124 0.0136
grid11x09 99 178 47 0.287 opt 4.522 0.0245 0.0187

grid10x10 100 180 48 0.22 opt 0.199 0.0051 0.0088
grid08x13 104 187 50 0.262 opt 0.274 0.0097 0.0130
grid13x08 104 187 50 0.401 opt 9.993 0.0146 0.0135
grid07x15 105 188 50 0.348 opt 20.739 0.0252 0.0121
grid15x07 105 188 50 0.278 opt 22.274 0.0243 0.0102
grid09x12 108 195 51 0.268 opt 9.665 0.0244 0.0204
grid12x09 108 195 51 0.29 opt 22.53 0.0208 0.0183
grid10x11 110 199 52 0.306 opt 2.545 0.0185 0.0192
grid11x10 110 199 52 0.256 opt 12.061 0.0222 0.0188
grid08x14 112 202 53 0.289 opt 6.864 0.0201 0.0138
grid14x08 112 202 53 0.284 opt 1.213 0.0228 0.0159
grid09x13 117 212 55 0.232 opt 10.045 0.0260 0.0224
grid13x09 117 212 55 0.439 opt 46.869 0.0262 0.0184
grid08x15 120 217 57 0.404 opt 5.05 0.0154 0.0119
grid10x12 120 218 56 0.236 opt 29.077 0.0381 0.0228
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Table 1 continues . . .

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

grid12x10 120 218 56 0.326 opt 27.666 0.0343 0.0150
grid15x08 120 217 57 0.414 opt 18.631 0.0161 0.0155
grid11x11 121 220 57 0.443 opt 2.414 0.0219 0.0198
grid09x14 126 229 58 0.25 opt 0.518 0.0397 0.0277
grid14x09 126 229 58 0.334 opt 46.688 0.0458 0.0170
grid10x13 130 237 61 0.519 opt 12.797 0.0174 0.0178
grid13x10 130 237 61 0.529 opt 1.85 0.0188 0.0226
grid11x12 132 241 62 0.453 opt 26.008 0.0248 0.0183
grid12x11 132 241 62 0.464 opt 31.964 0.0204 0.0131
grid09x15 135 246 63 0.535 opt 36.088 0.0252 0.0185
grid15x09 135 246 63 0.733 opt 23.271 0.0312 0.0168
grid10x14 140 256 65 0.478 opt 78.302 0.0339 0.0165
grid14x10 140 256 65 0.432 opt 10.337 0.0359 0.0210
grid11x13 143 262 66 0.463 opt 70.571 0.0303 0.0223
grid13x11 143 262 66 0.503 opt 21.158 0.0372 0.0250
grid12x12 144 264 67 0.516 opt 36.922 0.0349 0.0185

grid10x15 150 275 70 0.715 opt 126.053 0.0266 0.0221
grid15x10 150 275 70 0.951 opt 24.143 0.0301 0.0189
grid11x14 154 283 71 0.483 opt 59.802 0.0438 0.0246
grid14x11 154 283 71 0.67 opt 62.236 0.0382 0.0203
grid12x13 156 287 72 0.715 73 115.106 0.0232 0.0159
grid13x12 156 287 72 0.783 opt 62.928 0.0384 0.0168
grid11x15 165 304 76 0.77 opt 117.803 0.0484 0.0198
grid15x11 165 304 76 0.918 opt 52.315 0.0406 0.0193
grid12x14 168 310 77 0.614 opt 181.88 0.0389 0.0205
grid14x12 168 310 77 0.721 opt 155.635 0.0424 0.0222
grid13x13 169 312 78 0.77 opt 68.571 0.0325 0.0191
grid12x15 180 333 82 0.94 83 164.384 0.0362 0.0191
grid15x12 180 333 82 1.3 83 130.71 0.0439 0.0207
grid13x14 182 337 83 0.777 opt 75.472 0.0486 0.0249
grid14x13 182 337 83 0.776 opt 201.98 0.0441 0.0270
grid13x15 195 362 89 1.73 opt 407.358 0.0483 0.0277
grid15x13 195 362 89 1.309 opt 139.451 0.0460 0.0239
grid14x14 196 364 88 0.739 opt 353.878 0.0516 0.0254
grid14x15 210 391 95 1.198 opt 282.147 0.0508 0.0250
grid15x14 210 391 95 1.159 opt 92.424 0.0543 0.0202
grid15x15 225 420 102 1.357 opt 697.859 0.0536 0.0240
grid20x20 400 760 176 37.579 185 676.713 0.0390 0.0135
grid30x20 600 1 150 260 1 279.438 286 5 114.624 0.0330 0.0160

Table 1. Experimental results for the RD problem on grid graph instances
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From Table 1 it can be concluded that the VNS algorithm reaches the solu-
tion value equal to the optimal solution value on almost all instances (unsuccessful
on 5 among 133 instances of grid type). On instances “grid12x13”, “grid12x15”,
“grid15x12”, “grid20x20” and “grid30x20”, where an optimal solution was not
reached, percentage average relative error from the found solution is lower than
2.1 %. Further, on 123 of 133 instances, percentage average relative error from the
found solution is lower or equal to 2.5 % and on 5 instances between 2.5 % and
3 %. So, from Table 1 we can conclude that for the RD problem on grid graph
instances the VNS algorithm provides solutions of good quality and within the time
limit.

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

plan10 10 27 3 0.048 opt < 0.01 0 0
plan20 20 105 5 0.062 opt < 0.01 0 0
plan30 30 182 5 0.046 opt < 0.01 0 0
plan50 50 465 6 0.082 opt < 0.01 0 0
plan100 100 1 540 10 0.0383 opt 0.054 0 0
plan150 150 2 867 12 1.303 opt 1.166 0 0
plan200 200 4 475 16 145.262 opt 2.466 0 0

Table 2: Experimental results for the RD problem on planar graph instances

From Table 2 it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on all instances with σ equal to zero. The
VNS algorithm was also tested on instances “plan250” and “plan300” but, because
CPLEX was unable to provide optimal solution values on these instances, we will
not present the VNS algorithm results for these instances either. Also, we can
conclude that instances of planar type are easier for solving for the VNS algorithm
than for CPLEX, given the fact that the VNS algorithm provides results much more
rapidly.

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

Net-10-10 100 342 28 0.043 opt 0.129 0 0
Net-10-20 200 712 56 0.088 opt 18.013 0.0018 0.0053
Net-20-20 400 1 482 98 0.134 opt 944.94 0.0228 0.0316
Net-30-20 600 2 252 140 0.162 145 6916.4 0.0580 0.0274

Table 3: Experimental results for the RD problem on net graph instances

From Table 3 it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on 3 of 4 instances. On instance “Net-30-
20”, where an optimal solution value was not reached, percentage average relative
error is equal to 2.74 %. Instances of the net type can be considered as easy for



VNS Approach for Solving the RD and the WRD Problems on Graphs 75

solving for CPLEX given the fact that CPLEX is able to provide results for less
than 1 second.

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

Random-50-1 50 49 32 0.062 opt 0.031 0 0
Random-50-2 50 49 33 0.062 opt 0.069 0 0
Random-50-3 50 58 28 0.084 opt 0.029 0 0
Random-50-4 50 54 30 0.08 opt 0.006 0 0
Random-50-5 50 67 28 0.1 opt 0.005 0 0
Random-50-6 50 86 25 0.184 opt 0.041 0 0
Random-50-7 50 84 26 0.1 opt < 0.01 0 0
Random-50-8 50 95 23 0.121 opt < 0.01 0 0
Random-50-9 50 108 23 0.152 opt 0.011 0 0
Random-50-10 50 112 22 0.162 opt 0.021 0 0
Random-50-20 50 248 12 0.337 opt < 0.01 0 0
Random-50-30 50 373 9 0.178 opt < 0.01 0 0
Random-50-40 50 475 8 0.432 opt < 0.01 0 0
Random-50-50 50 597 6 0.285 opt < 0.01 0 0
Random-50-60 50 739 4 0.115 opt < 0.01 0 0
Random-50-70 50 860 4 0.121 opt < 0.01 0 0
Random-50-80 50 980 4 0.131 opt < 0.01 0 0
Random-50-90 50 1 103 3 0.131 opt < 0.01 0 0

Random-100-1 100 100 61 0.062 opt 4.662 0.0056 0.0092
Random-100-2 100 109 59 0.1 opt 2.744 0.0058 0.0095
Random-100-3 100 181 48 0.168 opt 3.767 0.0142 0.0113
Random-100-4 100 206 45 0.438 opt 0.895 0.0184 0.0103
Random-100-5 100 231 39 0.469 opt 3.425 0.0243 0.0251
Random-100-6 100 321 34 0.532 opt 3.572 0.0157 0.0142
Random-100-7 100 317 32 0.585 opt 3.291 0.0152 0.0152
Random-100-8 100 398 29 0.774 opt 0.669 0.0017 0.0073
Random-100-9 100 430 27 0.728 opt 0.389 0 0
Random-100-10 100 498 24 1.263 opt 3.95 0.0160 0.0196
Random-100-20 100 981 14 0.971 opt 0.086 0 0
Random-100-30 100 1 477 11 2.916 opt 0.137 0.0083 0.0250
Random-100-40 100 1 945 8 0.761 opt 0.052 0 0
Random-100-50 100 2 483 7 0.808 opt 0.049 0.0188 0.0446
Random-100-60 100 2 985 6 0.345 opt < 0.01 0 0
Random-100-70 100 3 435 5 0.285 opt 0.044 0 0
Random-100-80 100 3 935 4 0.238 opt < 0.01 0 0
Random-100-90 100 4 446 4 0.263 opt < 0.01 0 0

Random-150-1 150 157 94 0.115 opt 22.389 0.0011 0.0032
Random-150-2 150 243 78 0.332 opt 234.872 0.0290 0.0151
Random-150-3 150 322 65 0.834 opt 67.784 0.0171 0.0162
Random-150-4 150 437 53 1.046 opt 30.304 0.0264 0.0155
Random-150-5 150 557 46 3.115 opt 2.293 0.0169 0.0142
Random-150-6 150 705 38 10.362 opt 19.279 0.0165 0.0165
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Table 4 continues . . .

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

Random-150-7 150 778 34 5.622 opt 0.462 0.0057 0.0114
Random-150-8 150 906 31 18.691 opt 0.865 0 0
Random-150-9 150 965 30 10.489 opt 3.727 0.0064 0.0161
Random-150-10 150 1 152 27 45.44 opt 3.128 0.0054 0.0128
Random-150-20 150 2 228 16 31.857 opt 1.561 0 0
Random-150-30 150 3 318 12 21.507 opt 0.383 0 0
Random-150-40 150 4 476 9 13.628 opt 0.409 0.0700 0.0458
Random-150-50 150 5 550 8 17.671 opt 0.014 0 0
Random-150-60 150 6 734 6 1.742 opt 0.012 0 0
Random-150-70 150 7 807 6 8.667 opt 0.015 0 0
Random-150-80 150 8 924 4 0.366 opt 0.019 0 0
Random-150-90 150 10 043 4 0.839 opt 0.017 0 0

Random-200-1 200 229 116 0.132 117 173.552 0.0167 0.0119
Random-200-2 200 390 92 0.933 93 647.247 0.0294 0.0184
Random-200-3 200 581 69 2.69 opt 507.393 0.0403 0.0256
Random-200-4 200 737 60 13.301 opt 568.08 0.0433 0.0214
Random-200-5 200 1 010 47 60.589 opt 41.339 0.0354 0.0217
Random-200-6 200 1 180 42 245.778 opt 84.363 0.0518 0.0332
Random-200-7 200 1 453 36 130.93 opt 11.272 0.0093 0.0173
Random-200-30 200 5 876 12 153.586 opt 9.478 0.0110 0.0346
Random-200-40 200 7 907 10 89.663 opt 0.302 0 0
Random-200-50 200 9 895 8 30.844 opt 0.248 0 0
Random-200-60 200 11 971 6 7.707 opt 0.496 0 0
Random-200-70 200 14 059 6 19.27 opt 0.025 0 0
Random-200-80 200 15 918 4 0.831 opt 0.038 0 0
Random-200-90 200 17 821 4 0.801 opt 0.03 0 0

Random-250-1 250 345 136 0.21 137 1 111.594 0.0220 0.0130
Random-250-2 250 633 97 7.95 99 380.006 0.0304 0.0211
Random-250-3 250 956 73 257.891 opt 132.791 0.0305 0.0252
Random-250-4 250 1 194 62 1 406.04 opt 148.167 0.0224 0.0218
Random-250-30 250 9 347 13 1 408.412 14 1.005 0 0
Random-250-40 250 12 500 10 359.601 opt 0.743 0 0
Random-250-50 250 15 605 8 61.927 opt 0.621 0 0
Random-250-60 250 18 660 8 206.548 opt 0.037 0 0
Random-250-70 250 21 741 6 40.379 opt 0.037 0 0
Random-250-80 250 24 836 4 3.071 opt 0.465 0 0
Random-250-90 250 27 974 4 1.404 opt 0.052 0 0

Random-300-1 300 481 145 0.299 149 2 797.158 0.0221 0.0135
Random-300-2 300 876 103 116.818 105 1 057.238 0.0394 0.0192
Random-300-40 300 17 934 10 483.378 opt 3.232 0.0174 0.0437
Random-300-50 300 22 520 8 334.329 opt 31.909 0 0
Random-300-60 300 26 952 8 622.751 opt 0.069 0 0
Random-300-70 300 31 390 6 66.546 opt 0.286 0 0
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Table 4 continues . . .

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

Random-300-80 300 35 871 5 34.579 opt 1.725 0.0667 0.0816
Random-300-90 300 40 412 4 2.191 opt 0.092 0 0

Table 4. Experimental results for the RD problem on random graph instances

Table 4 contains the results of the experimental testing on random generated
graphs. As it can be seen, the VNS algorithm reaches the solution value equal to the
optimal solution value on many instances (unsuccessful on 7 among 87 instances).
On instances where an optimal solution was not reached, standard deviation σ is
lower than 2.5 %. Instances “Random-200-8”–“Random-200-20”,
“Random-250-5”–“Random-250-20” and “Random-300-3”–“Random-300-30” are
omitted from Table 4 because CPLEX was unable to find an optimal solution value
on these instances. Nevertheless, the VNS algorithm finds some solution value for
these instances, but because we do not have an optimal solution value on these
instances, we will not present the VNS algorithm results either.

Before we present experimental results for the WRD problem on the same set
of instances, let us summarize the results presented in Tables 1-4. The VNS algo-
rithm for the RD problem finds solutions of good quality relatively fast, especially
on instances of planar type. On instances of grid and net type, using CPLEX op-
timization solver is better, but on instances of planar and random type, using the
VNS algorithm is preferable.

Experimental results of the VNS algorithm for the WRD problem are performed
on instances where some solution values are known from the literature. Given that
CPLEX was not able to solve the WRD problem on many instances within the
time limit because of the “out of memory” status or because of the time limit, we
tested the VNS algorithm both on instances where the optimal solution value is
known and on instances where the found solution is not proved to be the optimal
solution. Testings were made on 84 instances of different type. CPLEX optimization
solver was able to find the optimal solution on 64 of them. The VNS algorithm was
not able to find solutions equal to the optimal ones only on two instances. On
instances where the optimal solution value is unknown, the VNS solutions are equal
or better than the solutions found by CPLEX. Also, for almost all instances, the VNS
algorithm runtime is lower than CPLEX runtime. Detailed information considering
these testings is provided in Tables 5–8.

From Table 5 it can be concluded that the VNS reaches the solution value
equal to the optimal solution value on almost all instances (unsuccessful only on
“grid06x13”). On instances where the optimal solution value is unknown, σ is lower
than 2.2 %. Running times on instances where the optimal solution value is known
shows that the VNS rapidly reaches these solutions in lower than 150 seconds. Even
more, on many instances (38 of 42), running times are smaller than 30 seconds and
only on “grid07x14” and “grid08x12” greater than 100 seconds. On instances where



78 M. Ivanović, D. Urošević

Instance Solver VNS
Name |V | |E| opt val t sol t err σ

grid04x10 40 66 15 15 4.109 opt 0.015 0 0
grid05x08 40 67 14 14 4.64 opt 0.047 0.0333 0.0333
grid03x14 42 67 16 16 4.829 opt < 0.01 0 0
grid06x07 42 71 15 15 5.801 opt 0.08 0.0063 0.0188
grid04x11 44 73 16 16 5.5 opt 0.031 0.0088 0.0210
grid03x15 45 72 17 17 7.789 opt 0.012 0 0
grid05x09 45 76 16 16 7.908 opt 0.139 0.0235 0.0288
grid04x12 48 80 17 17 12.84 opt 0.069 0.0361 0.0265
grid06x08 48 82 18 18 25.499 opt < 0.01 0 0
grid07x07 49 84 18 18 9.845 opt 0.021 0 0
grid05x10 50 85 18 18 10.61 opt 0.055 0.0053 0.0158
grid04x13 52 87 19 19 11.813 opt 0.035 0.0050 0.0150
grid06x09 54 93 19 19 25.539 opt 0.331 0.0450 0.0150
grid05x11 55 94 19 19 11.424 opt 0.388 0.0300 0.0245
grid04x14 56 94 20 20 35.326 opt 0.082 0.0214 0.0237
grid07x08 56 97 20 20 21.882 opt 0.076 0.0286 0.0233
grid04x15 60 101 22 22 40.256 opt 0.163 0 0
grid05x12 60 103 21 21 14.88 opt 4.036 0.0271 0.0260
grid06x10 60 104 21 21 35.713 opt 0.746 0.0273 0.0223
grid07x09 63 110 22 22 70.259 opt 0.318 0.0370 0.0155
grid08x08 64 112 23 23 171.925 opt 0.037 0.0063 0.0149
grid05x13 65 112 23 23 67.007 opt 0.928 0.0208 0.0208
grid06x11 66 115 24 24 381.771 opt 0.757 0.0040 0.0120
grid05x14 70 121 24 24 73.489 opt 27.03 0.0491 0.0202
grid07x10 70 123 25 25 618.089 opt 0.67 0.0077 0.0154
grid06x12 72 126 26 26 1 166.405 opt 0.544 0.0074 0.0148
grid08x09 72 127 25 25 435.146 opt 15.935 0.0383 0.0117
grid05x15 75 130 26 26 288.06 opt 8.133 0.0313 0.0174
grid07x11 77 136 27 27 988.596 opt 0.582 0.0268 0.0155
grid06x13 78 137 27 27 1 005.126 28 0.407 0.0086 0.0149
grid08x10 80 142 28 28 2 162.812 opt 10.011 0.0375 0.0178
grid09x09 81 144 28 28 737.579 opt 12.521 0.0437 0.0251
grid06x14 84 148 30 30 – 30 2.319 0.0097 0.0148
grid07x12 84 149 29 29 4 637.38 opt 47.642 0.0441 0.0181
grid08x11 88 157 31 31 – 31 3.412 0.0278 0.0190
grid06x15 90 159 32 32 – 32 1.196 0.0179 0.0218
grid09x10 90 161 31 31 – 31 40.651 0.0443 0.0197
grid07x13 91 162 32 32 – 32 16.778 0.0272 0.0130
grid08x12 96 172 33 33 – 33 107.765 0.0403 0.0184
grid07x14 98 175 34 34 1 720.86 opt 143.804 0.0433 0.0181
grid09x11 99 178 35 35 – 35 2.261 0.0181 0.0132
grid10x10 100 180 35 35 – 35 6.63 0.0302 0.0168

Table 5: Experimental results for the WRD problem on grid graph instances
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optimization solvers were unable to prove optimality of the found solutions, the
VNS heuristic reaches the same solution values for less than 108 seconds. So, we
can conclude that the VNS heuristic solves the WRD problem on grid graph instance
significantly faster than the optimization solver CPLEX and found solutions are of
good quality.

Instance Solver VNS
Name |V | |E| opt val t sol t err σ

plan10 10 27 3 3 0.156 opt < 0.01 0 0
plan20 20 105 3 3 1.36 opt < 0.01 0 0
plan30 30 182 5 5 7.49 opt < 0.01 0 0
plan50 50 465 6 6 98.49 opt 0.01 0 0
plan100 100 1 540 9 9 – 8 4.916 0 0
plan150 150 2 867 13 13 – 10 88.248 0.0273 0.041

Table 6: Experimental results for the WRD problem on planar graph instances

From Table 6 it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on all instances. Also, on instances where
optimization solvers were unable to prove optimality of the found solution, the VNS
solution is better. Again, running time for the instances where the optimal solution
value is known is lower than 1 second. On “plan100”, where optimization solvers
were unable to prove optimality of the found solution, the proposed VNS algorithm
finds solution value with σ equal to zero. On “plan150” the VNS solution is equal
to 10 with σ = 0.0417, which can be considered as the solution of the good quality
(solution value equal to 10 was reached in 14 of 20 runnings).

Instance Solver VNS
Name |V | |E| opt val t sol t err σ

Net-10-10 100 342 20 20 148.213 opt 4.29 0.0095 0.0190
Net-10-20 200 712 40 40 – 40 67.323 0.0146 0.0119
Net-20-20 400 1 482 83 83 – 81 2 066.577 0.0180 0.0132
Net-30-20 600 2 252 122 122 – 123 6 034.018 0.0474 0.0352

Table 7: Experimental results for the WRD problem on net graph instances

In Table 7 optimization solvers were able to find optimal solution value only for
“Net-10-10”. The same solution value was found by the proposed VNS algorithm
with lower running time and with σ equal to 1.9 %. On “Net-10-20” and “Net-20-20”
the VNS algorithm reaches the same and better solution value than optimization
solvers, while for “Net-30-20” the VNS solution value is worse than the solvers’
solution value.

From Table 8 it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on almost all instances (unsuccessful only
on 1 among 25 instances of random type). On instance “Random-100-6”, where the
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Instance Solver VNS
Name |V | |E| opt val t sol t err σ

Random-50-1 50 49 24 24 0.281 opt < 0.01 0 0
Random-50-2 50 49 23 23 0.343 opt 0.034 0 0
Random-50-3 50 58 24 24 0.39 opt 0.062 0 0
Random-50-4 50 54 24 24 0.484 opt 0.225 0 0
Random-50-5 50 67 22 22 0.968 opt 0.377 0.0196 0.0216
Random-50-6 50 86 19 19 2.053 opt 0.03 0 0
Random-50-7 50 84 19 19 3.171 opt 0.889 0.0175 0.0238
Random-50-8 50 95 17 17 3.093 opt 0.131 0.0333 0.0272
Random-50-9 50 108 17 17 26.373 opt 0.129 0.0028 0.0121
Random-50-10 50 112 16 16 6.781 opt 0.047 0 0
Random-50-20 50 248 9 9 346.264 opt < 0.01 0 0
Random-50-30 50 373 7 7 476.278 opt 0.038 0 0
Random-50-40 50 475 6 6 1447.318 opt 0.092 0 0
Random-50-50 50 597 5 5 1545.06 opt 0.013 0 0
Random-50-60 50 739 4 4 210.71 opt 0.014 0 0
Random-50-70 50 860 3 3 156.14 opt 0.059 0 0
Random-50-80 50 980 3 3 90.813 opt < 0.01 0 0
Random-50-90 50 1103 2 2 36.53 opt 0.03 0 0
Random-100-1 100 100 46 46 0.64 opt 157.329 0.0354 0.0145
Random-100-2 100 109 46 46 0.843 opt 36.052 0.0148 0.0117
Random-100-3 100 181 37 37 7.421 opt 23.64 0.0445 0.0261
Random-100-4 100 206 34 34 61.702 opt 12.367 0.0213 0.0175
Random-100-5 100 231 32 32 164.502 opt 60.361 0.0299 0.0186
Random-100-6 100 321 26 26 5 806.74 27 12.441 0.0265 0.0217
Random-100-7 100 317 25 25 4 009.377 opt 204.939 0.0434 0.0234
Random-100-8 100 317 23 23 – 23 313.924 0.0448 0.0279
Random-100-9 100 430 21 21 – 21 4.98 0.0269 0.0293
Random-100-10 100 498 19 19 – 19 460.905 0.0445 0.0260
Random-100-20 100 981 12 12 – 11 8.951 0.0250 0.0382
Random-100-30 100 1 477 11 11 – 8 1 462.462 0.1056 0.0242
Random-100-40 100 1 945 9 9 – 7 1.501 0 0
Random-100-50 100 2 483 7 7 – 5 37.134 0 0

Table 8: Experimental results for the WRD problem on random generated graph
instances

optimal solution value was not reached, σ is equal to 2.17 %. Further, on instances
“Random-100-40” and “Random-100-50”, where optimization solvers were unable
to prove optimality of the found solution, the VNS algorithm finds better solutions
values with σ equal to zero for less than 38 seconds.

From Tables 5–8 we can see that optimization solvers were unable to provide
an optimal solution value on instances of grid type with number of vertices larger
than 84, on instances of planar and net type with number of vertices larger than
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100 and on large number of instances of random type with 100 vertices. Also, we
can see that, on the same set of instances, the VNS algorithm finds solutions of the
WRD problem of good quality and, for many instances, faster than optimization
solvers.

5 CONCLUSIONS

In this paper, the Variable Neighborhood Search approach for solving the Roman
and the weak Roman domination problems is proposed. Tests were run on grid, net,
planar and randomly generated graphs, with up to 600 vertices. The VNS was able
to find solutions equal to the optimal ones for the RD problem on 218 of 231 tested
instances and able to find solutions equal or better than CPLEX solutions for the
WRD problem on 84 of 86 tested instances. Therefore, we can conclude that the VNS
algorithm provides good quality solutions regardless of the type of instance and the
type of problem, which makes it efficient for solving both the Roman and the weak
Roman domination problems. Moreover, given the fact that optimization solvers
were not able to solve the WRD problem on large scale instances (i.e., instances
with more than 100 vertices) proposed algorithm can be used. Furthermore, given
the fact that this algorithm does not contain any limitations on the number of
variables and the number of conditions, it can be used for solving the RD problem
on instances where optimization solvers are not able to provide an optimal solution
value.

In future work, hybridization with some exact methods or application of some
other heuristic could lead to possible better achievements in solving the Roman and
the weak Roman domination problems.
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versità di Catania, 2014.

[14] Favaron, O.—Karami, H.—Khoeilar, R.—Sheikholeslami, S. M.: On the
Roman Domination Number of a Graph. Discrete Mathematics, Vol. 309, 2009,
No. 10, pp. 3447–3451, doi: 10.1016/j.disc.2008.09.043.
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