
Computing and Informatics, Vol. 38, 2019, 197–222, doi: 10.31577/cai 2019 1 197

ASSESSMENT OF TWO TASK FRAMEWORKS
WITH DEPENDENCIES FOR MATRIX
FACTORIZATIONS ON A MULTICORE
ARCHITECTURE

Jaros law Bylina

Marie Curie-Sklodowska University
Institute of Mathematics
Pl. M. Curie-Sklodowskiej 5
20-031 Lublin, Poland
e-mail: jaroslaw.bylina@umcs.pl

Abstract. In this study, we evaluate two task frameworks with dependencies for
important application kernels coming from the numerical linear algebra. In this ap-
proach, the algorithms of the matrix factorization are considered, namely the tiled
LU and the WZ factorizations both without pivoting. In tiled algorithms, the oper-
ations are represented as a sequence of small tasks which operate on square blocks
(tiles) of the data. The dependencies among tasks are expressed as a direct acyclic
graph and the runtime system runs the graph on a multicore architecture. The
performance of applications based on the task dependencies is related to efficient
compilers and the runtime systems. We report the performance and the scalability
of two task frameworks with dependencies on the multicore architecture for the
matrix factorizations. Namely, we compare OpenMP and Intel Thread Building
Blocks. Our results show that the number of tiles in both factorizations always
have an impact on the performance and the speedup. Both the frameworks show
their suitability for efficient parallelization of such applications, although both have
their own merits and flaws.

Keywords: Task parallelism, task dependencies, parallel programming model, run-
time system, OpenMP, Intel TBB

Mathematics Subject Classification 2010: 65Y05

198 J. Bylina

1 INTRODUCTION

In recent years task-based parallel programming paradigms became an alternative
to classical thread-based paradigms on the shared memory multicore architectures.
Such task-based implementations of parallel applications are suitable for multicore
architectures. The use of tasks causes higher concurrency and scalability of the
implementations.

However, the task parallelism requires appropriate compilers and execution sys-
tems to perform efficiently. Such systems must decide about load-balancing, over-
heads, and task scheduling. It is difficult to evaluate the efficiency of such run-time
systems because, for various applications, various criteria will be important. Con-
temporary architectures which employ shared-memory parallelism produce appear-
ance of a lot of frameworks exploiting them efficiently – such as OpenMP [6], Intel
Threading Building Blocks (TBB for short) [14], Cilk Plus [24], OpenCL [25] and
others. Thus, choosing a proper framework for a specific problem is not easy.

Different techniques are provided by task-based programming frameworks to
the programmer for writing programs. In some approaches, the algorithms are
represented as graphs of tasks and the runtime system runs the graph on the target
architecture. In the graphs, the nodes are computational tasks performed in kernel
subroutines and edges represent the dependencies among them. In particular, in the
application connected to the numerical linear algebra, direct acyclic graphs (DAGs
or dags) are utilized. A dag is a finite directed graph without cycles. A dag contains
a finite number of vertices and edges. Each edge is directed from one vertex to
another.

Matrix factorization algorithms are dense linear algebra algorithms used often
in many scientific applications. This paper addresses two matrix factorizations. In
addition to the well-known LU factorization, we test another form of factorization,
namely the WZ factorization. The WZ factorization was introduced in [8, 19]. It
was a novel method for solving linear systems in parallel. They both have O(n3)
time complexity using O(n2) data space. The tiled LU and WZ factorization algo-
rithms use the standard set of Basic Linear Algebra Subprograms (BLAS) [7] and
a block array layout for better cache performance. Moreover, the computations on
array tiles (square blocks) fit the task-based parallel model well. The tiled LU and
WZ algorithms can be represented as a dag where nodes are the executed BLAS
routines.

The first contribution of this paper is providing details of implementations of
the tiled LU and WZ factorizations in OpenMP and TBB; the second contribution
is an analysis of the experimental results of these factorization implementations for
two frameworks that support task parallelism with dependencies. In this article, we
investigate two task frameworks, namely OpenMP and Intel TBB. We chose these
frameworks because they are different in the way of implementation development.
OpenMP is an extension to the C/C++ languages and TBB is a C++ library.
These frameworks have also been chosen because they are quite popular, work for
different architectures and CPUs, they can perform differently on different hardware

Assessment of Two Task Frameworks with Dependencies. . . 199

architectures and they differ in their approaches to tasks. To compare OpenMP and
TBB we study the tiled LU factorization without pivoting and the WZ factorization
(also without pivoting).

The rest of this paper is organized as follows: Section 2 shows some related
works. Section 3 presents the tiled LU factorization without pivoting and tiled
WZ factorization without pivoting and shows dags (direct acyclic graphs) for each
algorithm. Section 4 describes the details of parallel implementations of the tiled
LU and tiled WZ algorithms on multicore, shared-memory machines. One of them
relies on the use of the OpenMP task directive with the depend clause. The second
one uses TBB. Section 5 is devoted to the results of numerical experiments carried
out on shared memory multicore architectures and to the comparisons of the two
task-based frameworks, namely OpenMP standard and TBB. Section 6 shows the
conclusions of our research and presents future plans.

2 RELATED WORKS

In this paper, we evaluate two task frameworks with dependencies on the multicore
architecture. Similarly, the issue of the comparison of the task parallel frameworks
in the multicore environments is considered in the works [16, 20, 21, 22].

In the work [16], the tasks without dependencies are considered. The authors
compare OpenMP 3.0 runtimes on unbalanced task graphs against Cilk and Intel
TBB. The conclusion of these studies is the fact that the OpenMP task management
mechanisms are less optimized than those of the other threading approaches, namely
Cilk and Intel TBB.

The evaluation of OpenMP 4.0 tasks with dependencies with the benchmark
called KASTORS consisting of small kernels ported to the OpenMP dependent task
model is described in the paper [22]. KASTORS uses the OpenMP 4.0 task de-
pendency constructs to extend different applications. One with these kernels is the
LU decomposition from the PLASMA library (Parallel Linear Algebra for Scalable
Multicore Architectures) framework [1, 13]. The performance of OpenMP applica-
tions expressing task dependencies is closely related to how efficiently compilers and
runtime systems implement this new feature. The FLAME (Formal Linear Algebra
Method) project [11, 15, 18] is another set of high performance libraries. Moreover,
it is not only software but rather a formal approach to creating correct, fast and
efficient linear algebra algorithms and their implementations.

The author of the work [21] evaluates Intel’s C++ Concurrent Collections (CnC)
and Threading Building Blocks (TBB) libraries for application coming from numer-
ical linear algebra, namely tiled Gauss–Jordan algorithm. The conclusion of these
studies is the fact that CnC is almost as fast as TBB.

The paper [20] aims to evaluate OpenMP, TBB and other ways of parallelization
and optimization of computational problems that need task parallelism as well as
data parallelism. The examples used there are adaptive Simpson’s integration and
Belman-Ford algorithm.

200 J. Bylina

3 MATRIX DECOMPOSITION

The matrix decomposition is a factorization of a matrix into a product of matri-
ces. We assume that the decomposed matrix is nonsingular, square, and diagonally
dominant (thus, we can use factorization without pivoting). In this section, we
describe two tiled matrix decompositions, namely the well-known tiled LU decom-
position without pivoting and the tiled WZ decomposition (also without pivoting).
Each of the algorithms is expressed in terms of the elementary operations and the
graphs.

3.1 Block LU Factorization

Let the dense square (n × n) diagonally dominant matrix A be partitioned into
q × q tiles of size t × t (n = qt and 1 ≤ t ≤ n) and Aij is a square tile on row i
and column j. The tiled LU factorization algorithm performs the majority of its
floating-point operations (flop) using the level 3 BLAS operations.

The tiled algorithm for the LU factorization may base on the following set of
elementary operations.

• DTRSM(u/nonu, up/lo, l/r, A, X, B). This BLAS subroutine is used to com-
pute X = A−1 ·B (denoted by l), or X = B ·A−1 (denoted by r), where X and
B are s × s matrices, A is a unit (u) or non-unit (nonu), upper (up) or lower
(lo) triangular matrix.

• DGEMM(A, B, C). This BLAS subroutine is used to compute A = −B ·C + A,
where A, B, and C are s× s matrices.

Algorithm 1 presents the tiled LU factorization algorithm expressed in terms of
elementary operations. The circled numbers shown in Algorithm 1 emphasize the
correspondence between the operations and the tasks in Figure 1.

The scheduler executes tasks in any order that respects the dependencies shown
in the dag. This approach is presented in [3] for tiled linear algebra algorithms.
Figure 1 presents a directed acyclic graph for parallel tile LU factorization of a 4× 4
tile matrix. Arrows show dependencies between tasks. The tasks are denoted by
circles. The red circles (with the number 1) represent line 2 in Algorithm 1; the
magenta circles (with the number 2) – line 4; the green circles (with the number 3) –
line 7 and the blue ones (with the number 4) correspond to line 11.

3.2 Block WZ Factorization

The WZ factorization is described in [8, 19, 23]. Let us assume that A is a square,
nonsingular and diagonally dominant matrix of the size n × n (we consider only
even n, for simplicity’s sake).

We are to find matrices W and Z that fulfill WZ = A. The main diagonal of
the matrix W consists only of ones. The second diagonal consists of zeros. These

Assessment of Two Task Frameworks with Dependencies. . . 201

Algorithm 1 Tiled LU factorization

Require: A, q
Ensure: L, U
1: for k ← 1, q do
2: LU(Akk,Lkk,Ukk) 1©
3: for i← k + 1, q do
4: DTRSM(nonu, up, q, Ukk, Lik, Aik) 2©
5: end for
6: for j ← k + 1, q do
7: DTRSM(u, lo, l, Lkk, Ukj, Akj) 3©
8: end for
9: for i← k + 1, q do

10: for j ← k + 1, q do
11: DGEMM(Aij, Lik, Ukj) 4©
12: end for
13: end for
14: end for

diagonals divide the matrix into four triangles. The left and right triangles contain
non-zeros, and the top and bottom ones contain only zeros. The matrix Z has non-
zeros where the matrix W has zeros or ones – and vice versa. The first part of the
WZ factorization algorithm consists of setting successive parts of columns of the
matrix A to zeros. In the first step, we do that with the elements in the 1st and
nth columns – from the 2nd row to the (n− 1)th row. Next, we update the inner
submatrix of A of the size (n− 2)× (n− 2) and for k = 2, . . . , n

2
we zero elements

in the kth and (n− k + 1)st columns – from the (k + 1)st row to the (n− k)th row
and we update the inner submatrix.

The tiled WZ factorization algorithm [5] performs the majority of its floating-
point operations (flop) using the level 3 BLAS operations. We assume that A is
a square nonsingular matrix of an even size n and it is partitioned on r× r (r is also
even) parts (r of each side – rows and columns). The tiled WZ algorithm consists of
four repeating stages r/2 times. Stage 1 (line 3 in Algorithm 2) comprises the WZ
factorization of a matrix built from four corner blocks of the input matrix. Stage 2
(lines 4–11 in Algorithm 2) computes 2s (where s = n

r
) columns of the matrix W –

s right columns and s left columns. Stage 3 (lines 12–19 in Algorithm 2) computes
2s rows of the matrix Z – s bottom rows and s top rows. Stage 4 (lines 20–25
in Algorithm 2) updates the inner submatrix of A – that is, A without outer 2s
columns and 2s rows. In the next step, the algorithm is repeated for this inner
matrix. The tiled algorithm for the WZ factorization will be based on the following
set of elementary operations.

• DTRSM(u/nonu, up/lo, l/r, A, X, B). This BLAS subroutine is used to com-
pute X = A−1 · B (denoted by l), or X = B · A−1 (denoted by r), where X

202 J. Bylina

Figure 1. A directed acyclic graph for the tile LU factorization of a 4× 4 tiled matrix

and B are s×s matrices, A is a unit (u) or non-unit (nonu), upper (up) or lower
(lo) triangular matrix.

• DGEMM(A, B, C). This BLAS subroutine is used to compute A = −B ·C + A,
where A, B, and C are s× s matrices.

• DGEMM copy(A, B, C, D). This BLAS subroutine is used to compute A = −B ·
C + D, where A, B, C, and D are s× s matrices.

Assessment of Two Task Frameworks with Dependencies. . . 203

Algorithm 2 presents the tiled WZ factorization algorithm expressed with the
above-mentioned operations (DTRSM, DGEMM, DGEMM copy) for a nonsingular matrix A
partitioned into r × r blocks. The matrices W and Z are the results of this algo-
rithm. Again, the circled numbers in Algorithm 2 show which operations belong to
respective tasks in Figure 2.

Algorithm 2 Tiled WZ factorization

Require: A, r
Ensure: W, Z
1: for k ← 1, r/2 do
2: k2 ← r − k + 1

3: WZ(

[
Akk Akk2

Ak2k Ak2k2

]
,

[
Wkk Wkk2

Wk2k Wk2k2

]
,

[
Zkk Zkk2

Zk2k Zk2k2

]
) 1©

4: DTRSM(nonu, up, l, Zkk, D1, Zkk2) 1©
5: DGEMM copy(E1, Zk2k, D1, Zk2k2) 1©
6: DTRSM(u, lo, r, Wkk, D2, Wk2k) 1©
7: DGEMM copy(E2, D2,Wkk2,Wk2k2) 1©
8: for i← k + 1, k2 − 1 do
9: DGEMM(Aik2, Aik, D1) 2©

10: DTRSM(nonu, lo, r, E1, Wik2, Aik2) 2©
11: DGEMM(Aik, Wik2, Zk2k) 2©
12: DTRSM(nonu, up, r, Zkk, Wik, Aik) 2©
13: end for
14: for i← k + 1, k2 − 1 do
15: DGEMM(Ak2i, D2, Aki) 3©
16: DTRSM(u, up, l, E2, Zk2i, Ak2i) 3©
17: DGEMM(Aki, Wkk2, Zk2i) 3©
18: DTRSM(u, lo, l, Wkk, Zki, Aki) 3©
19: end for
20: for j ← k + 1, k2 − 1 do
21: for i← k + 1, k2 − 1 do
22: DGEMM(Aij, Wik, Zkj) 4©
23: DGEMM(Aij, Wik2, Zk2j) 4©
24: end for
25: end for
26: end for

Algorithm 2 can be represented as a dag. Figure 2 shows such a dag for the tiled
WZ factorization when Algorithm 2 is executed for a 4× 4 tiled matrix. This figure
also corresponds to the lines in Algorithm 2. The tasks are denoted by circles and
the red circles (with the number 1) represent lines 3–7; the magenta circles (with
the number 2) – lines 9–12; the green circle (with the number 3) – lines 15–18 and
the blue ones (with the number 4) correspond to lines 22–23.

204 J. Bylina

Figure 2. A dag for the tiled WZ factorization of a 4× 4 tiled matrix

3.3 Theoretical Speedup – Amdahl’s Law

We compute a maximal theoretical speedup of our algorithms from Amdahl’s law,
using the cost of the sequential traditional versions, that is:

CLU(n) =
2

3
n3 − 1

2
n2 − 1

6
n,

CWZ(n) =
2

3
n3 − 7

3
n− 3.

Let us compute the cost of Algorithm 2, namely CWZ(n, s) (as it depends not
only on n but also on the size s of the tile). To achieve this, we are to compute
costs of the particular stages 1–4 which we denote CWZ1, CWZ2, CWZ3 and CWZ4,
respectively (n = r · s):

CWZ1(s) = CWZ(2s) =
16

3
s3 − 7

3
s− 3,

CWZ2(k, r, s) = CWZ3(k, r, s) = 3s3 + s2 +
r−k∑

i=k+1

(6s3 + 2s2)

= 3s3 + s2 + (6s3 + 2s2)(r − 2k),

CWZ4(k, r, s) =
r−k∑

i=k+1

r−k∑
j=k+1

(4s3 + 2s2) = (4s3 + 2s2)(r − 2k)2.

Assessment of Two Task Frameworks with Dependencies. . . 205

Thus, the number of floating-point arithmetic operations for the tiled WZ fac-
torization algorithm (Algorithm 2) is:

CWZ(n, s) =

r
2∑

k=1

(CWZ1(s) + 2CWZ2(k, r, s) + CWZ4(k, r, s))

=
n3(4s + 2) + 6n2s2 + n(6s3 − 2s2 − 7s− 9)

6s
.

Analogously, we can obtain the cost of the tiled LU factorization (here, n =
q · t and the size of the block is t; we present only formulas necessary for further
considerations), namely:

CLU1(t) =
2

3
t3 − 1

2
t2 − 1

6
t,

CLU(n, t) =

q∑
k=1

(CLU 1(t) + 2CLU 2(k, q, t) + CLU 4(k, q, t))

=
n3(4t + 2)− 3n2t− n(2t2 + t)

6t
.

The maximal theoretical speedup for p threads can be estimated from Amdahl’s
law. To use this law we must determine which part must be executed sequentially,
and which part can be executed in parallel. In our algorithms, the only parts which
have to be executed sequentially are the first stages (denoted with 1©).

Thus, let PWZseq be the relative cost of this sequential part of Algorithm 2. The
cost of one execution of stage 1 is CWZ1, but it is executed r

2
times. So:

PWZseq(n, s) =
r
2
· CWZ1(s)

CWZ(n, s)
=

16s3 − 7s− 9

n2(4s + 2) + 6ns2 + 6s3 − 2s2 − 7s− 9
.

According to Amdahl’s law [10], the best theoretical speedup for the parallel
tiled WZ factorization algorithm (for p threads, n× n matrix and s× s tile) is:

SWZ(p;n, s) =
1

PWZseq(n, s) +
1−PWZseq(n,s)

p

.

Analogously, we can obtain similar formulas for the tiled LU factorization (here,
n = q · t and the size of the block is t; we present only formulas necessary for further

206 J. Bylina

considerations), namely:

CLU1(t) =
2

3
t3 − 1

2
t2 − 1

6
t,

CLU(n, t) =

q∑
k=1

(CLU 1(t) + 2CLU 2(k, q, t) + CLU 4(k, q, t)

=
n3(4t + 2)− 3n2t− n(2t2 + t)

6t
,

PLUseq(n, s) =
q · CLU1(t)

CLU(n, t)
=

4t3 − 3t2 − t

n2(4t + 2)− 3nt− 2t2 − t
,

SLU(p;n, t) =
1

PLUseq(n, t) +
1−PLUseq(n,t)

p

.

 0

 6

 12

 18

 24

 0 2000 4000 6000 8000 10000

id
e
a
l
sp

e
e
d

u
p

tile size

Amdahl's law, matrix size = 10 000

S_LU(24; n, t)
S_LU(12; n, t)

S_WZ(24; n, t)
S_WZ(12; n, t)

Figure 3. The theoretical maximum speedup for the tiled LU and WZ implementations

Figure 3 shows the theroetical maximum speedup as a function of the size of
the block, for fixed n = 1 000 and for selected numbers p of threads (p ∈ {12, 24}).
We can see from Figure 3 that the speedup should be the best for as small blocks
as possible. However, smaller blocks require more communication and synchroniza-
tion – which is not counted in Amdahl’s law. So the size of the block has to be
chosen experimentally.

4 IMPLEMENTATIONS

In our work, the matrices are stored as one-dimensional arrays of the tiles and we
refer to it as a tiled layout, similarly to [3]. In the tile layout, the matrices are

Assessment of Two Task Frameworks with Dependencies. . . 207

represented as small square tiles of data contiguous in memory so that each core can
operate on an individual tile independently.

4.1 OpenMP

In our first implementations, we employ the OpenMP task directive and the BLAS
routines for matrices’ operations. We call these implementations TLU(q)-OpenMP
and TWZ(r)-OpenMP. The well-known OpenMP standard was extended with the
task construct introduced in version 3.0 [16] with support for task dependencies by
means of the depend clause. The clause allows defining lists of data items that are
only inputs, only outputs, or both inputs and outputs. The annotated task will be
scheduled for execution only when the dependencies expressed by those data items
are satisfied with respect to preceding tasks in the same task region. This task is
bound to a thread from the current team of threads. The execution of the new task
can be instant or delayed according to the task schedule and availability of threads.
The OpenMP runtime provides a dynamic scheduler of the tasks while avoiding data
hazards by keeping track of dependencies. The dynamic scheduler means that the
tasks are queueing and executed as quickly as possible. Algorithms 3 and 4 present
the tiled factorization with the #pragma omp task with dependencies (and the color
circles representing the content of the particular tasks).

Algorithm 3 Tiled LU factorization – task-based with dependencies

Require: A, q
Ensure: L, U
1: for k ← 1, q − 1 do
2: #pragma omp task depend(in:Akk) depend(out: Lkk) depend(out: Ukk)

3: LU(Akk,Lkk,Ukk) 1©
4: for i← k + 1, q do
5: #pragma omp task depend(in:Aik) depend(in: Ukk) depend(out: Lik)

6: DTRSM(nonu, up, q, Ukk, Lik, Aik) 2©
7: end for
8: for j ← k + 1, q do
9: #pragma omp task depend(in:Akj) depend(in: Lkk) depend(out: Ukj)

10: DTRSM(u, lo, l, Lkk, Ukj, Akj) 3©
11: end for
12: for i← k + 1, q do
13: for j ← k + 1, q do
14: #pragma omp task depend(in:Lik) depend(in: Ukj) depend(inout: Aij)

15: DGEMM(Aij, Lik, Ukj) 4©
16: end for
17: end for
18: end for

208 J. Bylina

Algorithm 4 Tiled WZ factorization – task-based with dependencies

Require: A, r
Ensure: W, Z
1: for k ← 1, r/2 do
2: k2 ← r − k + 1
3: #pragma omp task depend(in: Akk, Akk2, Ak2k2, Ak2k)

depend(out: Wkk, Wkk2, Wk2k2, Wk2k, Zkk, Zkk2, Zk2k2, Zk2k, D1, E1, D2, E2)

4: WZ(

[
Akk Akk2

Ak2k Ak2k2

]
,

[
Wkk Wkk2

Wk2k Wk2k2

]
,

[
Zkk Zkk2

Zk2k Zk2k2

]
) 1©

5: DTRSM(nonu, up, l, Zkk, D1, Zkk2) 1©
6: DGEMM copy(E1, Zk2k, D1, Zk2k2) 1©
7: DTRSM(u, lo, r, Wkk, D2, Wk2k) 1©
8: DGEMM copy(E2, D2,Wkk2,Wk2k2) 1©
9: for i← k + 1, k2 − 1 do

10: #pragma omp task depend(in: Aik, Aik2, Zkk, Zk2k, D1, E1)

depend(out: Wik, Wik2)

11: DGEMM(Aik2, Aik, D1) 2©
12: DTRSM(nonu, lo, r, E1, Wik2, Aik2) 2©
13: DGEMM(Aik, Wik2, Zk2k) 2©
14: DTRSM(nonu, up, r, Zkk, Wik, Aik) 2©
15: end for
16: for i← k + 1, k2 − 1 do
17: #pragma omp task depend(in: Ak2i, Aki, Wkk2, Wkk, D2, E2)

depend(out: Zki, Zk2i)

18: DGEMM(Ak2i, D2, Aki) 3©
19: DTRSM(u, up, l, E2, Zk2i, Ak2i) 3©
20: DGEMM(Aki, Wkk2, Zk2i) 3©
21: DTRSM(u, lo, l, Wkk, Zki, Aki) 3©
22: end for
23: for j ← k + 1, k2 − 1 do
24: for i← k + 1, k2 − 1 do
25: #pragma omp task depend(in: Wik, Wik2, Zkj, Zk2j) depend(out: Aij)

26: DGEMM(Aij, Wik, Zkj) 4©
27: DGEMM(Aij, Wik2, Zk2j) 4©
28: end for
29: end for
30: end for

Assessment of Two Task Frameworks with Dependencies. . . 209

It would seem that keeping some matrices in cache between tasks would be
profitable. However, forcing it is not possible. Moreover, even if it would be possible,
it is not desirable – we use tasks in our implementations and the data are in the
cache during one task execution (if the block size is not too big), but locking them
between tasks would restrict the task scheduler. The task scheduler itself has to
decide, which tasks are to be run on which processors, considering the cache content
and the dependencies.

4.2 TBB

Our second set of implementations uses Intel Thread Building Blocks (TBB) and
similarly, as in our previous implementations, they call the BLAS routines for matrix
operations. We denote these implementations TLU(q)-TBB and TWZ(r)-TBB. The
Intel Threading Building Blocks (Intel TBB) [12, 17] is a C++ template library
for parallel programming on multicore architectures. This library provides parallel
constructs like algorithms, containers, and tasks which the programmer can use to
implement an algorithm and run it in parallel.

The TBB task interface requires the declaration of a new class extending the
task class and the creation of task object instances. A member function executes the
work of the task. However, there are also other tools to run a task-based algorithm –
and one of them is the flow graph.

The greatest advantage of this approach is the separation of concerns. We can
do the following implementation jobs independently:

• describe the algorithm;

• design and implement small independent computational kernels;

• connect them with the graph to schedule them efficiently.

The use of the flow graph (which can be an arbitrary directed graph, not only
a dag) in TBB is different from the OpenMP. Here, the programmer has to build
a dependency graph on his own – quoting the dependencies is not enough. For build-
ing the graph, there are (among others) following elements (all from the tbb::flow

namespace):

• the class graph – this is the main class which provides the graph implementation;

• the class template continue node – this is an auxiliary class which represents
a single node of the graph – and a task at the same time. The main job of the
node is storing a functor which describes actions to be performed on this node.

• the class continue msg – it is a helper class used as a signal between consecutive
nodes;

• the function template make edge connects the nodes and thus, it determines
the sequence of the nodes (and the actions, at the same time) and – which can
be more important – also the dependencies between nodes. A continue node

210 J. Bylina

can perform any actions if and only if all its previous nodes (connected with it
directly by edges) finished their actions.

We should also mention try put (a node method which sends the first continue msg

in order to start the computations) and wait for all (a graph method which waits
for all the computations to finish).

Some fragments of the code of TLU(q)-TBB are shown in Listing 1 (it is
LU Graph – the main class responsible for building the graph and conducting the
computations).

The maps (nodes lu, nodes U, nodes L, nodes X) store (smart) pointers to the
nodes and are crucial in building the graph (thanks to them, all the created nodes
are easy to reference).

The constructor creates nodes and edges with the use of the functions: red node,
green node, magenta node and blue node (names according to colors from Fig-
ure 1). Only one (green node) of these functions is shown – the others are similar.

Then, we have some helper functions (red action, green action,
magenta action and blue action) which describe the desired computational ac-
tions for respective nodes and return computational kernels in the form of lambdas.
In them, we use some macros but there are just BLAS routines inside. Again, only
one function (magenta action this time) is fully shown here.

Finally, we can see the method run which starts the computations and waits for
them to finish.

The idea of the TWZ(r)-TBB implementation is the same – although the depen-
dencies are somewhat different (see Figure 2) and the kernels are more complicated
(what can be inferred from Algorithm 4).

5 NUMERICAL EXPERIMENTS

We tested the performance of two matrix decompositions, namely the tiled LU
factorization and the tiled WZ factorization. We compared four implementations of
these matrix decompositions, that is:

• TLU(q)-OpenMP – a parallel implementation of the tiled LU factorization with
the use of single-threaded level 3 BLAS routines (DTRSM and DGEMM) from the
MKL library and the OpenMP standard with tasks and the dynamic scheduling;

• TWZ(r)-OpenMP – a parallel implementation of the tiled WZ factorization with
the use of single-threaded level 3 BLAS routines (DTRSM and DGEMM) from the
MKL library and the OpenMP standard with tasks and the dynamic scheduling;

• TLU(q)-TBB – a parallel implementation of the tiled LU factorization with the
use of single-threaded level 3 BLAS routines (DTRSM and DGEMM) from the MKL
library and a TBB flow graph;

• TWZ(r)-TBB – a parallel implementation of the tiled WZ factorization with the
use of single-threaded level 3 BLAS routines (DTRSM and DGEMM) from the MKL
library and a TBB flow graph.

Assessment of Two Task Frameworks with Dependencies. . . 211

using namespace tbb::flow;

class LU_Graph {

private:

graph g;

/* other class members */

std::map <std::vector <int >,

std:: shared_ptr <continue_node <continue_msg >>>

nodes_lu , nodes_U , nodes_L , nodes_X;

public:

LU_Graph(int q, /* other parameters */) { /*...*/ }

void red_node(int k) { /*...*/ }

void green_node(int k, int i) {

nodes_U[{k, i}] =

std:: make_shared <continue_node <continue_msg >>

(g,

green_action(k, i));

make_edge (* nodes_lu.at({k}),

*nodes_U.at({k, i}));

}

void magenta_node(int k, int j) { /*...*/ }

void blue_node(int k, int i, int j) { /*...*/ }

auto red_action(int k) { /*...*/ }

auto green_action(int k, int i) { /*...*/ }

auto magenta_action(int k, int j) {

return [=](const continue_msg &) {

TLU_DTRSM_no_copy(TLU_u , TLU_lo , TLU_l ,

TILE_ADDR_X(L, k, k),

TILE_ADDR_X(A, k, j));

};

}

auto blue_action(int k, int i, int j) { /*...*/ }

void run() {

nodes_lu.at({0})-> try_put(continue_msg ());

g.wait_for_all ();

}

};

Listing 1. Fragments of the main class responsible for building the graph and conducting
the computations in the TLU(q)-TBB implementation

212 J. Bylina

Table 1 shows details of the specification of the hardware and software used
in the numerical experiment. The flags used in compilation and linking were:
-mkl=sequential -fopenmp -O3 -ip -no-prec-div -fp-model fast=2

-std=c++14 -ltbb. The theoretical peak performance (in Gflops) can be computed
from the specification, with the use of the formula:

of cores× clock frequency in GHz× flops per cycle = 24× 2.3× 16

= 883.2 [Gflops]

CPU 2× Intel Xeon E5-2670 v.3
(Haswell)

of cores 24 (12 per socket)
of threads 48 (2 per core)
clock 2.30 GHz
level 1 data cache 32 kB per core
level 2 cache 256 kB per core
compiler Intel ICC 16.0.0
BLAS/LAPACK libraries MKL 2016.0.109

Table 1. Hardware and software used in the experiments

The input matrices were generated by the authors. They were random, square,
dense matrices, with a dominant diagonal of even sizes (1 024, 2 018, . . . 14 336).
Various numbers of tiles were tested, namely, each matrix was divided into 16, 32,
64, and 128 tiles for each side (both for the rows and the columns). The matrices
are stored (from the beginning) in a tiled format [9] – as shown in Figure 4.

Figure 4. Memory layout of the test matrices. Arrows show data sequence in memory
(black: within a tile; red: between tiles).

The performance times were measured with the use of a standard function,
namely (omp get wtime()). The measured performance time does not include the

Assessment of Two Task Frameworks with Dependencies. . . 213

time needed for the matrix generation and for storing it in the aforementioned tiled
format. However, it was quite short (O(n2)), relative to the time of the factorizations
(O(n3)).

We set the number of OpenMP threads using the omp set num threads function
and the number of TBB threads with the use of tbb::task scheduler init. All
the experiments reported below were performed with the use of the double-precision
arithmetic.

5.1 Performance

In our experiments, as a metric, we use the number of floating-point operations per
second (flops). The number of floating point operations for both the LU factorization
and the WZ factorization of the matrix of the size n × n is 2

3
n3 + O(n2), so it

approximately equals 2
3
n3.

Thus, to obtain the metric in Gflops (= 109 flops) we use the following formula

2n3

3 · T · 109
,

where T is the execution time of a measured implementation. This metric allows
comparing all implementations with the same measure.

Figure 5 presents the performance (in Gflops) of the TWZ(r)-OpenMP, TWZ(r)-
TBB, TLU(q)-OpenMP and TLU(q)-TBB for the number of threads 24 for four
different number of tiles (16, 32, 64, 128) as a function of the matrix size. We tested
matrices of the sizes being multiples of 1 024, thus we were limited to the numbers
dividing 1 024, that is, powers of 2. Thus, we chose above-mentioned numbers.
However, some other tests (conducted on the matrix of the size 15 120 which has
many more divisors) showed that the best results are obtained for q between 32 and
64 (LU) and r between 64 and 128 (WZ).

We can observe that the number of tiles has a great impact on the performance.
For a wrongly chosen number of tiles (especially in the WZ factorization), the per-
formance can drop drastically (e.g., even to about 100 Gflops for WZ with r = 16
in both frameworks). For the LU factorization and q = 128, the performance is also
poor. Having analyzed all the experiments for TLU-OpenMP, we can see that the
values q = 16 and q = 128 can be dismissed. On the other hand, for smaller matrices
(up to the size 8 192), q = 32 is the best and for bigger ones (12 288 and more), we
should choose q = 64. Between 8 192 and 12 288, the choice is ambiguous – q = 32
or q = 64 is better, but they are similar. For TLU-TBB, we can ignore q = 128 and
q = 64 (never being the best choices). For small matrices (up to 6 144), the better
is smaller of the remaining ones (that is, q = 16) and for bigger matrices (7 168 and
more), the better is q = 32. For the tiled LU factorization, both frameworks are very
close – usually, OpenMP prevails, but the differences are very minute. However, we
can see that in TLU, OpenMP needs q to be twice as big as for TBB.

After the analysis for TWZ-OpenMP, we can see that this implementation be-
haves the best for r = 64 (up to the size 10 240) and for r = 128 (for the matrix

214 J. Bylina

size 11 264 and more). The parameter r = 16 is never the best and for very small
matrices, r = 32 gives good results. The TWZ-TBB implementation gives the best
results for r = 32 (but only for the size 4 096 and less) and for r = 64 (from 5 120).
The other values (r = 16 and r = 128) do not perform well. Again, the best results
for both tiled WZ implementations are very close and we cannot assess which is the
best. Moreover, in TWZ, we can also see that OpenMP needs r to be twice as big
as for TBB.

Both the algorithms perform better in TBB if the parameter (q and r) is two
times smaller than in OpenMP. In other words, the TBB versions work better for
bigger portions of the data. Precisely: four times bigger – because the optimal linear
size of the tile is twice bigger in TBB than in OpenMP; so the amount of data is
four times bigger in TBB. That leaves an open question: why is this so?

To sum up, the performance depends strongly on the size of the matrix (what
is quite obvious) and on the number of tiles (that is q or r) – thus, indirectly on
the sizes of a single tile. The framework itself (OpenMP or TBB) has only a slight
impact.

Implementation Time Performance % of
[s] [Gflops] Peak Performance

MKL LU 3.15 623.67 70.61 %
TLU(64)-OpenMP 2.98 658.28 74.53 %
TLU(32)-TBB 3.24 606.66 68.69 %
TWZ(128)-OpenMP 3.85 509.62 57.70 %
TWZ(64)-TBB 3.68 533.40 60.39 %

Table 2. The comparison of the best times and performances for four presented imple-
mentations for 24 threads and the matrix size of 14 336

In Table 2, we can see the best times and performances (with its values of r or q)
and peak performance percentages, chosen experimentally for a matrix of size 14 336
and 24 threads – for each considered implementation and for a vendor MKL LU
factorization. For the largest matrix size (14 336), the TLU algorithm achieves the
best performance in the OpenMP implementation, although for the TWZ algorithm,
the TBB implementation is better. Our implementations gave comparable results
to the results of a vendor implementation (namely, the LU factorization without
pivoting from the MKL library, that is dgetrfnpi). The same tests were also
conducted for similar sizes (like 14 208, 14 464 and others; to exclude problems
with cache associativity) and the general performance is very similar. However,
not always the TLU(64)-OpenMP implementation was the best.

5.2 Speedup

In our proposed implementations only Stage 1 is not parallelized. In this section,
we investigate the influence of this sequential part on the speedup possibilities.

Assessment of Two Task Frameworks with Dependencies. . . 215

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 0
 2

0
4

8
 4

0
9

6
 6

1
4

4
 8

1
9

2
 1

0
2

4
0

 1
2

2
8

8
 1

4
3

3
6

Gflops

m
a
tr

ix
 s

iz
e

C
P
U

,
T
LU

(q
)-

O
p
e
n
M

P
,
n
u
m

b
e
r

o
f

th
re

a
d
s=

2
4

q
=

1
6

q
=

3
2

q
=

6
4

q
=

1
2

8

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 0
 2

0
4

8
 4

0
9

6
 6

1
4

4
 8

1
9

2
 1

0
2

4
0

 1
2

2
8

8
 1

4
3

3
6

Gflops

m
a
tr

ix
 s

iz
e

C
P
U

,
T
LU

(q
)-

T
B

B
,
n
u
m

b
e
r

o
f

th
re

a
d

s=
2

4

q
=

1
6

q
=

3
2

q
=

6
4

q
=

1
2

8

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 0
 2

0
4

8
 4

0
9

6
 6

1
4

4
 8

1
9

2
 1

0
2

4
0

 1
2

2
8

8
 1

4
3

3
6

Gflops

m
a
tr

ix
 s

iz
e

C
P
U

,
T
W

Z
(r

)-
O

p
e
n
M

P
,
n
u
m

b
e
r

o
f

th
re

a
d
s=

2
4

r=
1

6
r=

3
2

r=
6

4
r=

1
2

8

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 0
 2

0
4

8
 4

0
9

6
 6

1
4

4
 8

1
9

2
 1

0
2

4
0

 1
2

2
8

8
 1

4
3

3
6

Gflops

m
a
tr

ix
 s

iz
e

C
P
U

,
T
W

Z
(r

)-
T
B

B
,
n
u
m

b
e
r

o
f

th
re

a
d
s=

2
4

r=
1

6
r=

3
2

r=
6

4
r=

1
2

8

Figure 5. The performance in Gflops of the parallel tiled LU and WZ factorization algo-
rithms for the number of threads 24 for four different number of tiles (16, 32, 64, 128) as
a function of the matrix size

216 J. Bylina

Let Tp be the time to perform the computation using p threads. Speedup for p
threads is defined as:

Sp =
T1

Tp

.

Figure 6 shows the experimental speedup (relative to the same algorithm run
with the use of one thread – the times are shown in Table 3) as a function of the
number of threads (1–27 threads) for different values of r and q for a matrix of the
size 14 336.

Considering the best choices of q and r, the OpenMP implementations give
a significantly better speedup (for 24 threads, it is more than 20). The best what
the TBB implementations gain is speedup of 20. However, Table 3 shows that the
TBB implementations have better performance for one thread, and thus they achieve
poorer results in terms of relative speedup (Section 5.1 shows similar performance
for OpenMP and TBB implementations of the same algorithm).

Implementation Time [s]
1 Thread 12 Threads 24 Threads

TLU(64)-OpenMP 68.93 5.84 2.98
TLU(32)-TBB 62.99 5.48 3.23
TWZ(128)-OpenMP 75.05 6.98 3.85
TWZ(64)-TBB 70.02 6.25 3.65

Table 3. The performance time for selected numbers of threads and the matrix size of
14 336

We can see that the OpenMP implementations scale better – up to 24 threads.
For more threads, the hyperthreading turns on and it does not improve the per-
formance – aggravating the results sometimes. In the case of TBB, the scalability
collapses somewhat earlier. For both frameworks, we should choose the maximum
number of physical cores as the number of threads, that is, 24 in our environment.

The speedup is sensitive to the values r and q. However, both implementations
are scalable (up to the number of physical cores, that is 24) for well-chosen q and r.

5.3 Scalability

Figure 7 shows the weak scalability of the algorithms. The tests here are run for
various numbers of processors, however, the amount of the work is chosen to be
proportional to the number of employed cores. To achieve a nice weak scalability [10],
we expect the plots (of the execution time versus the number of processors employed)
to be horizontal. We can see that both frameworks (that is OpenMP and TBB) and
both methods (LU and WZ) achieve similar, very good, weak scalability.

Figure 8 shows the strong scalability of the algorithms. This time, the tests
were run for various numbers of processors, but the amount of the work was always
the same (the size of the matrix was 14 336). The plot (of the execution time versus
the number of processors employed) was done in log-log scales [10]. In such a plot,

Assessment of Two Task Frameworks with Dependencies. . . 217

 0 5

 1
0

 1
5

 2
0

 2
5

 0
 4

 8
 1

2
 1

6
 2

0
 2

4
 2

8

speedup

n
u
m

b
e
r

o
f

th
re

a
d
s

C
P
U

,
T
LU

(r
)-

O
p

e
n
M

P
,
m

a
tr

ix
 s

iz
e
=

1
4

3
3

6

q
=

1
6

q
=

3
2

q
=

6
4

q
=

1
2

8

 0 5

 1
0

 1
5

 2
0

 2
5

 0
 4

 8
 1

2
 1

6
 2

0
 2

4
 2

8
speedup

n
u
m

b
e
r

o
f

th
re

a
d
s

C
P
U

,
T
LU

(q
)-

T
B

B
,
m

a
tr

ix
 s

iz
e
=

1
4

3
3

6

q
=

1
6

q
=

3
2

q
=

6
4

q
=

1
2

8

 0 5

 1
0

 1
5

 2
0

 2
5

 0
 4

 8
 1

2
 1

6
 2

0
 2

4
 2

8

speedup

n
u
m

b
e
r

o
f

th
re

a
d

s

C
P
U

,
T
W

Z
(r

)-
O

p
e
n
M

P
,
m

a
tr

ix
 s

iz
e
=

1
4

3
3

6

r=
1

6
r=

3
2

r=
6

4
r=

1
2

8

 0 5

 1
0

 1
5

 2
0

 2
5

 0
 4

 8
 1

2
 1

6
 2

0
 2

4
 2

8

speedup

n
u
m

b
e
r

o
f

th
re

a
d

s

C
P
U

,
T
W

Z
(r

)-
T
B

B
,
m

a
tr

ix
 s

iz
e
=

1
4

3
3

6

r=
1

6
r=

3
2

r=
6

4
r=

1
2

8

Figure 6. The speedup of the parallel tiled LU and WZ factorization algorithms as a func-
tion of the number of threads for different values of r and q for matrix size equals 14 336

218 J. Bylina

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25

e
x
e
cu

ti
o
n
 t

im
e

number of the threads

weak scalability

TWZ(64)-TBB
TLU(64)-TBB

TWZ(64)-OpenMP
TLU(64)-OpenMP

Figure 7. Weak scalability of the tested algorithms for the selected parameters

a good strong scalability should give a straight line with the slope −1. We can see
that the scalability is not bad for all cases. However, close to the maximal number of
processors, something spoils (what can be also seen in Figure 6). It can be explained
by an automatic constraint on the energy used by the processor.

 1

 24

 1 24

e
x
e
cu

ti
o
n
 t

im
e

number of the threads

strong scalability

TWZ(64)-TBB
TLU(64)-TBB

TWZ(64)-OpenMP
TLU(64)-OpenMP

Figure 8. Strong scalability of the tested algorithms for the selected parameters

6 CONCLUSION

In this work, we reported numerical experiments aimed to compare two parallel task
frameworks, namely OpenMP and TBB for two matrix factorizations. We focused
on two matrix factorizations which use BLAS functions from MKL library and are

Assessment of Two Task Frameworks with Dependencies. . . 219

computationally intensive. We implemented these matrix factorizations using tasks
with dependencies in OpenMP and TBB. We chose these frameworks because they
differ significantly in their approach to defining dags and dependencies. Moreover,
OpenMP is a language extension, but TBB is an ordinary library.

The TBB library seems to be more flexible – as it is just a library seamlessly
fitting into the C++ language and its other libraries. Arbitrary C++ types can be
used with TBB, whereas OpenMP have troubles with some more complicated types
(like classes, templates, lambdas) and they cannot be used directly. High-level
abstraction (provided by these types) does not port well into OpenMP. Conversely,
in TBB they are treated quite transparently, because TBB is not an overlay onto
the language – as OpenMP is. As a library, TBB synergizes with C++ standard
library as well as with external libraries. We can also easily use templates and
lambdas which facilitate the creation of flexible and reusable code. On the other
hand, in OpenMP, pragmas do not accept many C++ constructs (sometimes not
even macros) and we must employ some tricks to achieve our goals.

The TBB library also offers more tools to better control the execution. With
the use of OpenMP, we are not building the graph – this is done by the compiler and
run-time system. We can only give the dependencies and trust that the graph will
be correct. However, sometimes (especially when the graph is explicit – as in our
case) it is easier to build the graph than to write complex (and sometimes artificial)
dependencies. Moreover, the dependency graph built by a programmer in TBB can
be an arbitrary graph (contrary to OpenMP, where graphs are not arbitrary and
they must be given implicitly, by dependencies – as we mentioned above). Each
graph node represents a task and its edges describe arbitrary dependencies between
them. The task scheduling is a very important part of TBB. It automatically al-
locates tasks to workers (threads) to maintain the best load balancing. But the
main advantage of the TBB is that it is completely compatible with the C++ lan-
guage and can be freely used with other libraries – which is priceless in advanced
applications.

On the other hand, OpenMP is very popular and quite simple to use. It is also
a portable and (de facto) standard approach. However, OpenMP has some limita-
tions. It causes problems when dependencies are more complicated, does not allow
using some C/C++ constructs (even some simple expressions or data members) in
pragmas and clauses, forcing a programmer to use unnatural notations (as illegible
casts). Specifically to dependencies, if array sections appear in them, they must
be either the same or disjoint. It is also a C-based standard so it does not treat
well some C++ elements (like references). Thus, OpenMP is a common and quite
efficient tool, although TBB is more programmer-friendly and sometimes TBB’s
features and flexibility make TBB the only option.

There was not a clear performance relation among the considered frameworks,
and the differences between them were small in most cases. In fact, the average
performance difference between the slowest and the fastest implementation in our
tests was about 19 %. However, the OpenMP implementations relative speedup is
clearly better than that for TBB.

220 J. Bylina

There is also a programmer’s experience issue. For simpler projects, OpenMP
seems easier – especially when we have a working sequential implementation. On
the other hand, for more complicated problems, notably ones needing some code
reuse (as, for example, refinement techniques [2, 4] where the same algorithm is
used with different precision types), TBB is better for an experienced developer,
although, TBB is also more demanding. However, the merits of TBB (its flexibility,
generality, code readability) prevails over the OpenMP (its limitations and error
proneness).

Our corollaries can be generalized to a wide class of algorithms. Namely, all the
linear algebra algorithms – as, for example, various factorizations (Cholesky, QR,
etc.), matrix-matrix multiplication (GEMM) and iterative methods (Jacobi, Gauss-
Seidel, GMRES) – which can be designed as a tiled version (that is, with the use
of square blocks and the special storing format mentioned in Section 5) can be also
implemented with tasks (using both OpenMP and TBB) similarly.

Further work is needed to determine other ways in which OpenMP and TBB
frameworks could potentially be improved and whether additional information could
be provided to enable better performance. Also, there is a plenty other computing
areas where we can use the task approach – as, for example, in sparse computations,
machine learning, etc.

REFERENCES

[1] Agullo, E.—Demmel, J.—Dongarra, J.—Hadri, B.—Kurzak, J.—
Langou, J.—Ltaief, H.—Luszczek, P.—Tomov, S.: Numerical Linear Alge-
bra on Emerging Architectures: The PLASMA and MAGMA Projects. Journal of
Physics: Conference Series, Vol. 180, 2009, No. 1, Art. No. 012037, doi: 10.1088/1742-
6596/180/1/012037.

[2] Baboulin, M.—Buttari, A.—Dongarra, J.—Kurzak, J.—Langou, J.—
Langou, J.—Luszczek, P.—Tomov, S.: Accelerating Scientific Computations
with Mixed Precision Algorithms. Computer Physics Communications, Vol. 180, 2009,
No. 12, pp. 2526–2533, doi: 10.1016/j.cpc.2008.11.005.

[3] Buttari, A.—Langou, J.—Kurzak, J.—Dongarra, J.: A Class of Parallel
Tiled Linear Algebra Algorithms for Multicore Architectures. Parallel Computing,
Vol. 35, 2009, No. 1, pp. 38–53, doi: 10.1016/j.parco.2008.10.002.

[4] Bylina, B.—Bylina, J.: Mixed Precision Iterative Refinement Techniques for the
WZ Factorization. Proceedings of the 2013 Federated Conference on Computer Scien-
ce and Information Systems, 2013, pp. 425–431.

[5] Bylina, B.—Bylina, J.: OpenMP Thread Affinity for Matrix Factorization on
Multicore Systems. Proceedings of the 2017 Federated Conference on Computer Scien-
ce and Information Systems (FedCSIS), Annals of Computer Science and Information
Systems, Vol. 11, 2017, pp. 489–492, doi: 10.15439/2017F231.

https://doi.org/10.1088/1742-6596/180/1/012037
https://doi.org/10.1088/1742-6596/180/1/012037
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1016/j.parco.2008.10.002
https://doi.org/10.15439/2017F231

Assessment of Two Task Frameworks with Dependencies. . . 221

[6] Chandra, R.—Dagum, L.—Kohr, D.—Maydan, D.—McDonald, J.—
Menon, R.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, San
Francisco, 2001, doi: 10.1016/b978-155860671-5/50003-7.

[7] Dongarra, J. J.—Du Croz, J.—Hammarling, S.—Duff, I. S.: A Set of Level-3
Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software,
Vol. 16, 1990, pp. 1–17, doi: 10.1145/77626.79170.

[8] Evans, D. J.—Hatzopoulos, M.: A Parallel Linear System Solver. Interna-
tional Journal of Computer Mathematics, Vol. 7, 1979, No. 3, pp. 227–238, doi:
10.1080/00207167908803174.

[9] Gustavson, F. G.: High-Performance Linear Algebra Algorithms Using New Gen-
eralized Data Structures for Matrices. IBM Journal of Research and Development,
Vol. 47, 2003, No. 1, pp. 31–55, doi: 10.1147/rd.471.0031.

[10] Heath, M. T.: A Tale of Two Laws. The International Journal of High Per-
formance Computing Applications, Vol. 29, 2015, No. 3, pp. 320–330, doi:
10.1177/1094342015572031.

[11] Igual, F. D.—Chan, E.—Quintana-Ort́ı, E. S.—Quintana-Ort́ı, G.—
van de Geijn, R. A.—Van Zee, F. G.: The FLAME Approach: From Dense Linear
Algebra Algorithms to High-Performance Multi-Accelerator Implementations. Jour-
nal of Parallel and Distributed Computing, Vol. 72, 2012, No. 9, pp. 1134–1143, doi:
10.1016/j.jpdc.2011.10.014.

[12] Kukanov, A.—Voss, M. J.: The Foundations for Scalable Multi-Core Software
in Intel Threading Building Blocks. Intel Technology Journal, Vol. 11, 2007, No. 4,
pp. 309–322, doi: 10.1535/itj.1104.05.

[13] Kurzak, J.—Luszczek, P.—YarKhan, A.—Faverge, M.—Langou, J.—
Bouwmeester, H.—Dongarra, J.: Multithreading in the PLASMA Library.
In: Rajasekaran, S., Fiondella, L., Ahmed, M., Ammar, R. A. (Eds.): Multicore
Computing: Algorithms, Architectures, and Applications. Chapter 5. Chapman and
Hall/CRC, 2013, p. 119–142, doi: 10.1201/b16293-11.

[14] Marowka, A.: TBBench: A Micro-Benchmark Suite for Intel Threading Building
Blocks. Journal of Information Processing Systems, Vol. 8, 2012, No. 2, pp. 331–346,
doi: 10.3745/jips.2012.8.2.331.

[15] Marqués, M.—Quintana-Ort́ı, G.—Quintana-Ort́ı, E. S.—
van de Geijn, R. A.: Using Desktop Computers to Solve Large-Scale Dense
Linear Algebra Problems. The Journal of Supercomputing, Vol. 58, 2011, No. 2,
pp. 145–150, doi: 10.1007/s11227-010-0394-2.

[16] Olivier, S. L.—Prins, J. F.: Comparison of OpenMP 3.0 and Other Task Parallel
Frameworks on Unbalanced Task Graphs. International Journal of Parallel Program-
ming, Vol. 38, 2010, No. 5-6, pp. 341–36, doi: 10.1007/s10766-010-0140-7.

[17] Pheatt, C.: Intel Threading Building Blocks. Journal of Computing Sciences in
Colleges, Vol. 23, 2008, No. 4, pp. 298–298.

[18] Quintana-Ort́ı, G.—Quintana-Ort́ı, E. S.—van de Geijn, R. A.—
Van Zee, F. G.—Chan, E.: Programming Matrix Algorithms-by-Blocks for
Thread-Level Parallelism. ACM Transactions on Mathematical Software, Vol. 36,
2009, No. 3, pp. 14:1–14:26, doi: 10.1145/1527286.1527288.

https://doi.org/10.1016/b978-155860671-5/50003-7
https://doi.org/10.1145/77626.79170
https://doi.org/10.1080/00207167908803174
https://doi.org/10.1147/rd.471.0031
https://doi.org/10.1177/1094342015572031
https://doi.org/10.1016/j.jpdc.2011.10.014
https://doi.org/10.1535/itj.1104.05
https://doi.org/10.1201/b16293-11
https://doi.org/10.3745/jips.2012.8.2.331
https://doi.org/10.1007/s11227-010-0394-2
https://doi.org/10.1007/s10766-010-0140-7
https://doi.org/10.1145/1527286.1527288

222 J. Bylina

[19] Rao, S. C. S.: Existence and Uniqueness of WZ Factorization. Parallel Computing,
Vol. 23, 1997, No. 8, pp. 1129–1139, doi: 10.1016/s0167-8191(97)00042-2.

[20] Stpiczyński, P.: Language-Based Vectorization and Parallelisation Using Intrin-
sics, OpenMP, TBB and Cilk Plus. Journal of Supercomputing, Vol. 74, 2018,
pp. 1461–1472, doi: 10.1007/s11227-017-2231-3.

[21] Tang, P.: Measuring the Overhead of Intel C++ Concurrent Collections over
Threading Building Blocks for Gauss–Jordan Elimination. Concurrency and Compu-
tation: Practice and Experience, Vol. 24, 2012, pp. 2282–2301, doi: 10.1002/cpe.2811.

[22] Virouleau, P.—Brunet, P.—Broquedis, F.—Furmento, N.—Thi-
bault, S.—Aumage, O.—Gautier, T.: Evaluation of OpenMP Dependent
Tasks with the KASTORS Benchmark Suite. In: DeRose, L., de Supinski, B. R.,
Olivier, S. L., Chapman, B. M., Müller, M. S. (Eds.): Using and Improving OpenMP
for Devices, Tasks, and More (IWOMP 2014). Springer, Heidelberg, Lecture Notes
in Computer Science, Vol. 8766, 2014, pp. 16–29, doi: 10.1007/978-3-319-11454-5 2.

[23] Yalamov, P.—Evans, D. J.: The WZ Matrix Factorization Method. Parallel Com-
puting, Vol. 21, 1995, No. 7, pp. 1111–1120, doi: 10.1016/0167-8191(94)00088-r.

[24] https://www.cilkplus.org/.

[25] https://www.khronos.org/opencl/.

Jaros law Bylina is a mathematics graduate (1998) with his
Ph.D. in computer science (Distributed methods to solve Marko-
vian models of computer networks, done at The Silesian Univer-
sity of Technology in Gliwice, Poland in 2006. He has been work-
ing in the Institute of Mathemtaics of Marie Curie-Sk lodowska
University in Lublin (Poland) since 1998, now as Assistant Pro-
fessor. He is interested in numerical methods for Markov chains,
modelling of teleinformatic systems and parallel and distributed
computing and processing.

https://doi.org/10.1016/s0167-8191(97)00042-2
https://doi.org/10.1007/s11227-017-2231-3
https://doi.org/10.1002/cpe.2811
https://doi.org/10.1007/978-3-319-11454-5_2
https://doi.org/10.1016/0167-8191(94)00088-r
https://www.cilkplus.org/
https://www.khronos.org/opencl/

