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Abstract. Most of the previously known evaluation methods for deductive data-
bases are either breadth-first or depth-first (and recursive). There are cases when
these strategies are not the best ones. It is desirable to have an evaluation framework
for stratified Datalog¬ that is goal-driven, set-at-a-time (as opposed to tuple-at-a-
time) and adjustable w.r.t. flow-of-control strategies. These properties are impor-
tant for efficient query evaluation on large and complex deductive databases. In
this paper, by incorporating stratified negation into so-called query-subquery nets,
we develop an evaluation framework, called QSQN-STR, with such properties for
evaluating queries to stratified Datalog¬ databases. A variety of flow-of-control
strategies can be used for QSQN-STR. The generic evaluation method QSQN-STR
for stratified Datalog¬ is sound, complete and has a PTIME data complexity.
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1 INTRODUCTION

Datalog is a well-known rule-based query language for deductive databases. In [24],
Huang et al. wrote “we are witnessing an exciting revival of interest in recursive
Datalog queries in a variety of emerging application domains such as data inte-
gration, information extraction, networking, program analysis, security, and cloud
computing” (see also, e.g., [23, 7]). Datalog expresses the Horn fragment with the
safety condition1 and without function symbols of first-order logic and uses the tra-
ditional monotonic semantics. The extension Datalog¬ of Datalog allows expressing
non-monotonic queries by using negation in the bodies of program clauses. It uses
a non-monotonic semantics like the standard semantics for stratified Datalog¬ pro-
grams and the well-founded semantics for the general case. A Datalog¬ program is
stratifiable if it can be divided into strata such that, if a negative literal of a predi-
cate p occurs in the body of a program clause in a stratum, then the clauses defining p
must belong to an earlier stratum. A deductive database consists of a Datalog/Da-
talog¬ program (for defining intensional predicates) and an instance of extensional
predicates.

This work studies query processing for stratified Datalog¬ databases. The topic
is worthy of consideration due to practical applications of deductive databases.

1.1 Related Work

Researchers have developed a number of evaluation methods for Datalog databases,
such as QSQ [43, 1], QSQR [43, 31], QoSaQ [44] and Magic-Sets [5, 6] (by Magic-
Sets we mean the evaluation method that combines the magic-set transformation
with the improved semi-naive evaluation method).

QSQ (Query-Subquery) [43, 1] is a framework for evaluating queries to Data-
log databases. Its approach is top-down (i.e., query processing is closely related
to the main goal) and set-at-a-time (i.e., operations are set-oriented but not tuple-
oriented). It implements a tabulation (tabling/memoing) technique by using so-
called input, answer and supplement relations to guarantee termination. Adorn-
ments for intensional predicates (and their corresponding input and answer rela-
tions) are used to enable exploiting relational operations like join and projection. In
general, QSQ uses adornments to simulate SLD-resolution in pushing constant sym-
bols from goals to subgoals. An enhanced version of QSQ, called annotated QSQ,
also uses annotations to simulate SLD-resolution in pushing repeats of variables
from goals to subgoals. A variety of flow-of-control strategies (which are similar to
search strategies and called control strategies for short) can be used for QSQ.

1 For a definition of the safety condition, see the paragraph after Definition 1.
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QSQR (QSQ Recursive), introduced by Vieille in [43], is a query evaluation
method for Datalog databases that follows the QSQ approach and uses a recursive
strategy. Roughly speaking, the strategy is depth-first, but due to tabulation, as
observed by Vieille [44], the QSQR approach is like iterative deepening search. The
versions of QSQR presented in [43, 1] are incomplete [31, 44, 29]. This is corrected
in [29] by using an outer loop that clears global input relations for each iteration.

In [44], Vieille introduced another method, called QoSaQ, for evaluating queries
to Datalog databases. It is an adaptation of SLD-AL resolution. The method can
be implemented as a set-oriented procedure, but as stated by Vieille himself, the
practical interest of the method lies in its one-inference-at-a-time basis, as opposed
to the set-at-a-time approach. The intention is to permit an advanced analysis of
the duplicate elimination issue.

The magic-sets technique [5, 6] simulates the top-down QSQ approach by rewrit-
ing the Datalog program together with the given query to another equivalent one
that when evaluated using a bottom-up technique (e.g., the improved semi-naive
evaluation) produces only facts produced by the QSQ evaluation. Adornments are
used as in the QSQ approach. To simulate annotations, the magic-sets transforma-
tion is augmented with subgoal rectification (see, e.g., [1]).

In [11, 9], we provided a framework called QSQN (Query-Subquery Nets) for
evaluating queries to Horn knowledge bases. It uses a parameter for the limit on the
nesting depths of terms occurring in the computation. When this limit is set to 0,
the framework can be used for evaluating queries to Datalog databases. QSQN is
an adaptation and a generalization of the QSQ approach for Horn knowledge bases.
One of the key differences is that it does not use adornments and annotations, but
uses substitutions instead. This is natural for the case with function symbols and
without the safety condition. Like QSQ, every control strategy can be used for
QSQN. The notion of query-subquery net makes a linkage to flow networks and is
intuitive for developing efficient evaluation algorithms.

A top-down approach with tabulation for dealing with stratified Datalog¬ was
proposed in [26, 41, 37]. The evaluation procedures given in [26, 41, 37] are similar to
each other, with some differences as discussed in [37]. They are called “QSQR/SLS-
procedure” in [26, 37] and we will refer to them as the QSQR/SLS method. This
method relies on using a derivation forest (of global SLS-resolution) with tabulation
and is implemented using the recursive approach like QSQR.

In [37], apart from QSQR/SLS, Ross also proposed a bottom-up evaluation
method for stratified Datalog¬ by presenting a magic-sets transformation, which
simulates the top-down QSQR/SLS method, but the program obtained from the
transformation can be evaluated using a bottom-up technique. Programs obtained
from the transformation are not stratified Datalog¬ programs, as they use special
“literals” for checking whether the computation of the corresponding negative goals
has been completed.

In [4], Balbin et al. proposed another bottom-up evaluation method for strati-
fied Datalog¬. Their method applies a magic-sets transformation and a bottom-up
computation with recursive calls for evaluating negative goals.
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The well-founded semantics is a commonly accepted choice for (general) Data-
log¬, as it coincides with the standard semantics for stratified Datalog¬, and using
it Datalog¬ has a PTIME data complexity. This semantics was first introduced by
Van Gelder et al. for normal logic programs [19] and can be characterized by the
alternating fixpoint [18]. Several calculi for normal logic programs that are sound
and complete w.r.t. the well-founded semantics have been developed. One of them is
SLG-resolution. In [15], Chen et al. presented efficient techniques for implementing
SLG-resolution. Their method maintains positive and negative dependencies among
subgoals in a top-down evaluation, detects positive and negative loops, delays sub-
goals when possible loops occur, checks completion of subgoals and resumes their
activeness when possible. It is tuple-oriented and its implementation XSB [40] can
be used as an engine for in-memory Datalog¬ databases.

Kemp et al. [25] and Morishita [30] proposed bottom-up evaluation methods
for Datalog¬ under the well-founded semantics. Their methods are based on Van
Gelder’s alternating fixpoint characterization and use a magic-sets transformation
with adornments but without annotations.

In [14], together with a colleague we extended QSQN to obtain a method called
QSQN-WF for evaluating queries to Datalog¬ databases under the well-founded
semantics. It follows Przymusinski’s SLS-resolution [34], with Van Gelder’s alter-
nating fixpoint semantics [18] on the background, but uses a query-subquery net to
implement tabulation and the set-at-a-time technique.

1.2 Motivations

We first discuss some important aspects of query evaluation (in Sections 1.2.1–1.2.3),
and then state motivations of our work (in Section 1.2.4).

1.2.1 Adjustability w.r.t. Control Strategies

The techniques used for query evaluation are usually separated into two classes de-
pending on whether they focus on top-down or bottom-up evaluation [1]. Here,
“top-down” is understood as “goal-driven” (i.e., query processing is relevant to the
subgoals and therefore closely related to the main goal). As the bottom-up eval-
uation methods based on the magic-sets technique simulate the top-down evalua-
tion, they are also goal-driven. Since the terms “top-down” and “bottom-up” are
antonyms, it is better to classify top-down evaluation as goal-driven and character-
ize bottom-up evaluation methods by an additional property. Being goal-driven can
be treated as a requirement for efficient evaluation methods.

The aforementioned bottom-up evaluation methods for Datalog [5, 6], stratified
Datalog¬ [37, 4] and Datalog¬ [25, 30] use a magic-sets transformation and a bottom-
up computation like the improved semi-naive evaluation. So, they can be charac-
terized as goal-driven and breadth-first (i.e., based on using a breadth-first control
strategy).2 On the other hand, the top-down evaluation methods QSQR [43, 31]

2 The naive evaluation can be described as follows: repeat applying all of the rules
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and QoSaQ [44] (for Datalog), QSQR/SLS [26, 41, 37] (for stratified Datalog¬)
and SLG-resolution [15, 40] (for normal logic programs and Datalog¬ databases)
can be characterized as goal-driven and depth-first.3 The frameworks QSQ [43, 1]
(for Datalog), QSQN [11, 9] (for Horn knowledge bases and Datalog databases)
and QSQN-WF [14] (for Datalog¬) follow the goal-driven approach but allow every
control strategy.

The breadth-first and depth-first approaches are just two among possible ap-
proaches. There are cases when they are not the best ones [11]. When developing
a framework for query evaluation one should make it general to a certain extent so
that a variety of control strategies can be used. In particular, it is desirable to be
able to control the computation flow dynamically.

1.2.2 Set-at-a-Time vs. Tuple-at-a-Time

The evaluation methods QoSaQ [44] (for Datalog) and SLG-resolution [15, 40] (for
normal logic programs and Datalog¬ databases) are tuple-at-a-time (tuple-oriented).
They use complex data structures for handling individual subgoals (tuples), and
when the extensional relations and the search space are too large, in-memory com-
putation may be impossible. XSB [40] is an efficient engine for in-memory deduc-
tive databases due to the suspension-resumption mechanism, advantages of WAM
(Warren Abstract Machine) and other optimizations. Such techniques are highly
tuple-oriented. When the extensional relations are too large and the program defin-
ing intensional predicates is sophisticated, accesses to the secondary storage may be
unavoidable, and the set-at-a-time approach is preferable.

Regarding the evaluation methods QSQR [43, 31] (for Datalog) and
QSQR/SLS [26, 41, 37] (for stratified Datalog¬), they can be implemented using
either the tuple-at-a-time approach or the set-at-a-time approach. But, using the
latter one the recursive strategy is unavoidable. As observed in [29, Remark 3.2],
using the recursive approach, input relations should be cleared occasionally (e.g., at
the beginning of each iteration of the main loop) in order to allow recomputations
using updated answer relations. This causes redundant computations.

1.2.3 Why Are Evaluation Methods for Stratified Datalog¬ Needed?

The question is rather “are the known evaluation methods for (general) Datalog¬

efficient for evaluating queries to stratified Datalog¬ databases?”. The general an-
swer is “they are not as efficient as expected for that kind of tasks”. The reason is
that they were developed to cope with unstratified negation and are thus superflu-
ous. For example, the methods proposed in [25, 30, 14] are based on Van Gelder’s

sequentially, one after the other, until no new facts were derived during the last iteration.
Its approach is like breadth-first search. The improved semi-naive evaluation (see, e.g., [1])
shares this property.

3 The mentioned methods use a recursive control strategy, which is like the depth-first
search strategy implemented using recursive calls.
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alternating fixpoint characterization and use an (additional) outer loop to guarantee
that an alternating fixpoint can be reached. When applied to stratified Datalog¬,
that causes certain redundant (re)computations.

Apart from the well-founded semantics, the stable model semantics [20] is also
a well-known semantics for normal logic programs (see, e.g., the survey [3]). These
two semantics coincide for certain classes of logic programs [35, 16, 21], including
stratified logic programs and stratified Datalog¬ programs. The stable model se-
mantics is used for answer set programming (ASP), and systems like DLV [27],
NP Datalog [22] and clasp [17], which deal among others with ASP, can be used
for answering queries to stratified Datalog¬ databases. However, as the main aim of
ASP engines is to find an answer set (i.e., a stable model) for a given logic program,
they are not goal-driven and, in general, not as efficient as expected for answering
queries to stratified Datalog¬ databases.

1.2.4 The Need for a New Evaluation Framework for Stratified Datalog¬

As discussed in Sections 1.1–1.2.3, the previously known methods that can be used
for evaluating queries to stratified Datalog¬ databases are:

• breadth-first [4, 37, 25, 30] or depth-first [26, 41, 37, 15, 40]; or/and

• tuple-at-a-time [15, 40]; or/and

• designed for (general) Datalog¬ [25, 30, 14] or normal logic programs [15, 40],
and not as efficient as expected for stratified Datalog¬.

That is, none of the previously known evaluation methods is goal-driven, set-at-a-
time, adjustable w.r.t. control strategies, and designed specially for stratified Da-
talog¬ but not (general) Datalog¬. As these properties are important for efficient
query evaluation on large and complex stratified Datalog¬ databases, it is desirable
to develop an evaluation framework for stratified Datalog¬ with such properties.

1.3 Our Contributions

In this paper, we provide a novel framework, called QSQN-STR, for evaluating
queries to stratified Datalog¬ databases. It extends the QSQN framework [11, 9]
with the ability to handle stratified negation (but is formulated for stratified Data-
log¬ databases instead of stratified knowledge bases in first-order logic). QSQN-STR
is goal-driven, set-at-a-time and allows a variety of control strategies. In partic-
ular, every control strategy “admissible w.r.t. strata’s stability” can be used for
QSQN-STR. Roughly speaking, the admissibility w.r.t. strata’s stability only re-
quires that the computation can check whether a (ground) negative goal ∼B of an
intensional predicate p succeeds by searching the answer relation of p only after the
(goal-driven) processing for the lower strata up to the stratum containing clauses
defining p has been completed. QSQN-STR uses a net of nodes that correspond to
input, answer and supplement relations like the ones used for QSQ [43, 1] but with-
out adornments. The net is constructed from the given stratified Datalog¬ program.
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It contains simple data structures that are needed for performing query evaluation.
At the abstract level, the skeleton of QSQN-STR is as follows:

while there are edges (u, v) such that u contains data to be processed for the
edge (u, v), do:

• select such an edge so that the selection is admissible w.r.t. strata’s sta-
bility;

• process the data at u to produce and transfer data through the edge (u, v).

As QSQN-STR allows every control strategy that is admissible w.r.t. strata’s
stability, it is really a framework. We also refer to it as a generic evaluation method
for stratified Datalog¬. This method is sound, complete and has a PTIME data
complexity.

What control strategies should be used for QSQN-STR is left for the implemen-
tation and experimentation phases. Besides, operations specified for QSQN-STR
can be optimized at the implementation phase. We have implemented a prototype
of QSQN-STR in Java, using a control strategy named IDFS2, which is specified
in [9]. The prototype has not yet been optimized. So, in general, it cannot compete
with highly optimized engines like XSB [40]. Nevertheless, we have performed exper-
iments and made a comparison between our prototype of QSQN-STR, DES-DBMS4

(version 5.0.1) and SWI-Prolog5 (version 6.4) w.r.t. the execution time by using
a number of tests. The experimental results show that our prototype of QSQN-STR
outperforms DES-DBMS by a few orders of magnitude for all of the tests. It is com-
petitive with SWI-Prolog for the tests for which SWI-Prolog can terminate properly.

This paper is a revised and extended/modified version of the conference paper [8]
and a chapter of the first author’s PhD dissertation [9]. The QSQN-STR framework
presented in this paper is formulated for stratified Datalog¬ databases but not strat-
ified knowledge bases in first-order logic. It has been improved by allowing a larger
class of control strategies and adopting an essential optimization6. Consequently,
the proof of soundness and completeness has been updated. Furthermore, the pre-
sentation has been significantly improved.

1.4 The Structure of This Paper

The rest of this paper is structured as follows. Section 2 recalls the most important
concepts and definitions. In Section 3, we give a new presentation of the QSQN
framework, which is thorough and more understandable than the one in [11, 9]. In
Section 4, we incorporate stratified negation into query-subquery nets and extend
QSQN to QSQN-STR. (To get the gist of QSQN-STR, the reader may watch
the demonstration [12] in the PowerPoint-like mode first.) Conclusions are given

4 The Datalog Education System (DES) with a DBMS via ODBC, available at http:

//des.sourceforge.net (see also, e.g., [39]).
5 Available at http://www.swi-prolog.org/
6 See the step 2a of fire′(u, v) in Definition 23.

http://des.sourceforge.net
http://des.sourceforge.net
http://www.swi-prolog.org/
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in Section 5. Due to the lack of space, our proofs and experimental results are
presented only in the online appendix [13].

2 PRELIMINARIES

We assume that the reader is familiar with basic notions of first-order logic. In this
section, we recall only the most important definitions and notions that are needed
for our work, which are based on [1, 2, 14, 23, 28, 33]. We refer the reader to [1, 28]
for further reading.

A signature for Datalog¬ consists of constants, variables and predicates. Each
predicate is classified either as intensional or as extensional. Due to the absence of
function symbols, a term is defined to be either a constant or a variable. An atom
is an expression of the form p(t1, . . . , tn), where n ≥ 0, p is an n-ary predicate
and each ti is a term. A literal is either an atom (called a positive literal) or the
negation of an atom (called a negative literal). Formulas are defined in the usual
way. An expression is a term, a tuple of terms, a formula without quantifiers or a list
of formulas without quantifiers. A simple expression is either a term or an atom.
An expression is ground if it does not contain variables.

2.1 Substitution and Unification

A substitution is a finite set θ = {x1/t1, . . . , xk/tk}, where x1, . . . , xk are pairwise
distinct variables, t1, . . . , tk are terms, and ti 6= xi for all 1 ≤ i ≤ k. The set
dom(θ) = {x1, . . . , xk} is called the domain of θ, and range(θ) = {t1, . . . , tk} the
range of θ. The restriction of a substitution θ to a set X of variables is the substi-
tution θ|X = {(x/t) ∈ θ | x ∈ X}. By ε we denote the empty substitution.

Given an expression E and a substitution θ = {x1/t1, . . . , xk/tk}, the instance
of E by θ, denoted by Eθ, is defined to be the expression obtained from E by
simultaneously replacing every occurrence of xi in E by ti, for all 1 ≤ i ≤ k.

Given substitutions θ = {x1/t1, . . . , xk/tk} and δ = {y1/s1, . . . , yh/sh}, the
composition θδ of θ and δ is defined to be the substitution obtained from the
sequence {x1/(t1δ), . . . , xk/(tkδ), y1/s1, . . . , yh/sh} by deleting any binding xi/(tiδ)
with xi = (tiδ) and deleting any binding yj/sj with yj ∈ {x1, . . . , xk}.

A substitution θ is idempotent if θθ = θ. It is known that θ = {x1/t1, . . . , xk/tk}
is idempotent if and only if none of x1, . . . , xk occurs in any t1, . . . , tk. If θ and δ are
substitutions such that θδ = δθ = ε, then we call them renaming substitutions.
A substitution θ is more general than a substitution δ if there exists a substitu-
tion γ such that δ = θγ. According to this definition, θ is more general than
itself.

Let Γ be a set of simple expressions. A substitution θ is called a unifier for Γ if
Γθ is a singleton. If Γθ = {ϕ}, then we say that θ unifies Γ (into ϕ). A unifier θ for
Γ is called a most general unifier (mgu) for Γ if θ is more general than every unifier
of Γ. There is an effective algorithm, called the unification algorithm, for checking
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whether a set Γ of simple expressions is unifiable (i.e., has a unifier) and computing
an idempotent mgu for Γ if Γ is unifiable (see, e.g., [28]).

2.2 Stratified Datalog¬

We recall here the definition of databases in Datalog and (stratified) Datalog¬.

Definition 1. A safe Datalog¬ program clause (w.r.t. the leftmost selection func-
tion) has the form A← B1, . . . , Bk, with k ≥ 0, and satisfies the following conditions:

1. A is an atom and each Bi is a literal, where negation is denoted by ∼,

2. every variable occurring in A also occurs in (B1, . . . , Bk),

3. every variable occurring in a negative literal Bj also occurs in some positive
literal Bi with 1 ≤ i < j.

The atom A is called the head and (B1, . . . , Bk) the body of the program clause.
When k = 0, the body is empty and the clause can be written without ←. If p is
the predicate of A, then the program clause is called a program clause defining p.
Such a program clause is treated as an expression (so we can talk about its in-
stances).

A safe Datalog¬ program (w.r.t. the leftmost selection function) is a finite set of
safe Datalog¬ program clauses. A safe Datalog¬ program without negative literals
in the clauses’ bodies is called a safe Datalog program. From now on, by a Da-
talog¬ (resp. Datalog) program we mean a safe Datalog¬ (resp. Datalog) program.
The second and third conditions in Definition 1 are called the safety condition of
Datalog¬. The second condition itself is also called the safety condition of Datalog.

Given a Datalog¬ program P , a stratification of P is a partition P = P1∪. . .∪Pn

such that, for each 1 ≤ i ≤ n, we have that:7

• if an intensional predicate p occurs in a positive literal in the body of a clause
from Pi, then the clauses defining p must belong to P1 ∪ . . . ∪ Pi,

• if an intensional predicate p occurs in a negative literal in the body of a clause
from Pi, then i > 1 and the clauses defining p must belong to P1 ∪ . . . ∪ Pi−1.

Each Pi is called a stratum of the stratification. A Datalog¬ program is called
a stratified Datalog¬ program if it has a stratification.

An instance of extensional predicates is a mapping I that associates each exten-
sional n-ary predicate p to a finite set I(p) of n-ary tuples of constants. Sometimes,
I is treated as the set {p(t) | t ∈ I(p)} and each p(t) ∈ I is treated as the program
clause p(t)←. The size of I is defined to be the cardinality of the mentioned set.

A Datalog¬ (resp. Datalog) database is a pair (P, I), where P is a Datalog¬

(resp. Datalog) program consisting of clauses defining intensional predicates and I is
an instance of extensional predicates. A stratified Datalog¬ database is a Datalog¬

database (P, I) with P being a stratified Datalog¬ program.

7 All of the sets P1, . . . , Pn are assumed to be non-empty.



28 S. T. Cao, L. A. Nguyen

2.3 The Standard Semantics of Stratified Datalog¬

In this subsection, let (P, I) be a stratified Datalog¬ database. The Herbrand uni-
verse of (P, I), denoted by UP,I , is the set of all constants occurring in (P, I). The
Herbrand base of (P, I), denoted by BP,I , is the set of all ground atoms of the
form p(t1, . . . , tn), where p is a predicate used in (P, I) and each ti belongs to UP,I .
A Herbrand interpretation for (P, I) is a subset of BP,I .

If I is a Herbrand interpretation and p(t) a ground atom, then by I(p(t)) we
denote that p(t) ∈ I, and by I(∼p(t)) we denote that p(t) /∈ I.

Let ground(P ∪ I) be the set of all ground instances of clauses in P ∪ I, and I
a Herbrand interpretation for (P, I). The immediate consequence operator of (P, I),
denoted by TP,I , is defined on I as follows:

TP,I(I) = {A | A← B1, . . . , Bk ∈ ground(P ∪ I) and I(Bi) holds for all 1 ≤ i ≤ k}.

Let TP,I ↑ ω be defined as follows:

TP,I ↑ 0 = I,

TP,I ↑ (n+ 1) = TP,I(TP,I ↑ n) ∪ TP,I ↑ n, for n ∈ N,

TP,I ↑ ω =
ω⋃

n=0

TP,I ↑ n.

Let P1 ∪ . . . ∪ Pn be a stratification of P . We define

M∅,I = I,

MP1,I = TP1,I ↑ ω,
MP1∪P2,I = TP2,MP1,I

↑ ω,
...

MP1∪...∪Pn,I = TPn,MP1∪...∪Pn−1,I
↑ ω.

We call MP,I = MP1∪...∪Pn,I the standard Herbrand model of (P, I).
It can be shown that the standard Herbrand model of (P, I) does not depend

on the chosen stratification of P (see, e.g., [2, Theorem 11]).

Example 1. Consider the stratified Datalog¬ database (P, I) given below, where
P is a modified version of a Datalog¬ program given in [36], path and acyclic are
intensional predicates, edge is an extensional predicate, x, y and z are variables and
a–f are constants. An atom edge(x, y) means that there is an edge from the node
x to the node y. An atom path(x, y) means that there exists a path (consisting of
edges) that connects the node x to the node y. An atom acyclic(x, y) means that
the node x is connected by a path to the node y, but not vice versa.
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• P consists of the following clauses:

path(x, y) ← edge(x, y),

path(x, y) ← path(x, z), edge(z, y),

acyclic(x, y) ← path(x, y), ∼path(y, x).

• I is specified and illustrated as follows: I(edge) = {(a, b), (a, c), (c, d), (d, a)}.?>=<89:;b?>=<89:;a

99ttttttt
//?>=<89:;c

yyttt
tt
tt?>=<89:;d
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The only stratification of P is P1 ∪ P2, where:

P1 : path(x, y)← edge(x, y),

path(x, y)← path(x, z), edge(z, y),

P2 : acyclic(x, y)← path(x, y), ∼path(y, x).

The standard Herbrand model MP,I of (P, I) is constructed as follows:

M∅,I = I,

MP1,I = M∅,I ∪ {path(x, y) | (x, y) ∈ {a, c, d} × {a, b, c, d}},
MP1∪P2,I = MP1,I ∪ {acyclic(a, b), acyclic(c, b), acyclic(d, b)}.

Thus, MP,I = MP1∪P2,I is the standard Herbrand model of (P, I).

We define a query to a stratified Datalog¬ database (P, I) to be a formula of the
form q(x), where q is an intensional predicate and x is a tuple of pairwise distinct
variables (of the same arity as q). A correct answer for a query q(x) to a stratified
Datalog¬ database (P, I) is a tuple t of constants of the same arity as x such that
q(t) ∈MP,I . The data complexity of an algorithm for computing all (correct) answers
for a query q(x) to a stratified Datalog¬ database (P, I) is measured in the size of I.

Remark 1. Note that, if ϕ can be the body of a Datalog¬ program clause, then it
can be treated as a query to a stratified Datalog¬ database (P, I) by adding to P
a new program clause q(x)← ϕ to obtain P ′, where q is a new intensional predicate
and x consists of all the variables occurring in ϕ, and then using the query q(x) to
the stratified Datalog¬ database (P ′, I).
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2.4 SLD-Resolution

SLD-resolution [2, 28] is a calculus for the Horn fragment of first-order logic, which
is more general than Datalog in that function symbols are allowed and program
clauses do not need to satisfy the safety condition. In this subsection, we recall
a formulation of SLD-resolution for Datalog, which is useful for our introduction of
QSQN in the next section.

If E is an expression or a substitution, then by Vars(E) we denote the set of all
variables occurring in E. We say that an expression E is a variant of an expression
E ′ if there exist renaming substitutions θ and γ such that E = E ′θ and E ′ = Eγ.
In a computational process, a fresh variant of ϕ, where ϕ can be a term, a tuple of
terms, an atom or a program clause A ← B1, . . . , Bk, is ϕθ, where θ is a renaming
substitution such that dom(θ) = Vars(ϕ) and range(θ) consists of variables that
were not used earlier in the computation.

A goal (without negation) has the form ← B1, . . . , Bk, where B1, . . . , Bk are
atoms. If k = 0, then the goal is called the empty goal and denoted by �.

A goal G′ is derived from a goal G = ← A1, . . . , Ai, . . . , Ak and a Datalog
program clause ϕ = (A ← B1, . . . , Bh) using an mgu θ and the selected atom Ai

if θ is an mgu for Ai and A, and G′ = ← (A1, . . . , Ai−1, B1, . . . , Bh, Ai+1, . . . , Ak)θ.
In that case, G′ is called a resolvent of G and ϕ. If i = 1, then we say that G′ is
derived from G and ϕ using the leftmost selection function.

In the rest of this subsection, let P be a Datalog program and G a goal.
An SLD-derivation from P ∪{G} consists of a (finite or infinite) sequence G0 =

G, G1, G2, . . . of goals, a sequence ϕ1, ϕ2, . . . of variants of program clauses of P
and a sequence θ1, θ2, . . . of mgu’s such that each Gi+1 is derived from Gi and ϕi+1

using θi+1. Each ϕi is called an input program clause.
When constructing an SLD-derivation, for generality and clarity, it is assumed

that each ϕi does not have any variable that already appears in the derivation up
to Gi−1. The simplest way to guarantee this is to choose each ϕi as a fresh variant
of a program clause from P .

An SLD-refutation of P ∪ {G} is a finite SLD-derivation from P ∪ {G} with
the empty goal as the last goal in the derivation.

A computed answer θ for P ∪{G} is the substitution obtained by restricting the
composition θ1 . . . θn to the variables of G, where θ1, . . . , θn is the sequence of mgu’s
occurring in an SLD-refutation of P ∪ {G}.

3 QUERY-SUBQUERY NETS REVISITED

The notion of query-subquery net and the related evaluation framework QSQN for
evaluating queries to Horn knowledge bases were introduced by us in [11, 9]. They
can be used for evaluating queries to Datalog databases by setting the term-depth
limit to 0. In this section, we present a thorough and more understandable descrip-
tion of QSQN by using a running example and relating QSQN to SLD-resolution
with tabulation.
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3.1 An Example Illustrating SLD-Resolution with Tabulation

Consider the stratum P1 from Example 1 and let I be the extensional instance
specified by I(edge) = {(a, b), (b, c)}. Let P = P1 ∪ I, with I treated as a set
of atoms of edge. Thus, P is the Datalog program consisting of the following
clauses:

(1) path(x, y)← edge(x, y), (3) edge(a, b),
(2) path(x, y)← path(x, z), edge(z, y), (4) edge(b, c).

Consider the goal ← path(x, y). It is easy to see that there are three computed
answers for P ∪ {← path(x, y)}: {x/a, y/b}, {x/b, y/c} and {x/a, y/c}. We first
demonstrate how to use SLD-resolution (with the leftmost selection function) to-
gether with a technique called tabulation to obtain these answers and justify that
there are no more computed answers. The process is summarized in Figure 1 and
explained in detail below. We use one sequence of natural numbers to name clauses,
tuples in relations, and steps in the process (enumerated in the following list). When
a tuple is added to a relation at a step k, it is also numbered k.

(1) path(x, y) edge(x, y) input path ans path
(2) path(x, y) path(x, z), edge(z, y) (5) (x, y) (7) (a, b)
(3) edge(a, b) (9) (x, z2) (8) (b, c)
(4) edge(b, c) (11) (a, c)

 path(x, y)

6:(1)
ww
ww

{{ww
ww

9:(2)
NNN

NN

''NN
NNN

 edge(x, y)

7:(3)
yy
yy

||yyy
y 8:(4)

✏✏

 path(x, z2), edge(z2, y)

10:(7)
rrr

rrr

xxrrr
rrr

12:(8)

✏✏

13:(11)
LLL

LLL

%%LL
LLL

L

⇤
{x/a, y/b}

⇤
{x/b, y/c}  edge(b, y)

11:(4)

✏✏

 edge(c, y)  edge(c, y)

⇤
{x/a, y/c}

Figure 1. An illustration of SLD-resolution with tabulation. The considered Datalog pro-
gram consists of the clauses (1)–(4), and the goal is ← path(x, y). A label of the form
m : (n) of an edge from a node v to a node w in the displayed tree means that: at the
step m the goal at the node v is resolved by using the clause or the answer atom num-
bered n, resulting in the goal (the resolvent) at the node w. Steps of the process are
numbered from 6, as the smaller numbers are reserved for the clauses and the first input
atom. Details are given in Section 3.1.
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(5) As the clauses of P are numbered 1–4, we enumerate this list from 5. To keep
the fact that we have started to deal with the goal ← path(x, y), we store the
tuple (x, y) in the relation named input path. Tuples of this relation represent
so called input atoms of the predicate path.

(6) Resolving the goal← path(x, y) by using a fresh variant path(x1, y1)← edge(x1,
y1) of the clause (1) and the mgu {x1/x, y1/y} results in the goal ← edge(x, y).

(7) Resolving the goal ← edge(x, y) by using the atom edge(a, b) from I and the
mgu {x/a, y/b} results in the empty goal. We obtain the first computed answer
{x/a, y/b}. As the main goal is ← path(x, y), this computed answer can be
represented by path(a, b). To keep this answer, we store the tuple (a, b) in the
relation named ans path. Tuples of this relation represent so called answer atoms
of the predicate path.

(8) Returning to the moment after Step 6 and resolving the goal← edge(x, y) by us-
ing the atom edge(b, c) from I and the mgu {x/b, y/c} results in the empty goal.
We obtain the second computed answer {x/b, y/c}. Analogously as explained
above, we add the tuple (b, c) to the relation ans path.

(9) Returning to the moment after Step 5 and resolving the goal ← path(x, y) by
using a fresh variant path(x2, y2)← path(x2, z2), edge(z2, y2) of the clause (2) and
the mgu {x2/x, y2/y} results in the goal ← path(x, z2), edge(z2, y). To resolve
this goal using path(x, z2) as the selected atom (i.e., using the leftmost selection
function), we can use:

• either a program clause defining path from P ,

• or an answer atom of path that has been tabled earlier in ans path.

Resolving the subgoal ← path(x, z2) by using a program clause defining path
from P can be done in a similar way as we have been doing for the main goal
← path(x, y) of the process. That is, one can continue by adding the tuple
(x, z2) to the relation input path and so on. However, we first check whether
this task can be ignored. Since (x, z2) is an instance of (a fresh variant of) the
existing tuple (x, y) in input path, which stands for the goal ← path(x, y) that
has already been dealt with and is more general than the goal ← path(x, z2),
storing (x, z2) in input path and processing the goal ← path(x, z2) in the usual
way are unnecessary and therefore skipped.

Resolving the subgoal ← path(x, z2) by using an answer atom of path repre-
sented by a tuple in the relation ans path is reported below. We have here
a backtracking point, as there are a few of such tuples.

(10) Resolving the goal ← path(x, z2), edge(z2, y) by selecting the atom path(x, z2)
and using the tuple (a, b) in the relation ans path and the mgu {x/a, z2/b} results
in the goal ← edge(b, y).

(11) Resolving the goal ← edge(b, y) using the atom edge(b, c) from I and the mgu
{y/c} results in the empty goal. We obtain the third computed answer {x/a,
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y/c} for the main goal ← path(x, y), which is the restriction of the composition
{x2/x, y2/y}{x/a, z2/b}{y/c} to the set {x, y}. We store this answer by adding
the tuple (a, c) to the relation ans path.

(12) Returning to the backtracking point mentioned at Step 9 and resolving the
goal ← path(x, z2), edge(z2, y) by selecting the atom path(x, z2) and using the
tuple (b, c) in the relation ans path and the mgu {x/b, z2/c} results in the goal
← edge(c, y). This goal cannot be resolved by using any atom of edge from I.
So, we finish this search branch (derivation).

(13) Returning to the backtracking point mentioned at Step 9 and resolving the
goal ← path(x, z2), edge(z2, y) by selecting the atom path(x, z2) and using the
tuple (a, c) in the relation ans path and the mgu {x/a, z2/c} results in the goal
← edge(c, y). Once again, this goal cannot be resolved by using any atom of
edge from I. As there are no active backtracking points, we finish the process.
The computed answers are represented by the tuples in the relation ans path.8

Consider the return to the backtracking point mentioned at Step 9 and the
continuation at Step 13. It uses the tuple (a, c), which was added to the relation
ans path at Step 11, i.e., after the creation of the backtracking point. The con-
sidered example is simple and after Step 13 we can finish the process. But, what
would happen if the used Datalog program was more complicated and the search
tree (as displayed in Figure 1) had the third branch departing from the root with
more computed answers? How could they be supplied for resolving the subgoal
← path(x, z2) in the second branch departing from the root? SLD-resolution sys-
tems with tabulation like OLDT use the “suspension-resumption mechanism” and
the “stack-wise representation” to deal with this problem [42]. Both of these tech-
niques are tuple-oriented (tuple-at-a-time) and not suitable for processing queries to
deductive databases, as the task should be done set-at-a-time in order to deal with
big data and reduce the number of accesses to the secondary storage.

3.2 Query-Subquery Nets as Data Structures for Processing Queries

Let us discuss a design of data structures for processing queries by simulating SLD-
resolution with tabulation in the way so that the processing can be done set-at-a-
time and every strategy for searching for answers (called a control strategy) can be
applied. That leads to the notion of query-subquery net.

3.2.1 An Illustrative Example

Before defining query-subquery nets formally, we discuss the data structures needed
for processing queries to the Datalog database (P1, I) considered in Section 3.1.

8 In the general case, only answer atoms that are instances of the main input atom are
taken. In this concrete case, all the answer atoms path(a, b), path(b, c) and path(a, c) are
instances of the main input atom path(x, y).
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In general, we want to use a net for the processing, called a query-subquery net
(or QSQ-net for short). It is a directed graph with nodes being appropriate data
structures.

As discussed in Section 3.1, the approach uses the relations input path and
ans path, so let the net have two nodes named input path and ans path. Each
of these nodes has an attribute named tuples, which represents the corresponding
relation. Thus, by writing tuples(input path) (resp. tuples(ans path)) we have in
mind the relation input path (resp. ans path) mentioned in Section 3.1.

Tuples in the node input path stand for goal atoms of the predicate path. That
is, a tuple t ∈ tuples(input path) stands for the goal ← path(t). Assume that, when
a tuple is added to tuples(input path), its variables have already been renamed so
that they do not occur in the Datalog program P1. In this way, when resolve a goal
using a program clause of P1, we do not have to rename variables of the program
clause.

How can a tuple t ∈ tuples(input path) be processed? We can resolve the goal
← path(t) by using the program clause (1) or (2).

• Consider the case when the goal ← path(t) is resolved by using the program
clause (1) (i.e., path(x, y)← edge(x, y)). To do the task, let the node input path
have a connection to a node named pre filter1, where the subscript denotes the
program clause’s number. As attributes of pre filter 1, we have atom(pre filter 1)
= path(x, y), which is the head of the program clause, and post vars(pre filter 1)
= {x, y}, which is the set of variables occurring in the body of the program
clause. Then, the task can be done by transferring the tuple t from the node
input path to the node pre filter 1. At pre filter 1, path(t) is unified with
atom(pre filter 1) (i.e., path(x, y)) by using an mgu γ, and the pair
(tγ, γ|post vars(pre filter1)) is transfered to the unique successor of pre filter 1, which is
named filter 1,1. The tuple tγ in that pair is needed for further computation. In
general, such tuples will be updated on-the-fly by taking into account subsequent
mgu’s in the derivation and at the end will represent answers for the goal related
to the tuple taken from input path. Similarly, the substitution γ|post vars(pre filter1)

is also needed for further computation. We restrict γ to post vars(pre filter 1)
because the other bindings in γ are redundant for further computation. We call
the pair (tγ, γ|post vars(pre filter1)) a subquery.

After resolving the goal ← path(t) using the program clause (1) (i.e., path(x, y)
← edge(x, y)) and the mgu γ, the resulting resolvent is ← edge(x, y)γ. So, the
node filter 1,1 is related to processing this goal. In general, the subscript (i, j) of
a node filteri,j states that the node is related with the atom numbered j in the
body of the program clause numbered i. As attributes of filter 1,1, at least we
need atom(filter 1,1) = edge(x, y). For convenience, we also use the attributes
pred(filter 1,1) = edge (the predicate of atom(filter 1,1)) and kind(filter 1,1) =
extensional (the kind of the predicate edge). For the general case of filter i,j, we
also need the attribute pre vars(filter i,j) (resp. post vars(filter i,j)) for keeping
variables occurring in the atoms numbered from j (resp. j + 1) in the body of
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the program clause numbered i. For the currently considered example, we have
pre vars(filter 1,1) = {x, y} and post vars(filter 1,1) = ∅.
What should be done with the subquery (tγ, γ|post vars(pre filter1)) transferred to
filter 1,1 from pre filter 1? We can either process it immediately or store it in
filter 1,1 in order to accumulate more and more subqueries at the node filter 1,1

before processing them set-at-a-time. The Boolean option for this is called
the memorizing type of filter 1,1 and denoted by T (filter 1,1). In the case when
T (filter 1,1) = true, if the subquery (tγ, γ|post vars(pre filter1)) has not yet been con-
sidered for the node filter 1,1, we add it to the relations subqueries(filter 1,1)
and unprocessed subqueries(filter 1,1), which are additional attributes of
filter 1,1. A subquery is said to have already been considered for filter 1,1 if it is
less general than a subquery from subqueries(filter 1,1) (see Definition 5). When
a subquery from unprocessed subqueries(filter 1,1) is processed, it is deleted from
this relation.

For abbreviation, let (t
′
, δ) denote (tγ, γ|post vars(pre filter1)). How can the subquery

(t
′
, δ) be processed at the node filter 1,1? That is, how can the earlier mentioned

goal ← edge(x, y)γ be processed at filter 1,1? We unify atom(filter 1,1)δ (i.e.,
edge(x, y)γ) with each atom edge(s) ∈ I using an mgu γ′ and transfer the
tuple t

′
γ′ to the unique successor of filter 1,1, which is named post filter 1. In

general, each node filter i,j with kind(filter i,j) = extensional has exactly one
successor, which is either filter i,j+1 (if it exists) or post filteri. For the currently
considered example, we do not have a node named filter 1,2 because the program
clause (1) has only one atom in its body.

What should be done with the tuple t
′
γ′ transferred to post filter 1 from filter 1,1?

We have that γγ′|Vars(t)
is a computed answer for the goal ← path(t). Thus, the

tuple t
′
γ′ = tγγ′ specifies this computed answer. So, let the node post filter 1

have a connection to the node ans path, then all we need to do is to transfer the
tuple t

′
γ′ through this connection to add it to the relation tuples(ans path).

Summing up, to process a tuple from input path by using the program clause (1)
(i.e., path(x, y)← edge(x, y)), the designed QSQ-net uses the following path of
nodes with appropriate attributes:

input path −→ pre filter 1 −→ filter 1,1 −→ post filter 1 −→ ans path.

• Consider the case when the goal ← path(t) is resolved by using the program
clause (2) (i.e., path(x, y) ← path(x, z), edge(z, y)). Analogously as for the pre-
vious case, the designed QSQ-net uses the following path of nodes:

input path −→ pre filter 2 −→ filter 2,1 −→ filter 2,2 −→ post filter 2 −→ ans path

where:

– atom(pre filter 2) = path(x, y),
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– atom(filter 2,1) = path(x, z) and kind(filter 2,1) = intensional,

– atom(filter 2,2) = edge(z, y) and kind(filter 2,2) = extensional.

Consider a subquery (t
′
, δ) in the node filter 2,1. It stands for the goal ←

path(x, z)δ, edge(z, y)δ. Let us pay attention to the subgoal ← path(x, z)δ. As
demonstrated for SLD-resolution with tabulation, to process this subgoal we
should consider adding an appropriate tuple to input path. In addition, to re-
solve the subgoal ← path(x, z)δ we can use not only the program clauses of P1

but also the answer atoms of path represented by the tuples stored in ans path.

To deal with the first matter, let the node filter 2,1 have a connection to the node
input path, then we can transfer the tuple (x, z)δ through that connection. If
this tuple has not yet been considered for input path, we add a fresh variant
of it to tuples(input path). A tuple is said to have already been considered for
input path if its fresh variant is an instance of a tuple from tuples(input path).

Like the case of filter 1,1, the attribute unprocessed subqueries(filter 2,1) of filter 2,1

keeps subqueries that have not been processed at filter 2,1 to produce data to
transfer to filter 2,2. The node filter 2,1 has, however, also a connection to the node
input path. So, we also need an attribute unprocessed subqueries2(filter 2,1)
to keep subqueries that have not been processed at filter 2,1 to produce data to
transfer to input path.

At the node filter 2,1, to resolve the subgoal ← path(x, z)δ by using the answer
atoms of path represented by the tuples stored in ans path, we need a con-
nection from the node ans path to the node filter 2,1. New tuples added to
ans path are transferred through that connection and accumulated in the relation
unprocessed tuples(filter 2,1) before being processed (at some later steps).
This relation is an additional attribute of filter 2,1.

Summing up, the QSQ-net designed for the considered Datalog program has the
following topological structure:

pre filter1
// filter1,1

// post filter1

,,ZZZZZZ
ZZZZZZZ

ZZZZZZZ

input path

44jjjjjj

**TTT
TTT

ans path

uu
pre filter2

// filter2,1
//

oo

filter2,2
// post filter2

55jjjjjj

It is illustrated in Figure 2 together with attributes of the nodes. The node
input path has an attribute unprocessed(E) for each outgoing edge E. A tuple
t ∈ unprocessed(E) at the node input path means that the tuple t has not been
transferred from this node through the edge E (i.e., it has not been processed at the
node input path for the edge E). The case of the node ans path is similar. Also note
that we do not use the attribute T (filter 2,1) because kind(filter 2,1) = intensional.
In other words, subqueries transferred to a node filter i,j with kind(filter i,j) =
intensional are always memorized.
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Figure 2. An example of a QSQ-net, where path is an intensional predicate, edge is an
extensional predicate, and x, y, z are variables
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3.2.2 A Formal Definition of Query-Subquery Nets

We now recall a formal definition of QSQ-nets [11]. From now to the end of Section 3,
let P be a Datalog program and ϕ1, . . . , ϕm all the program clauses of P , with
ϕi = (Ai ← Bi,1, . . . , Bi,ni

) for 1 ≤ i ≤ m, where ni ≥ 0.

Definition 2. A query-subquery net structure (QSQN structure for short) of P is
a tuple (V,E, T ) such that:

• V is a set of nodes that consists of:

– input p and ans p, for each intensional predicate p of P ,

– pre filter i, filter i,1, . . . , filter i,ni
, post filter i, for each 1 ≤ i ≤ m.

• E is a set of edges that consists of:

– (filter i,1, filter i,2), . . . , (filter i,ni−1, filter i,ni
), for each 1 ≤ i ≤ m,

– (pre filter i, filter i,1) and (filter i,ni
, post filter i), for each 1 ≤ i ≤ m with

ni ≥ 1,

– (pre filter i, post filter i), for each 1 ≤ i ≤ m with ni = 0,

– (input p, pre filter i) and (post filter i, ans p), for each 1 ≤ i ≤ m, where p is
the predicate of Ai,

– (filter i,j, input p) and (ans p, filter i,j), for each intensional predicate p and
each 1 ≤ i ≤ m and 1 ≤ j ≤ ni such that Bi,j is a literal of p.9

• T is a function, called the memorizing type of the QSQN structure, mapping
each node filter i,j ∈ V such that the predicate of Bi,j is extensional to true or
false.10

In a QSQN structure (V,E, T ) of P , if (v, w) ∈ E then we call w a successor of
v, and v a predecessor of w. Note that V and E are uniquely specified by P . We
call the pair (V,E) the QSQN topological structure of P .

By a subquery we mean a pair of the form (t, δ), where t is a tuple of terms and δ
an idempotent substitution such that dom(δ) ∩ Vars(t) = ∅.

Definition 3. A query-subquery net (QSQ-net for short) of P is a tuple (V,E, T, C)
such that (V,E, T ) is a QSQN structure of P , C is a mapping that associates each
node v ∈ V with a structure called the contents of v, and the following conditions
are satisfied:

• C(v), where v = input p or v = ans p, consists of:

– tuples(v) : a set of tuples of terms with the same arity as p,

9 We use the term “literal” here instead of “atom” or “positive literal” so that the
definition can be extended for stratified Datalog¬ easily.
10 Recall that the aim of T is that if T (filter i,j) = false then subqueries for filter i,j are

always processed immediately without being accumulated at filter i,j .
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– unprocessed(v, w) for each (v, w) ∈ E: a subset of tuples(v).

• C(v), where v = pre filter i, consists of:

– atom(v) = Ai and post vars(v) = Vars((Bi,1, . . . , Bi,ni
)).

• C(v), where v = post filter i, is empty.

• C(v), where v = filter i,j and p is the predicate of Bi,j, consists of:

– kind(v) = extensional if p is extensional, and kind(v) = intensional other-
wise,

– pred(v) = p and atom(v) = Bi,j,

– pre vars(v) = Vars((Bi,j, . . . , Bi,ni
)) and post vars(v) = Vars((Bi,j+1, . . . ,

Bi,ni
)),

– subqueries(v): a set of subqueries (t, δ) such that t has the same arity as the
predicate of Ai,

– unprocessed subqueries(v) ⊆ subqueries(v),

– in the case when p is intensional:

∗ unprocessed subqueries2 (v) ⊆ subqueries(v),
∗ unprocessed tuples(v) : a set of tuples of terms with the same arity as p.

• if v = filter i,j, kind(v) = extensional and T (v) = false, then subqueries(v) = ∅
(and both subqueries(v) and unprocessed subqueries(v) can be ignored).

We use the term QSQ-net as a noun and QSQN mostly as an adjective. Both
of them are abbreviations of “query-subquery net”. When standing alone, QSQN
refers to the related evaluation framework, which is specified and discussed in the
next subsection.

An empty QSQ-net of P is a QSQ-net of P such that all the sets of the form
tuples(v), unprocessed(v, w), subqueries(v), unprocessed subqueries(v),
unprocessed subqueries2 (v) or unprocessed tuples(v) of the net are empty.

In a QSQ-net, if v = pre filter i or v = post filter i or (v = filter i,j and kind(v) =
extensional), then v has exactly one successor, which we denote by succ(v).

If v is filter i,j with kind(v) = intensional and pred(v) = p, then v has exactly
two successors. In that case, let succ(v) be filter i,j+1 if ni > j, and post filter i oth-
erwise, and let succ2(v) = input p. The set unprocessed subqueries(v) is used for the
edge (v, succ(v)), while unprocessed subqueries2 (v) is used for the edge (v, succ2(v)).

For convenience, we denote pre vars(post filter i) = ∅. Thus, if v = succ(u),
where u is pre filter i of filter i,j, then post vars(u) = pre vars(v).

3.3 The QSQN Framework for Evaluating Queries

Based on QSQ-nets, in [11, 9] we proposed the QSQN framework for evaluating
queries to Horn knowledge bases. We recall here its version restricted to the case
without function symbols for evaluating queries to Datalog databases.
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The QSQN method for evaluating a query q(x) to a Datalog database (P, I) can
be described informally as follows:

1. create an empty QSQ-net (V,E, T, C) of P ;

2. let x′ be a fresh variant of x;

3. add x′ to tuples(input q);

4. for each (input q, v) ∈ E, add x′ to unprocessed(input q, v);

5. while there are edges (u, v) ∈ E such that there are data at u to be processed
for the edge (u, v), do:

(a) select such an edge (any strategy can be used);

(b) process the data at u to produce data to transfer through the edge (u, v);

6. return tuples(ans q).

A strategy for selecting an edge at the step 5a is called a control strategy. As
every strategy can be used, the QSQN method is really a framework for evaluating
queries.

Definition 4 (active-edge). The data at a node u to be processed for an edge
(u, v) ∈ E are:

• unprocessed(u, v) if u is input p or ans p (for some p),

• unprocessed subqueries(u) if u is filter i,j, kind(u) = extensional and T (u) =
true,

• unprocessed subqueries(u) ∪ unprocessed tuples(u) if u is filter i,j, kind(u) =
intensional and v = succ(u),

• unprocessed subqueries2 (u) if u is filter i,j, kind(u) = intensional and
v = succ2(u),

• the empty set otherwise.

Let active-edge(u, v) be the Boolean function stating that the set representing data
at the node u to be processed for the edge (u, v) is not empty. If active-edge(u, v)
holds, then we say that the edge (u, v) is active.

We will specify what is “processing the data at a node u to produce data to
transfer through an edge (u, v)”. We call that processing “firing the edge (u, v)”
and let fire(u, v) be a procedure for doing it. Thus, the main loop of the QSQN
method (i.e., the step 5) can be rewritten to: “while there exists (u, v) ∈ E such
that active-edge(u, v) holds, select such a pair (u, v) and fire(u, v)”.

The types of data transferred through edges of a QSQ-net are as follows:

• data transferred through an edge of the form (input p, v), (v, input p), (v, ans p)
or (ans p, v) are a set of tuples (of terms) of the same arity as p,
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• data transferred through an edge (u, v) with v = filter i,j and u not being of the
form ans p are a set of subqueries that can be added to subqueries(v),

• data transferred through an edge (v, post filter i) are a set of subqueries (t, ε)
such that t is a tuple (of constants) of the same arity as the predicate of Ai.

Before specifying the transfer of data through edges, we first give some auxiliary
definitions.

Definition 5. If (t, δ) and (t
′
, δ′) are subqueries that can be transferred through

an edge to v, then we say that (t, δ) is more general than (t
′
, δ′) w.r.t. v, and (t

′
, δ′)

is less general than (t, δ) w.r.t. v, if there exists a substitution γ such that tγ = t
′

and (δγ)|pre vars(v) = δ′.

Definition 6 (add-subquery). We define add-subquery(t, δ,Γ, v) as a procedure
that adds the subquery (t, δ) to the set Γ but keeps in Γ only the most general
subqueries w.r.t. the node v. It can be implemented as follows:

if no subquery in Γ is more general than (t, δ) w.r.t. v then:

• delete from Γ all subqueries less general than (t, δ) w.r.t. v;

• add (t, δ) to Γ.

Definition 7 (add-tuple). We define add-tuple(t,Γ) as a procedure that adds
a fresh variant of the tuple t to the set Γ but keeps in Γ only the most general
tuples. It can be implemented as follows:

• let t
′

be a fresh variant of t;

• if t
′

is not an instance of any tuple from Γ then:

– delete from Γ all tuples that are instances of t
′
;

– add t
′

to Γ.

Definition 8 (transfer). We define transfer(D, u, v) as the following procedure
for transferring the data D through the edge (u, v), using some subroutines specified
later:

1. if D = ∅ then return;

2. if v is post filter i then transfer({t | (t, ε) ∈ D}, v, succ(v));

3. else if u is ans p then unprocessed tuples(v) := unprocessed tuples(v) ∪D;

4. else if v is ans p then transfer1(D, u, v);

5. else if v is input p then transfer2(D, u, v);

6. else if u is input p then transfer3(D, u, v);

7. else if v is filter i,j, kind(v) = extensional and T (v) = false then
transfer4(D, u, v);

8. else transfer5(D, u, v).
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Observe that the case specified by the last “else” in the above definition (i.e., the
step 8) is characterized by the conjunction that v is filter i,j, (kind(v) = extensional
and T (v) = true or kind(v) = intensional) and u is not of the form ans p. The
procedure transfer5(D, u, v) is defined only for this case, with D being a set of
subqueries. Roughly speaking, it just accumulates the subqueries from D at v but
ignores the ones that have already been considered for v and keeps only the most
general ones.

Definition 9 (transfer5). The procedure transfer5(D, u, v) for the aforemen-
tioned case is (can be) implemented as follows:

for each (t, δ) ∈ D do:

if no subquery in subqueries(v) is more general than (t, δ) w.r.t. v
then

• delete from subqueries(v) and unprocessed subqueries(v) all
subqueries less general than (t, δ) w.r.t. v;

• add (t, δ) to both subqueries(v) and unprocessed subqueries(v);
• if kind(v) = intensional then:

– delete from unprocessed subqueries2 (v) all subqueries less
general than (t, δ) w.r.t. v;

– add (t, δ) to unprocessed subqueries2 (v).

Definition 10 (transfer1). The procedure transfer1(D, u, v) for the case when
v = ans p (and u = post filter i for some i and D is a set of tuples of constants) is
(can be) implemented as follows:

for each t ∈ D − tuples(v) do:

• add t to tuples(v);

• for each (v, w) ∈ E, add t to unprocessed(v, w).

The procedure transfer2(D, u, v) is defined only for the case when v = input p,
with u = filter i,j (for some i and j) and D being a set of tuples of terms. Roughly
speaking, it just accumulates fresh variants of the tuples from D at v but ignores
the ones that have already been considered for v and keeps only the most general
ones. Recall that we apply variable renaming for input atoms but not program
clauses.

Definition 11 (transfer2). The procedure transfer2(D, u, v) for the case v =
input p is (can be) implemented as follows:

for each t ∈ D do:

• let t
′

be a fresh variant of t;

• if t
′

is not an instance of any tuple from tuples(v) then

– delete from tuples(v) all tuples that are instances of t
′
;

– add t
′

to tuples(v);
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– for each (v, w) ∈ E do

∗ delete from unprocessed(v, w) all tuples that are instances of t
′
;

∗ add t
′

to unprocessed(v, w).

The procedure transfer3(D, u, v) is defined only for the case when u is input p,
with v = pre filter i for some i. It does not accumulate D at v but processes it imme-
diately to create data, which are then transferred to succ(v). The reader can recall
the example on page 34 of using pre filter 1 to process a tuple t ∈ tuples(input path).
In general, the node pre filter i is used for resolving an input atom (represented by a
tuple from D) by unifying it with the head of the program clause numbered i.

Definition 12 (transfer3). The procedure transfer3(D, u, v) for the case u is
input p is (can be) implemented as follows:

• Γ := ∅;
• for each t ∈ D do

if p(t) and atom(v) are unifiable by an mgu γ then

add-subquery(tγ, γ|post vars(v),Γ, succ(v));

• transfer(Γ, v, succ(v)).

The procedure transfer4(D, u, v) is defined only for the case when u is not of the
form ans p, v is filter i,j, kind(v) = extensional and T (v) = false. According to the
intention of the memorizing type T , it does not accumulate the subqueries from D
at v but processes them immediately to create data, which are then transferred to
succ(v). The reader can recall the example on page 35 of processing a subquery
(t
′
, δ) at the node filter 1,1.

Definition 13 (transfer4). The procedure transfer4(D, u, v) for the aforemen-
tioned case is (can be) implemented as follows:

• let p = pred(v) and set Γ := ∅;
• for each (t, δ) ∈ D and each t

′ ∈ I(p) do

if atom(v)δ and p(t
′
) are unifiable by an mgu γ then

add-subquery(tγ, (δγ)|post vars(v),Γ, succ(v));

• transfer(Γ, v, succ(v)).

We have fully specified the procedure transfer(D, u, v) for transferring the data
D through the edge (u, v). We now specify the procedure fire(u, v) for “firing the
edge (u, v)”, i.e., for processing the data at u to produce data to transfer through
the edge (u, v). Recall that this procedure is called only for active edges (u, v).

Definition 14 (fire). The procedure fire(u, v) is implemented as follows, using
some subroutines specified later:
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• if u is input p or ans p then

– transfer(unprocessed(u, v), u, v);

– unprocessed(u, v) := ∅;

• else if v is input p then fire1(u, v);

• else if u is filter i,j and kind(u) = extensional then fire2(u, v);

• else if u is filter i,j and kind(u) = intensional then fire3(u, v).

The procedure fire1(u, v) is defined only for the case when v is input p, with u
being filter i,j (for some i and j) and kind(u) = intensional. For each subquery (t, δ)
at u that has not yet been processed for the edge (u, v), the procedure transfers
a fresh variant of t

′
, where p(t

′
) = atom(u)δ, through the edge (u, v) in order to add

it to tuples(input p) if it has not been considered for v. The reader can recall the
example on page 36 of dealing with the edge (filter 2,1, input path).

Definition 15 (fire1). The procedure fire1(u, v) for the case v is input p is (can
be) implemented as follows:

• let p = pred(u) and set Γ := ∅;
• for each (t, δ) ∈ unprocessed subqueries2 (u) do

– let p(t
′
) = atom(u)δ;

– add-tuple(t
′
,Γ);

• unprocessed subqueries2 (u) := ∅;
• transfer(Γ, u, v).

The procedure fire2(u, v) is defined only for the case when u is filter i,j and
kind(u) = extensional. In this case, as the edge (u, v) is active, we must have that
T (u) = true. Before specifying this procedure, recall the procedure
transfer4(D, x, u

′) defined in Definition 13 for the case when u′ is filter i,j = succ(x),
kind(u′) = extensional and T (u′) = false. This latter procedure processes the data
D immediately at u′ to create data, which are then transferred to succ(u′). The pro-
cedure fire2(u, v) processes unprocessed subqueries(u, v) at u in a similar way and
then empties unprocessed subqueries(u, v). The reader can also recall the example
on page 35 of processing a subquery at the node filter 1,1.

Definition 16 (fire2). The procedure fire2(u, v) for the aforementioned case is
(can be) implemented as follows:

• let p = pred(u) and set Γ := ∅;
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• for each (t, δ) ∈ unprocessed subqueries(u) and each t
′ ∈ I(p) do

if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

add-subquery(tγ, (δγ)|post vars(u),Γ, v);

• unprocessed subqueries(u) := ∅;
• transfer(Γ, u, v).

The procedure fire3(u, v) is defined only for the case when u is filter i,j, kind =
intensional and v = succ(u). Let p = pred(u). For each subquery (t, δ) at u and
each tuple t

′ ∈ tuples(ans p), if they (as a pair) have not been processed at u, then
the procedure processes them in a similar way as the procedure fire2(u, v) does for
a subquery (t, δ) at u and a tuple t

′
from the extensional relation of the predicate

of atom(u). Note, however, that for fire3(u, v) we have two subcases: either the
subquery (t, δ) has not been processed at u for the tuple t

′
, or the tuple t

′
has not

been processed at u for the subquery (t, δ).

Definition 17 (fire3). The procedure fire3(u, v) for the aforementioned case is
(can be) implemented as follows:

• let p = pred(u) and set Γ := ∅;
• for each (t, δ) ∈ unprocessed subqueries(u) and each t

′ ∈ tuples(ans p) do

if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

add-subquery(tγ, (δγ)|post vars(u),Γ, v);

• unprocessed subqueries(u) := ∅;
• for each (t, δ) ∈ subqueries(u) and each t

′ ∈ unprocessed tuples(u) do

if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

add-subquery(tγ, (δγ)|post vars(u),Γ, v);

• unprocessed tuples(u) := ∅;
• transfer(Γ, u, v).

We have fully specified the QSQN method for evaluating queries to Datalog
databases. An example illustrating the QSQN method can be found in [9]. Note
that, in this method, processing subqueries has been designed so that:

• every subquery that is subsumed by another one is ignored,

• for input relations, every tuple that is subsumed by another one is ignored,

• the processing is divided into smaller steps which can be delayed at each node
to maximize adjustability and allow various control strategies,

• the processing is done set-at-a-time (e.g., for all the unprocessed subqueries or
tuples accumulated in a given node).

In [9, 32] we have proved that the QSQN method for evaluating queries to
Datalog databases is sound, complete and has a PTIME data complexity.
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4 QUERY-SUBQUERY NETS WITH STRATIFIED NEGATION

In this section, we present our framework called QSQN-STR for evaluating queries to
stratified Datalog¬ databases. It is based on query-subquery nets that are extended
to deal with stratified negation.

In what follows, let P be a stratified Datalog¬ program and ϕ1, . . . , ϕm all the
clauses of P , with ϕi = (Ai ← Bi,1, . . . , Bi,ni

) for 1 ≤ i ≤ m, where ni ≥ 0.

Definition 18. A query-subquery net structure with stratified negation (QSQN-STR
structure for short) of P , is a tuple (V,E, T ) defined as in the case of QSQN structure
(see Definition 2) with the following modification:

for each intensional predicate p and each 1 ≤ i ≤ m and 1 ≤ j ≤ ni such that
Bi,j is a literal of p, the pair (ans p,filter i,j) is an edge (i.e., belongs to E) iff
Bi,j is a positive literal.

The pair (V,E) is called the QSQN-STR topological structure of P .

Figure 3 illustrates the QSQN-STR topological structure of the stratified Data-
log¬ program given in Example 1.

path(x, y) edge(x, y)
path(x, y) path(x, z), edge(z, y)

acyclic(x, y) path(x, y), ⇠path(y, x).

pre filter1
// filter1,1

// post filter1

++WWWW
WWWWW

WWWWW
WWWWW

WW

input path

66nnnnnnnnnn

((PP
PPP

PPP
PP

ans path

ww

ss

pre filter2
// filter2,1

//

pp

filter2,2
// post filter2

77nnnnnnnnnn

input acyclic // pre filter3
// filter3,1

//

WW

filter3,2
//

__

post filter3
// ans acyclic

Figure 3. The QSQN-STR topological structure of the program given in Example 1

Definition 19. A query-subquery net with stratified negation (QSQ-STR-net for
short)11 of P , is a tuple (V,E, T, C) such that (V,E, T ) is a QSQN-STR structure
of P , and C is a mapping that associates each node v ∈ V with a structure called

11 We use the term QSQ-STR-net as a noun, and QSQN-STR mostly as an adjective.
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the contents of v, which differs from the one for QSQ-net (see Definition 3) in the
following:

If v = filter i,j and p is the predicate of Bi,j , then:

• C(v) also contains neg(v), where neg(v) = true if Bi,j is a negative literal,
and neg(v) = false otherwise,

• atom(v) is redefined as follows: atom(v) = Bi,j if Bi,j is a positive literal,
and atom(v) = B′ if Bi,j = ∼B′,

• in the case when p is intensional and neg(v) = true: unprocessed tuples(v)
is empty and can thus be ignored.

The notion of being empty is defined for QSQ-STR-net similarly as for QSQ-net.

The addition of the attribute neg(v) and the modification of the attribute
atom(v) in the above definition are natural and do not require explanation. The
below remark justifies the third difference stated in the above definition and the one
in Definition 18.

From now on, by a goal we mean an expression of the form← B1, . . . , Bk, where
each Bi is a (positive or negative) literal.

Remark 2. Consider the QSQ-STR-net of the Datalog program P given in Exam-
ple 1, whose structure is illustrated in Figure 3. We have atom(filter 3,2) = path(y, x)
and neg(filter 3,2) = true. Since P is safe, any (t, δ) ∈ subqueries(filter 3,2) has the
properties that t is ground and δ has the form {x/c1, y/c2} for some constants c1
and c2. The subquery (t, δ) corresponds to the goal ← ∼ atom(filter 3,2)δ, which is
←∼path(c2, c1). To resolve it, using the “negation as failure” approach, we deal with
the goal← path(c2, c1). As this goal is ground, the answer can be either ε or failure.
As usual, we transfer the tuple (c2, c1) through the edge (filter 3,2, input path) and add
it to tuples(input path) if it is not an instance of another one in tuples(input path),
and then proceed to check whether the tuple will be added to tuples(ans path). De-
spite that check, we do not need to transfer any tuple from ans path through the
edge (ans path, filter 3,2) to add to unprocessed tuples(filter 3,2). That is why we do
not need the edge (ans path, filter 3,2) and the set unprocessed tuples(filter 3,2) will
always be empty.

Based on QSQ-STR-nets we now specify our QSQN-STR method for evaluating
queries to stratified Datalog¬ databases. We will use some subroutines defined earlier
for the QSQN method, including active-edge(u, v), add-subquery(t, δ,Γ, v) and
add-tuple(t,Γ).

For transferring data D through an edge (u, v) the QSQN-STR method uses
a procedure named transfer′(D, u, v), which differs from transfer(D, u, v) only
in processing the case when v is filter i,j, kind(v) = extensional, T (v) = false
and neg(v) = true. In this case, a subquery (t, δ) ∈ D corresponds to the goal
← ∼ atom(v)δ, Bi,j+1δ, . . . , Bi,ni

δ. If atom(v)δ does not belong to the instance of
the extensional predicate p = pred(v), then the subquery is transferred further
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to succ(v) after restricting δ to post vars(v). The task is done by the procedure
transfer′4b(D, u, v) specified below.

Definition 20 (transfer′4b). The procedure transfer′4b(D, u, v) for the afore-
mentioned case is (can be) implemented as follows:

• let p = pred(v) and set Γ := ∅;
• for each (t, δ) ∈ D do

if atom(v)δ /∈ {p(t′) | t′ ∈ I(p)} then

add-subquery(t, δ|post vars(u),Γ, succ(v));

• transfer′(Γ, v, succ(v)).

Recall that the procedures transfer1(D, u, v), transfer2(D, u, v) and
transfer5(D, u, v) do not call the procedure transfer, but transfer3(D, u, v) and
transfer4(D, u, v) do.

Definition 21 (transfer′, cf. Definition 8). Let transfer′3(D, u, v) and
transfer′4(D, u, v) be the procedures obtained from transfer3(D, u, v) and
transfer4(D, u, v), respectively, by replacing the call transfer(Γ, v, succ(v)) with
transfer′(Γ, v, succ(v)). Then, the procedure transfer′(D, u, v) is (can be) imple-
mented as follows:

1. if D = ∅ then return;

2. if v is post filter i then transfer′({t | (t, ε) ∈ D}, v, succ(v));

3. else if u is ans p then unprocessed tuples(v) := unprocessed tuples(v) ∪D;

4. else if v is ans p then transfer1(D, u, v);

5. else if v is input p then transfer2(D, u, v);

6. else if u is input p then transfer′3(D, u, v);

7. else if v is filter i,j, kind(v) = extensional and T (v) = false then

(a) if neg(v) = false then transfer′4(D, u, v);

(b) else transfer′4b(D, u, v);

8. else transfer5(D, u, v).

Assume that an edge (u, v) is active (i.e., active-edge(u, v) holds) and is se-
lected by an admissible control strategy, which will be specified later. Then, the
QSQN-STR method uses a procedure named fire′(u, v) instead of fire(u, v) for
processing the data at u to produce data to transfer through the edge (u, v). With-
out optimizations it would differ from fire(u, v) only in processing the case when
u is filter i,j, neg(u) = true and v = succ(u). In this case, a subquery (t, δ) ∈
unprocessed subqueries(u) corresponds to the goal← ∼atom(u)δ, Bi,j+1δ, . . . , Bi,ni

δ.
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Let p = pred(u) and let R be I(p) if kind(u) = extensional, and tuples(ans p) oth-
erwise. If atom(u)δ is different from p(t

′
) for every t

′ ∈ R, then the subquery is
transferred to v after restricting δ to post vars(u). The task is done by the proce-
dure fire′4(u, v) specified below.

Definition 22 (fire′4). The procedure fire′4(u, v) for the aforementioned case is
implemented as follows:

• let p = pred(u) and set Γ := ∅;
• let R be I(p) if kind(u) = extensional, and tuples(ans p) otherwise;

• for each (t, δ) ∈ unprocessed subqueries(u) do

if atom(u)δ /∈ {p(t′) | t′ ∈ R} then

add-subquery(t, δ|post vars(u),Γ, v);

• unprocessed subqueries(u) := ∅;
• transfer′(Γ, u, v).

Observe that, when u = filter i,j, neg(u) = true, v = succ(u) and
active-edge(u, v) holds, if kind(u) = extensional, then T (u) = true. The pro-
cedure fire′4(u, v) for the subcase when kind(u) = extensional (and T (u) = true)
processes the data at u to transfer through the edge (u, v) in a similar way as the
procedure transfer′4b(D, x, u

′) (see Definition 20) processes the data D immedi-
ately at u′ to create data, which are then transferred to succ(u′). Here, u′ plays
a similar role as u, but T (u′) = false, while T (u) = true.

Consider the procedure fire′4(u, v) for the subcase when kind(u) = intensional.
For a subquery (t, δ) ∈ unprocessed subqueries(u), the check whether atom(u)δ does
not belong to {p(t′) | t ∈ tuples(ans p)} for p = pred(u) should be done only
at a suitable moment, i.e., when necessary work has been done to guarantee that
an answer for the goal ← atom(u)δ, if it exists, has been stored in tuples(ans p) as
the tuple s with p(s) = atom(u)δ. This means that, if u = filter i,j, neg(u) = true,
kind(u) = intensional and v = succ(u), then the edge (u, v) can be selected for
“firing” (by fire′(u, v), which calls fire′4(u, v)) only when it is active and, addi-
tionally, satisfies appropriate conditions. In other words, the used control strategy
(for selecting an edge to fire) should satisfy appropriate conditions. We will intro-
duce a class of such control strategies shortly, which consists of so called control
strategies admissible w.r.t. strata’s stability.

The following definition formally specifies the procedure fire′(u, v). Recall that
this procedure is called only for active edges (u, v).

Definition 23 (fire′, cf. Definition 14). Let fire′1(u, v), fire′2(u, v) and
fire′3(u, v) be the procedures obtained from fire1(u, v), fire2(u, v) and
fire3(u, v), respectively, by replacing the call transfer(Γ, u, v) with
transfer′(Γ, u, v). Then, the procedure fire′(u, v) is (can be) implemented as
follows:
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1. if u is ans p then

(a) transfer′(unprocessed(u, v), u, v);

(b) unprocessed(u, v) := ∅;

2. else if u is input p then

(a) transfer′(unprocessed(u, v)− tuples(ans p), u, v);

(b) unprocessed(u, v) := ∅;

3. else if v is input p then fire′1(u, v);

4. else if u is filter i,j, neg(u) = false and kind(u) = extensional then fire′2(u, v);

5. else if u is filter i,j, neg(u) = false and kind(u) = intensional then fire′3(u, v);

6. else if u is filter i,j and neg(u) = true then fire′4(u, v).

The exclusion of tuples belonging to tuples(ans p) from the transfer at the step 2a
of fire′(u, v) is an optimization. Note that every processed goal of the form←∼p(t)
is ground, and before processing the goal← p(t) (for “negation as failure”) by using
a program clause of P , one can check whether t ∈ tuples(ans p). If so, then we
already have the answer ε and can ignore the goal← p(t). One can also optimize the
procedure transfer2(D, u, input p) by excluding tuples belonging to tuples(ans p).

We now define control strategies admissible w.r.t. strata’s stability.
From now on, let P be a stratified Datalog¬ program and P1 ∪ . . .∪PK a strat-

ification of P . The notions defined below are dependent on this fixed stratification.
Given a QSQ-STR-net (V,E, T, C) of P , we say that a node v ∈ V belongs to

the layer k, where 1 ≤ k ≤ K, if v is constructed by some program clauses in Pk.12

In that case, we say that the layer number of v is k, denoted by layer(v) = k.
A QSQ-STR-net of P is said to be stable up to a layer k if every edge (u, v) such

that the layer numbers of u and v are less than or equal to k is not active.

Definition 24 (Admissibility w.r.t. Strata’s Stability). A control strategy for a gi-
ven QSQ-STR-net of P (i.e., a strategy for selecting an edge to apply the procedure
fire′ to it) is said to be admissible w.r.t. strata’s stability if at the moment when
an edge (v, succ(v)) with v = filter i,j is selected, if neg(v) = true, layer(v) = k,
pred(v) = p and p is an intensional predicate with layer(input p) = h, then the
QSQ-STR-net is stable up to the layer h and the edge (v, input p) is not active.

By restricting to the case neg(v) = true, the condition of admissibility w.r.t.
strata’s stability in the above definition is weaker than the ones in [8, 9]. That is,
we have extended the class of control strategies admissible w.r.t. strata’s stability
in comparison with the ones in [8, 9].

Finally, our QSQN-STR method for evaluating queries to stratified Datalog¬

databases is formulated by Algorithm 1. To ease the checking we have gathered

12 That is, Pk contains a clause ϕi such that v is of the form input p, pre filter i, filter i,j ,
post filter i, or ans p, where p is the predicate of Ai.
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Algorithm 1: evaluating a query q(x) to a stratified Datalog¬ database
(P, I).

Input: a stratified Datalog¬ database (P, I), a stratification P = P1 ∪ . . . ∪ PK

of P and a query q(x).
Output: the set of all correct answers for the query q(x) on (P, I).

1 let (V,E, T ) be a QSQN-STR structure of P ;
// T can be chosen arbitrarily or appropriately

2 set C so that (V,E, T,C) is an empty QSQ-STR-net of P ;

3 let x′ be a fresh variant of x;
4 tuples(input q) := {x′};
5 foreach (input q, v) ∈ E do unprocessed(input q, v) := {x′};
6 while there exists (u, v) ∈ E such that active-edge(u, v) holds do
7 select any edge (u, v) ∈ E such that active-edge(u, v) holds and the

selection satisfies the admissibility w.r.t. strata’s stability;

8 fire′(u, v);

9 return tuples(ans q);

its full pseudocode into the online appendix [13]. An example illustrating how
Algorithm 1 works step by step is also provided in [13]. A more friendly presentation
of that example in the PowerPoint-like mode is also available online [12].

Observe that, if P is a Datalog program, then a run of Algorithm 1 coincides
with an application of the QSQN evaluation method. That is, QSQN-STR coincides
with QSQN when restricted to Datalog.

Theorem 1. The QSQN-STR method formulated by Algorithm 1 for evaluating
queries to stratified Datalog¬ databases is sound, complete and has a PTIME data
complexity.

The proof of this theorem is provided in the online appendix [13].

5 CONCLUSIONS

The previously known methods that can be used for evaluating queries to stratified
Datalog¬ databases, except QSQN-WF [14], are either breadth-first [4, 37, 25, 30]
or depth-first (and recursive) [26, 41, 37, 15, 40]. There are cases when these con-
trol strategies are not the best ones. QSQN-WF [14] is an evaluation framework
for (general) Datalog¬ under the well-founded semantics and is not efficient when
applied to stratified Datalog¬ because it would execute a considerable amount of
redundant computation in order to guarantee that the alternative fixpoint has been
reached.

In this paper, we have developed QSQN-STR as a novel evaluation framework
for stratified Datalog¬. It is goal-driven, set-at-a-time and adjustable w.r.t. control
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strategies. These properties are important for efficient query evaluation on large
and complex deductive databases. Every control strategy admissible w.r.t. strata’s
stability can be used for QSQN-STR. The generic method QSQN-STR is sound,
complete and has a PTIME data complexity for evaluating queries to stratified
Datalog¬ databases.

QSQN-STR extends QSQN [11, 9] with the ability to handle stratified negation.
Restricting to Datalog, QSQN is similar to QSQ [43, 1] but has some essential differ-
ences. First, it is formulated so that all operations can be precisely specified. Second,
it does not use adornments for intensional predicates and their corresponding input
and answer relations. This has some advantages:

• Operations of the same kind on an intensional predicate can be grouped and
done together, independently from the adornments. This allows reducing the
number of accesses to the secondary storage. The matter of how to efficiently
execute the evaluation by using relational operations like join and projection is
left for the implementation phase.

• Input relations contain tuples of terms possibly with variables, and information
about repeats of variables in a goal is exploited. In the case of QSQ, input
relations contain tuples of constant symbols, and only the annotated version of
QSQ keeps and exploits information about repeats of variables in a goal.

• Only the most general tuples are kept in input relations. (Similarly, only the
most general tuples and subqueries are kept in the other relations.) This allows
reducing redundant computation. In the case of QSQ, tuples from different
adorned input relations of the same intensional predicate are not compared to
each other, and thus QSQ executes certain amount of redundant recomputation.

QSQN-STR inherits the aforementioned good properties of QSQN. As future work,
further (conditional) optimizations can be incorporated into QSQN-STR. For ex-
ample, we can extend QSQN-STR with tail-recursion elimination [38] in the way as
QSQN-TRE [10, 9] extends QSQN.
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