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can be compressed. This online dictionary learning method and blind compressive
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for the first time in the literature. According to the experimental results, BCS
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1 INTRODUCTION

Hyperspectral images are composed of hundreds of contiguous narrow (generally
0.010 um) spectral bands from the visible region (0.4-0.7 um) to the near-infrared
region (about 2.4 um) of the electromagnetic spectrum. Hyperspectral images have
a huge image size. Therefore, to cope with storage or transmission issues, and to
match the available transmission bandwidth in the downlink operation, the hyper-
spectral image compression is compulsory. Compression can be realized as lossless
or lossy. Lossy compression algorithms can reach high compression ratios while ex-
periencing information loss. Quality metrics should capture the degradation which
occurs in the image.

Classification of lossy and lossless compression methods is canonically fourfold:
prediction-based [24, B1], transformation-based [0, 28], vector quantization (VQ)-
based [32], and sparse representation-based [I8]. One of the transformation-based
algorithms is the principal component analysis (PCA). The PCA algorithm real-
izes the decorrelation of spectral bands. The improved version of this algorithm is
compressive-projection principal component analysis (CPPCA) algorithm [I1].

Sparse representation-based methods appear to distinguish among others with
its scheme. Rather than using a pre-defined dictionary, such methods learn it directly
from the observed data. Data-dependent dictionaries are gathered using dictionary
learning [6, 27, 41], 48]. Two different learning schemes can be considered, a batch
method which uses the whole training set in the learning process at each iteration and
an online learning method which processes one sample from the entire training set at
each iteration in an alternating fashion. By using the singular value decomposition
(SVD), K-SVD algorithm is developed which can be given as a typical example of
batch methods [7]. In the work [21], online dictionary learning algorithm is proposed.

Using dictionary learning in the lossy hyperspectral image compression algo-
rithms is quite common [I8, [38, 40]. In the literature [36, 37], it is shown that online
dictionary learning algorithm is more effective in processing large datasets with
sequentially arriving samples such as hyperspectral images. This sparse representa-
tion process finds the sparsest solution, which means solving the non-deterministic
polynomial-time hard (NP-hard) £p-norm minimization problem [I0].

Sparse representation algorithms are analyzed in three categories [44] [48]. These
are greedy pursuit algorithms, ¢,-norm regularization based algorithms, and Ba-
yesian inference algorithms [33,45]. The most popular greedy pursuit algorithms are
the matching pursuit (MP) algorithm [22], the orthogonal matching pursuit (OMP)
algorithm [35], the generalized OMP (gOMP) algorithm [39] and the compressive
sampling matching pursuit (CoSaMP) algorithm [25].

We may think of ,-norm regularization algorithms as of two kinds depending on
the value of p, namely, for p > 1 and 0 < p < 1. In p > 1 category, only the ¢;-norm
minimization is sufficiently sparse [48]. The ¢;-norm minimization algorithms are
divided into three such as constraint based, proximity based, and homotopy based
optimization algorithms. The constraint based optimization algorithms category
includes the truncated Newton based interior-point method (TNIPM) algorithm [20)],
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the alternating direction method of the multipliers (ADMM) algorithm [5] and the
active-set algorithm with either a primal or dual type [I2]. The ADMM algorithm is
used to solve the least absolute shrinkage and selection operator (LASSO) problem.
The dual active-set algorithm is used to solve the basis pursuit (BP) problem.

The proximity based optimization algorithms category covers the sparse recon-
struction by separable approximation (SpaRSA) algorithm [42], the general iterative
shrinkage and thresholding (GIST) algorithm [I5], the Shotgun algorithm [I3] and
the augmented Lagrangian method (ALM) algorithm which consists of the primal
ALM (PALM) and dual ALM (DALM) [43].

Basic homotopy based algorithms are the LASSO homotopy algorithm [8] and
the basis pursuit denoising (BPDN) homotopy algorithm [3].

The generalized iterated shrinkage algorithm (GISA) and the focal underdeter-
mined system solver (FOCUSS) algorithm [16] are analyzed under the non-convex
¢,-norm (0 < p < 1) regularization algorithms.

The Bayesian inference algorithms category includes the Bayesian compressive
sensing projected Landweber based on three-dimensional bivariate shrinkage plus
3D wavelet packet transform (BCS PL-3DBS + 3DWPT) algorithm [I7] and the
sparse Bayesian learning (SBL) algorithm [34] increase the performance when OBD-
BCS algorithm is used. This expectation is reasonable given the rate-distortion
performance results, since OBD-BCS algorithm outperforms the others.

Model-based CS algorithms aim to integrate the structured sparsity models into
CS algorithms H]. An algorithm called JSM-2 is a model-based CS algorithm [25].

The blind compressed sensing (BCS) algorithm solves the CS problem without
prior knowledge of the sparsity basis [46]. In this case, to guarantee the unique
solution, three constraints are considered on the sparsity basis [14]. The algorithm
used in the process is called an orthonormal block diagonal BCS (OBD-BCS) algo-
rithm. Each iteration consists of an OMP algorithm and singular value decompo-
sition (SVD) algorithm. There are a handful of studies [29, 23] which use BCS for
hyperspectral image reconstruction purpose. In this paper, however, BCS is utilized
only in the solution of the sparse coding equation. It is, indeed, not a part of dic-
tionary learning, but rather a tool for finding the sparse coefficients. After finding
the sparse coefficients, online dictionary learning is performed as usual. Therefore,
previously the BCS algorithm is not implemented with online dictionary learning
method. The main contributions of this study are as follows:

1. Different sparse representation algorithms are used to compress hyperspectral
images based on online dictionary learning. The compression performances of
these algorithms are compared with the performances of the state-of-the-art
lossy compression algorithms. This study used the results from the previous
studies and therefore only the best performing sparse representation algorithms
are included.

2. This is the first time that the BCS algorithm is used in conjunction with the on-
line dictionary learning method for hyperspectral image compression purposes.
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3. The anomaly detection technique is applied to further test the information
preservation performance of the lossy hyperspectral image compression.

The lossy compression of the hyperspectral images based on online dictionary
learning is presented in Section ] The results are presented in Section [3 The
conclusions are given in Section [

2 LOSSY COMPRESSION OF HYPERSPECTRAL IMAGES
BASED ON DICTIONARY LEARNING

In this section, online dictionary learning based sparse coding on hyperspectral
image compression is explained. Sparse coding models the data as the sparse linear
combination of the dictionary elements. Dictionary learning is based on learning
the dictionary to adapt it to specific data. The online dictionary learning method
relies on stochastic approximations and it is suitable for large scale datasets such
as hyperspectral images [2I]. In this study, the iterative online dictionary learning
algorithm is used, which minimizes the surrogate function of the empirical cost under
particular constraints at each iteration [21].

2.1 Notation and Problem Statement

In the analysis, the number of bands in the hyperspectral image is represented by ny,
the number of lines in the hyperspectral image is represented by nl, the number of
samples in the hyperspectral image is represented by ns, and the number of columns
in the dictionary is denoted k. The initial dictionary is expressed as Dy € R™*%,
The auxiliary matrices for updating the dictionary are denoted A, € R¥** and
B, € R®»*¥ The number of iterations is represented by T', the error is expressed as
E € R¥*! the regularization parameter is denoted A € R, and the sparse coefficients
are shown by o € R*.

In the dictionary learning process, optimization is performed on the empirical
cost by considering a finite training set X = [x, ..., x7] in R™*7 [26]. The empirical
cost is given as

1 I
fr(D) := TZZ(XuD% (1)

i=1
where D € R™** represents the dictionary and [ expresses the loss function. This
loss function corresponds to the optimal value of ¢; norm sparse coding [2I] given
by the equation

1
I(x;, D) == min ~[|x, — Doyl + A (2)
acRk 2
where A represents the regularization parameter, x; expresses the training sample at

iteration t and «; defines the coefficient set at iteration ¢. In , {1 regularization
ensures the sparsity.
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A convex set of matrices C' is defined to constraint arbitrarily large elements in
D =[d;...dy;] as well as arbitrarily small values of «;. This convex set C is given

C:={DeR™" |d;| <1,Vj=1,...k}. (3)

In the optimization, the minimization of the empirical cost fr(D) with respect
to D is not a convex operation. According to this issue, the process is modified as
a joint optimization problem. The modified optimization problem is convex when
the sparse coefficients T' := [ay, ..., ar] € R¥*T are fixed, while the optimization
is performed with respect to D, and when D is fixed while the optimization is
performed with respect to sparse coefficients I'. This joint optimization problem is
as follows:

1 (1
min  — —||x; — Dayl|3 + Aoy . 4
et 720 (%~ Desli Al (@)
Equation @ is solved as a convex optimization problem such that D is mini-
mized when T is fixed, and T is minimized when D is fixed, respectively. Instead of
minimizing the empirical cost fr(D), minimizing the expected cost f(D) is much
more computationally efficient. This expected cost is given as

f(D) = E;[l(x,D)] = lim fr(D) (5)
T—o0
where the unknown probability distribution of the data is utilized to find out the
expectation. In the literature, it has been proved that the equality in converges
with the probability one [21].

For large scale data sets such as hyperspectral images, stochastic gradient algo-
rithms provide a better rate of convergence [21I]. Therefore, in this study, dictionary
learning is realized by using projected first order stochastic gradient descent algo-
rithm. According to this algorithm, dictionary D is updated sequentially and is
shown as [2)].

D, = [[Di-1 = £ Vo ixi, D) (6)
c

where D, represents the optimal dictionary at iteration ¢, p presents the gradient
step, and [ [, shows the orthogonal projector on C'. It is assumed that the training
set X has i.i.d. samples of the unknown distribution of the particular data [21].

2.2 Algorithm

In this study, an algorithm which consists of two parts is used. These two parts,
namely dictionary learning and dictionary update, are solved alternately. The sparse
coding equation is solved by using x; from the current iteration, and D;_; from the
previous iteration. When «, is found, the following ft(D) function is minimized over
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set C' to obtain an updated dictionary Dy:

t

~ 1
fi(D) := *Ziuxi_Dai”%Jr)\”ai”l (7)

i=1

where «; values are obtained. In the literature, it has been proved that the empirical
cost f;(D) and the function f;(D), which is quadratic in the D converge is almost
surely to the same limit [2I]. Therefore, the function ft is the surrogate for the
function f;. For the large values of ¢, the function ft is close to ft 1 function.
In these circumstances, D; is also close to D;_; such that it is effective to use
D, | as a warm restart for finding D;. At each iteration Algorithm [I] finds the
sparse coefficients, while Algorithm 2 uses these sparse coefficients to update the
current dictionary. Using various different sparse representation algorithms for the
solution of the sparse coding equation in Algorithm|[I] best performing algorithm can
be determined, enabling a comparison between state-of-the-art algorithms. Online
dictionary learning, which is the main implementation in Algorithm 2] will be used
for all scenarios.

2.2.1 Algorithm 1

In Algorithm [I| the sparse coding equation is solved. Equation is called sparse
coding equation. The value of X is set to 0.1 while T" equals 200.

Algorithm 1 Dictionary Learning

1: Construct random initial dictionary Dy

2: Set initial values Ay and By matrices to zero

3: fort=1to T do

4:  Choose x; € R™ randomly from the image.
5. Solve sparse coding equation.
6: Update A, = Ay | + ayal, By =B, + xaf.
7. Find D, using Algorithm [
8
9

: end for
: Obtain learned dictionary Dy.

2.2.2 Algorithm 2

In Algorithm [2] dictionary is updated by utilizing the block-coordinate descent with
D;_; as a warm restart. Equation @ is called as the dictionary update equation.
Algorithm[T]and Algorithm [2]are applied in an alternating fashion which is the online
learning strategy. Various algorithms are used to solve sparse coding equation (cf.

Table .
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Algorithm 2 Dictionary Update
1: Calculate Dy in dictionary update equation

2: repeat

3: forj=1tokdo

4: Find jth column of D;, where D = [d;...d;] € R™*k A = [a;...a;] €
R¥* and B = [b; ...by] € Rk

5: u; = m(b] — Daj) + dj

max(|[u;l|2, 1)
no Ej=4/%, |d;—d?
g8 end for
k
o E=33 K
10: until £ < Treshold
11: Use D in Algorithm [T}

3 RESULTS

The online dictionary learning based hyperspectral image compression is applied
by using AVIRIS and Hyperion datasets for all the different sparse representation
algorithms [19]. The compression performances of these algorithms are compared
with the performances of the state-of-the-art lossy compression algorithms such as
BCS PL-3DBS + 3DWPT and CPPCA. BCS PL-3DBS 4+ 3DWPT and CPPCA
algorithms are not based on learning while the remaining ones are employed by an
online learning scheme. The quality metric tool is the Peak Signal-to-Noise Ratio
(PSNR). The bit rate r is calculated in terms of the bits per sample (bps), and the
formulation is as follows

r=—(bg), z<k (8)

Ty

where z represents the number of sparse coefficients, k defines the size of the dictio-
nary, 7y is the number of bands, and b, represents the bit depth.

3.1 Datasets

The information about the AVIRIS and Hyperion datasets which are used in this
study are given in Table [1] [T9].

3.2 AVIRIS Datasets Results

Low Altitude, Lunar Lake, and the Jasper Ridge are used as the AVIRIS datasets (cf.
Table . In Table [2| the compression performances of different sparse representa-
tion algorithms are shown. The quality metric tool, which reflects the compression
performance, is PSNR in terms of dB. The PSNR values are calculated against
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the compression ratios in terms of the bps. The state-of-the-art algorithms BCS
PL-3DBS +3DWPT and CPPCA, which are given in Table [2] are used for the com-
parison [I7]. The highest three PSNR values per each compression ratio are marked
in boldface. If Table [2]is analyzed at the highest compression ratio of 0.5bps, only
the OBD-BCS algorithm involves among the algorithms with the best three PSNR,
values for all datasets.

AVIRIS HYPERSPECTRAL DATA

Name No. Samples | No. Lines | No. Bands | Bit Depth | Year
Jasper Ridge 614 2587 224 16 | 1997
Lunar Lake 614 1432 224 16 | 1997
Low Altitude 614 3689 224 16 | 1996
HYPERION HYPERSPECTRAL DATA
Name No. Samples | No. Lines | No. Bands | Bit Depth | Year
Lake Monona 256 3176 242 12 | 2009
Mt. St. Helens 256 3242 242 12 | 2009
Erta Ale 256 3187 242 12 | 2010

SALINAS-A HYPERSPECTRAL DATA
No. Samples | No. Lines | No. Bands | Bit Depth | Year
83 86 204 12 | 1998
PAVIA UNIVERSITY HYPERSPECTRAL DATA
No. Samples | No. Lines | No. Bands | Bit Depth | Year
200 200 103 12 | 2002
INDIANA HYPERSPECTRAL DATA
No. Samples | No. Lines | No. Bands | Bit Depth | Year
145 145 220 12 | 1992

Table 1. Detailed information of AVIRIS, Hyperion, Salinas-A, Pavia and Indiana hyper-
spectral datasets

3.3 Hyperion Datasets Results

The Erta Ale, Mt. St. Helens, and Lake Monona images are used as Hyperion
datasets (cf. Table [I). In Figures [1} P and B the PSNR values of these datasets
against 0.1, 0.3, and 0.5bps compression ratios for all sparse representation algo-
rithms, are given. The PSNR values are expressed in terms of dB, and they are
plotted against the compression ratios in terms of bps. The corresponding com-
pression ratios of the algorithms with highest three PSNR values are shown in cir-
cles.

As seen from Figures|[I] 2] and 3 at the highest compression ratio of 0.5 bps, the
SpaRSA algorithm appears among the best three algorithms for all the datasets,
while the OBD-BCS algorithm is situated among the best three algorithms for
the Mt. St. Helens and Lake Monona datasets. Therefore, at high compression
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Figure 1. Compression performances of sparse representation algorithms for Erta Ale im-
age (cf. Table
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Figure 3. Compression performances of sparse representation algorithms for Lake Monona
image (cf. Table

ratios, the SpaRSA and OBD-BCS algorithms show better compression perfor-
mances.

3.4 Comparison with Several HCS Methods

In literature, a novel reweighted Laplace prior based hyperspectral compressive sens-
ing (RLPHCS) method named as RLPHCS_Cov outperforms several state-of-the-art
HCS algorithms [47]. This compression method is not based on learning. For further
comparison, compression performance of the algorithm RLPHCS_Cov is compared
to that of the sparse representation algorithms based on online dictionary learn-
ing.

The signal to noise ratio (SNR) is fixed at 20dB. Pavia University and Indiana
datasets are used (cf. Table [[)). Figures [f] and [§] show PSNR curves of different
algorithms at various bps levels when Pavia University and Indiana datasets are
used, respectively. Online dictionary learning (ODL) and hyperspectral compressive
sensing (HCS) abbreviations are used.

Figures [] and [f indicate that the reconstruction performance of the OBD-BCS
(ODL) algorithm is superior to that of the other algorithms at 0.5bps level. Al-
though for 0.5bps compression level the OBD-BCS (ODL) algorithms is better for
both datasets, setting the compression ratio to moderate levels such as 0.3 bps yields
better RLPHCS_Cov performance for Pavia University dataset.
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3.5 Compression Performance Analysis of OBD-BCS Algorithm

According to Table [2, the OBD-BCS algorithm involves among the top three algo-
rithms at the highest compression ratio of 0.5 bps for all the datasets.

In Figures [T} @ and 3 the OBD-BCS algorithm belongs to the top three al-
gorithms with the highest PSNR values at the highest ratio of 0.5bps for the
Mt. St. Helens and Lake Monona datasets.

The results indicate that the OBD-BCS algorithm shows a better compression
performance when the compression ratio gets higher. OBD-BCS algorithm is being
considered as a compressive sensing framework. However, in this study it is only
used in Algorithm [I] to solve the sparse coding equation. Since the OBD-BCS
algorithm itself includes a dictionary learning process, learning is applied not just in
Algorithms 2] for online dictionary learning, but also in Algorithm [I] while finding the
sparse coeflicients. It is expected that using these more accurate sparse coefficients in
online dictionary learning will increase the performance when OBD-BCS algorithm
is used. This expectation is reasonable given the rate-distortion performance results,
since OBD-BCS algorithm outperforms the others.

3.6 Anomaly Detection Application

The anomaly detection is applied to make a further comparison between various
sparse representation methods. It is a useful tool for assessing the information
preservation ability of these methods. Reed-Xiaoli (RX) anomaly detection algo-
rithm is used [30].

Spectral signature which belongs to the input signal is compared with the mean
values of each spectral band by using Mahalanobis distance,

Srx (%) = (x; — M) Cov ! (x; — M) 9)

where x; € R™, M represents the mean of each spectral band and Cov indicates
the spectral covariance matrix. Covariance matrix Cov is as follows:

1 & .
Cov = ;(xi — M)(x; — M) (10)

where N =nl xnsandi=1,...N.

Anomalous region is assumed to be present if drx(x;) > 1 condition is satisfied,
where 7 represents the threshold value. The most appropriate threshold value is the
one that is obtained from the desired false alarm probability. Anomaly detection
is applied on Salinas-A and Low Altitute hyperspectral datasets (cf. Table [1]) [II.
Sparse representation based on online dictionary learning algorithms such as BP by
using dual active set algorithm, LASSO by using ADMM algorithm, SpaRSA and
OBD-BCS are utilized.
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The anomaly detection results are illustrated in Figure [L0]for Salinas-A dataset.
First, the anomaly detection is applied on the original hyperspectral dataset whose
results are presented in Figure a). The desired anomaly is marked with a circle.
Figure b)fe) depict anomaly detection results for OBD-BCS, BP by using dual
active set, SpaRSA and LASSO algorithms at 0.5, 0.3 and 0.1 bps levels, respectively.
None of the algorithms is able to detect the desired anomaly at 0.1bps bit rate.
Among the anomaly detection results at 0.5 bps bit rate, OBD-BCS algorithm seems
to provide the best performance.

‘ ‘ ---0.5 bps
107 102 p 107 10°
FA

Figure 6. ROC Semilog curves for Salinas-A dataset at 0.1, 0.3 and 0.5bps by using
OBD-BCS

Figure 7. ROC Semilog curves for Salinas-A dataset at 0.1, 0.3 and 0.5bps by using
LASSO algorithm

The PSNR values of each sparse representation algorithms are also presented in
TableB]for 0.1, 0.3 and 0.5 bit rates in such a way to further strengthen the anomaly
detection results obtained in Figure [I0] The two highest PSNR values are marked
in boldface.
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Figure 8. ROC Semilog curves for Salinas-A dataset at 0.1, 0.3 and 0.5 bps by using BP
by using dual active set algorithm
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Figure 9. ROC Semilog curves for Salinas-A dataset at 0.1, 0.3 and 0.5bps by using
SpaRSA

Anomaly detection performances of different sparse representation algorithms
can be assessed using receiver operating characteristic (ROC) curves. The ROC
curves plot detection probability versus false alarm probability. ROC curves are
plotted with a logarithmic x axis for better illustration.

Figure [f] shows the ROC Semilog curves of OBD-BCS algorithm at 0.1bps,
0.3bps and 0.5 bps rates when Salinas-A hyperspectral dataset is used. The prob-
ability of detection is denoted by PD and the probability of false alarm is denoted
by PFA. Anomaly detection result at 0.5 bps rate is significantly better than those
of the 0.3bps and 0.1 bps levels.

The ROC Semilog curves of BP by using dual active set algorithm at 0.1, 0.3
and 0.5bps bit rates are depicted in Figure [ For the Salinas-A dataset, the ROC
Semilog curves of SpaRSA and LASSO algorithm at various bit rates are illustrated
in Figures 0] and [7], respectively.

In order to further evaluate the ROC curves, the area under curve (AUC) is
employed as a performance metric that can be obtained by calculating the area
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under the ROC curve. Calculated AUC values are presented in Table 3] In Table [3]
for Salinas-A dataset, it can be seen that the best result is from OBD-BCS at 0.5 bps
bit rate which is 0.9945.

Results in Table B and Figures [6H{7] demonstrate that the detection performance
of OBD-BCS algorithm is better than that of the other algorithms for the case where
the bit rate is high such as 0.5bps. The illustrations in Figure [I0] also suggest that
the detection performance of OBD-BCS algorithm is the best of all at 0.5bps bit
rate.

According to the values in Table B, OBD-BCS algorithm is among the best two
algorithms in terms of PSNR values at 0.5, 0.3 and 0.1 bps rates for Low-Altitude
dataset. Particularly at 0.5 bps level, OBD-BCS has PSNR value of 73.56 which is
the highest. The superiority of OBD-BCS algorithm at 0.5 bps rate is supported by
the results in Table [3| for Low-Altitude dataset. At 0.5bps, OBD-BCS algorithm
has the highest AUC value which is 0.9943.
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Figure 10. RX anomaly detection results of the Salinas-A hyperspectral image: a) original
image, b) OBD-BCS with 0.5bps, 0.3bps and 0.1bps, ¢) BP with 0.5bps, 0.3bps, and
0.1bps, d) SpaRSA with 0.5bps, 0.3bps, and 0.1 bps, ) LASSO with 0.5 bps, 0.3 bps, and
0.1bps

4 CONCLUSION

Sparse representation algorithms from many different categories are applied for the
purpose of hyperspectral image compression based on online dictionary learning.
The hyperspectral compression performance of these sparse representation algo-
rithms are analyzed by further analyzing the OBD-BCS algorithm. By analyzing
the results of all the datasets, the OBD-BCS algorithm shows the best compression
performance at high compression ratios. At a 0.5 bps ratio, it involves among the
best three algorithms at most for all the datasets. Other algorithms with good com-
pression performances at high ratios are BP by using dual active set, the LASSO
by using ADMM, and the SpaRSA algorithms.

According to the anomaly detection results, compressed image at bit rates of
0.5bps or higher can be used as an estimate of the original hyperspectral image.
Anomaly detection or similar real-world applications can be applied on the com-
pressed hyperspectral image instead of the original one. Anomaly detection results
further prove that the OBD-BCS algorithm has a better information preservation
performance than that of the other algorithms as the bit rate gets higher.
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Salinas-A

Sparse Respresentation Algorithms

BPS BP OBD-BCS LASSO SpaRSA

PSNR | AUC | PSNR | AUC | PSNR | AUC | PSNR AUC

0.1 36.62 0.96 36.67 | 0.9464 | 36.65 | 0.9741 36.58 | 0.9424

0.3 | 41.54 | 0.9934 | 41.89 | 0.9929 41.16 | 0.9799 | 42.61 0.992

0.5 | 43.95 | 0.9943 | 43.98 | 0.9945 | 43.74 | 0.9928 | 43.96 | 0.9943

Low Altitude

Sparse Respresentation Algorithms

BPS BP OBD-BCS LASSO SpaRSA

PSNR | AUC | PSNR | AUC | PSNR | AUC | PSNR | AUC

0.1 | 59.96 | 0.9917 60 0.9887 | 59.59 | 0.9906 | 59.88 | 0.9896

0.3 | 70.16 | 0.9932 | 69.99 | 0.9936 | 68.85 | 0.9932 | 69.78 | 0.9914

0.5 73.24 | 0.9942 | 73.56 | 0.9943 | 73.52 | 0.9931 72.82 | 0.9937

Table 3. PSNR values of sparse representation algorithms
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