
Computing and Informatics, Vol. 38, 2019, 1–18, doi: 10.31577/cai 2019 1 1

A NEW DYNAMIC LOAD BALANCING ALGORITHM
FOR MULTI-ROIA

Dong Liu

Department of Computer Science
JiNan University
Guangzhou 510632, China
e-mail: wze2k@163.com

Abstract. Real-time Online Interactive Application (ROIA) is an emerging class
of large-scale distributed application which can support millions of concurrent users
around the world. Due to the dynamic changes in the number of concurrent users as
well as the uncertainty of user operations, the dynamic load balancing is a key issue
for ROIA. However, most of previous works are dedicated to the load balancing
in a single ROIA without considering the variety of different type ROIAs. We
take the advantage of differences between ROIAs and propose a new load balancing
algorithm for multi-ROIA to improve the scalability of ROIA and increase the
resource utilization of system. This paper firstly describes the motivation of the new
load balancing algorithm, then presents the dynamic load balancing algorithm for
multi-ROIA. Finally, the simulation results are also presented to show the efficiency
and feasibility of the new algorithm.

Keywords: ROIA, cloud, MMOG, load balancing, scalability

Mathematics Subject Classification 2010: 68-W99

1 INTRODUCTION

Load balancing is one of the key issues for improving system performance and re-
source utilization in distributed and parallel computing, and can be divided into
two categories: Static Load Balancing (SLB) and Dynamic Load Balancing (DLB).
If the load can be determined and divided by a certain method before execution, it



2 D. Liu

belongs to SLB. But, if it can only keep monitoring the system load and dynamically
adjusting the load while executing, it belongs to DLB.

Real-time Online Interactive Application (ROIA) [1] is an emerging type of
large-scale distributed application. The popular and market-relevant representatives
of ROIA are Massively Multi-player Online Game (MMOG), as well as real-time
training and e-learning based on high-performance simulation. Therefore, without
losing its universality, this paper takes MMOG as a case study of ROIA.

In ROIA, due to dynamic changes in the number of concurrent users as well
as the uncertainty of user operations, the loads of computing and communication
are difficult to estimate before running. Therefore, SLB strategy is not suitable for
ROIA. And many researchers have done some researches on DLB in ROIA. But
most of these works are dedicated to DLB in a single ROIA without considering the
variety of different ROIAs in some aspects, such as latency tolerance or interaction
complexity. The resource utilization of the system and the ability to deal with load
peaks still have some limitations. Therefore, ROIA providers have to overprovision
their operating infrastructure to cope with the uncertain peak load, which leads to
a low and inefficient resource utilization. On the contrary, if ROIA providers do
not overprovision the infrastructure, which may acquire high and efficient resource
utilization, but also may reduce the ability of the system to deal with an uncertain
peak load. To address this problem, we analyze differences between different types
of ROIA, and we take an advantage of these differences for complementing each
other; we hope that the new system can achieve higher resource utilization and
better ability to deal with the peak load.

In previous works [2], we proposed the Multi-ROIA Cloud Platform (MRCP),
a new structure to achieve high scalability in ROIA. In this paper, we focus on
the corresponding load balancing algorithm of MRCP. We first describe in Sec-
tion 2 the differences of different type of ROIA, and our new load balancing al-
gorithm is motivated by these differences. In Section 3, we propose the new load
balancing algorithm in detail. The new algorithm uses a mixed strategy of the
centralized and distributed strategy, and it uses a different strategy in a differ-
ent layer. Finally, we present experimental results showing that the new system
achieves higher resource utilization and better ability to deal with the uncertain
peak load.

2 THE MOTIVATION OF NEW LOAD BALANCING ALGORITHM

ROIA contains many types, and the different type of ROIAs have some difference in
latency tolerance, interaction complexity and so on. Motivated by these character-
istics, this paper proposes a new load balancing algorithm (named Dynamic Load
Balancing Algorithm for Multi-ROIA, DLBAM) to improve the scalability of ROIA,
to increase the system resource utilization and enhance the ability to cope with load
peaks. The specific characteristics are as follows.



A New Dynamic Load Balancing Algorithm for Multi-ROIA 3

2.1 Difference in Latency Tolerance of ROIA

Mark Claypool and other researchers [3, 4] found that different types of ROIA have
different sensitivity to network delay because of a different type of a player action.
For example, First-Person Shooting (FPS) games are more sensitive to network
delay than Real-Time Strategy (RTS) games. With the increase of network delay,
the performance of FPS games decline sharply. On the contrary, the performance of
RTS games declines slowly with the increasing network delay. So FPS games need
obviously a lower network delay to ensure the good user experience than RTS games
need.

Based on this characteristic of ROIA, we can deploy a variety of ROIAs on
the same hardware platform. If load balancing is needed, the difference in latency
tolerance will be considered. The partial load of ROIA which has a low delay
sensitive degree in the heavier loaded server will be migrated to other underloaded
server. It can improve the resource utilization, and will not cause a great impact on
the user experience.

2.2 Difference in Interaction Complexity of ROIA

ROIAs have differences not only in the latency tolerance but also in the frequency
and scale of user interaction. Nae et al. [5] used interaction complexity to divide
ROIAs by the frequency and scale of user interaction. Assuming that the number
of users is n, the interaction complexity may range from O(n) for ROIAs in which
users are mostly solitary or the ROIA does not need to make many state changes
or compute complex interactions (e.g. puzzle games), to O(n2) for ROIA in which
many users are interacting individually, and to O(n3) for ROIA in which groups of
many players are interacting.

According to this characteristic of ROIA, if we consider the different interac-
tion complexity in the process of dynamic load balance, we can get more satisfac-
tory results for load balancing. That is, when there is a need for load transfer, it
should avoid migrating the load of ROIA which has high interaction complexity. Be-
cause such migration may lead to producing a new large communication overhead.
Therefore the preference should be given to the ROIA which has a low interaction
complexity.

2.3 Difference in Load Change of ROIA

Another feature of ROIA is that the variation of load has a certain regularity, and
not causing any mess. Although using a single user on ROIA is rather subjective,
but the huge number of users makes the load change of ROIA showing a certain
regularity. Moreover, due to time zone differences, the use of ROIA in the various
regions of the world is not the same. And it makes the differences in load changes
of ROIAs depending which servers are located in the various time zone.



4 D. Liu

Vlad Nae and other researchers selected the popular MMOG (RuneScape [6])
as the object of study. They collected a lot of data of RuneScape servers and
statistically analyzed the variation of the simultaneous online users in RuneScape
servers. Through the analysis of literature [5], we can see that, on the one hand, the
load of ROIA changes obviously, and the difference between upper and lower load
peak is huge, so it needs to have good scalability to improve the system resource
utilization; on the other hand, generally, the load of ROIA is showing certain rules
of change. This is propably affected by the time of day, the load is roughly in
accordance with the day cycle up and down fluctuation. Moreover, the load peak is
associated with the local time, so that the load peaks of different regions in different
time zones generally do not appear in the same time period.

This characteristics is favorable for improving the degree of system resources
utilization. If several resource centers are deployed in the different time zones in the
world, due to the load peaks of the different resource centers at different times, then
the part load can be migrated between the different resource centers.

3 DYNAMIC LOAD BALANCING ALGORITHM FOR MULTI-ROIA

Based on the characteristics of ROIA analyzed above, this section presents a new
dynamic load balancing algorithm for multi-ROIA (DLBAM) to enhance the ability
to cope with the peak load and to improve the utilization rate of system resources.

3.1 Classification of ROIA and Basic Idea of Algorithm

In order to facilitate the new algorithm, we firstly need to properly classify the
ROIAs according to the above mentioned characteristics.

3.1.1 Classification of ROIA

In order to facilitate the load migration, this paper divides ROIA into two categories
(named by Dynamic ROIA and Static ROIA) based on the characteristics of ROIA.

Dynamic ROIA refers to the ROIAs which have high latency tolerance and low
interaction complexity. Because of the high latency tolerance, it will not impact the
user experience when the part load is migrated to another resource center and the
delay increased. Furthermore, because of the low interaction complexity, it will not
increase the traffic between the two resource centers when the part load migrated
to another resource center. So, the part load of dynamic ROIAs is suitable for
migration between the resource centers which are located in different places.

Static ROIA refers to the ROIAs which have low latency tolerance and high
interaction complexity. Because of the low latency tolerance, it will greatly impact
the user experience when the delay is increased. And due to the high interaction
complexity, the traffic between the resource centers will greatly increase when the
part load is migrated to another resource center. So, this type of ROIA is not
suitable for load migration between the resource centers. It is worth noting that the



A New Dynamic Load Balancing Algorithm for Multi-ROIA 5

static ROIAs refer to ROIAs not suitable for migration between the resource centers
but saying that we are not saying that they cannot be migrated. They also may be
migrated between the internal servers in a local resource center.

Table 1 summarizes the classification of ROIA in the new algorithm.

Name Latency Tolerance Ideal Delay Threshold Interaction Complexity

Dynamic ROIA High 1 000 ms O(n)
Static ROIA Low < 500 ms > O(n ∗ logn)

Table 1. Classification of ROIA in DLBAM

3.1.2 Basic Idea of DLBAM

According to the analysis of ROIA’s load changes in the above section, the load
generally fluctuates by the cycle of one day. And because of the difference of time
zone, the emergence times of load peak in different resource center are different. For
example, in Figure 1, if there is a load peak in place A, the servers in place C may
just have a low peak load. So, it shows a complementary characteristics.

If using the complementary characteristics, each resource center will not need
to deploy enough hardware resources to deal with the peak load, it is enough just
to deploy appropriate hardware resources. When the high peak load is coming, it
can migrate a part of load to the resource center which is in the low peak at that
moment.

Moreover, this paper divides ROIA into Dynamic ROIAs and Static ROIAs
based on the characteristics of ROIA. The mixing deployment of these two kinds of
ROIAs ensures the feasibility of load migrating between resource centers.

According to the idea, this paper presents a new hierarchical balancing algo-
rithm. There are three layers of load balancing in the algorithm. The bottom layer
is the load balancing inside of each ROIA in each resource center. The middle layer
is the load balancing between ROIAs in each resource center. And the top layer is
responsible for the load balancing between the resource centers.

The DLBAM algorithm uses a mixed strategy of the centralized and distributed
strategy, and it uses a different strategy in a different layer. In the bottom and
middle layer, it uses the centralized strategy, and the distributed strategy is taken
in the top layer.

Figure 1 shows the structure of the system using DLBAM. In Figure 1, there are
four resource centers deployed in globally distributed four locations. Each resource
center has deployed some Dynamic ROIAs and some Static ROIAs at the same
time. Each ROIA has a ROIA Scheduler which is responsible for load balancing
between the internal servers of each ROIA. In addition, ROIA Scheduler will apply
for new resources or release occupied resources to MRCP Local Controller (MLC)
according to the load condition of servers in the ROIA. MLC is responsible for the
load balancing between the ROIAs in the local resource center and also responsible



6 D. Liu

MRCP Local 
Controller (MLC)

Place A

Multi-ROIA 
Cloud Platform 

(MRCP)

ROIA A 
Scheduler

ROIA A

……

Place C

MRCP Local 
Controller (MLC)

ROIA

Place B

MRCP Local 
Controller (MLC)

ROIA

Place D

MRCP Local 
Controller (MLC)

ROIA

ROIA A 
Server 1

ROIA X 
Scheduler

ROIA X

ROIA X 
Server 1

Figure 1. Structure diagram of the system using DLBAM

for putting forward the load migration application to the MLC of other resource
center when it is necessary.

3.2 Related Definition and Formula

Before introducing the DLBAM algorithm, some variables are defined as follows:

Assumed that there are n ROIAs in the local resource center, and the current
number of the kth ROIA’s servers is SNk. The kth ROIA has ANk avatars and
the number of other entities (such as non-player characters, NPC) is represented by
ENk.

The server e of ROIA k is indicated by Sk
e ; the avatar i in ROIA k is indicated

by aki . And aki ∈ Sk
e shows that the avatar aki is in the server Sk

e .

C(aki ) represents the calculating cost of avatar aki , such as state updating, game
logic computing, environment rendering.



A New Dynamic Load Balancing Algorithm for Multi-ROIA 7

I(aki , a
k
j ) represents the amount of information exchanged between the avatar aki

and akj (i 6= j). When aki and akj are in the same server, the interaction between aki
and akj will only increase the computing cost without traffic cost. Only when aki and

akj are in the different server, the interaction between them will increase the traffic
load.

V (x) represents the computational load increased by the interaction between
the avatars in the same server, and W (x) represents the traffic load caused by the
interaction between the avatars in the different servers. x is the amount of interaction
information.

Let MROIA(Sk
e ) denote the basic amount of memory used for the ROIA server

Sk
e under no user links situation. Mas(a

k
i ) is the amount of memory used for the

information of avatar aki . And mes is the amount of memory used for the information
of one NPC entity.

The hardware resources which have great impact on the ROIA performance are
mainly CPU, network bandwidth and memory. Therefore, the three main aspects
needed to be considered when performing load balance: the computational load,
traffic load and memory load.

The computational load of server Sk
e can be represented by Equation (1):

LC(Sk
e ) =

∑
aki ∈Sk

e

C(aki ) +
∑

aki ,a
k
j∈Sk

e

V (I(aki , a
k
j )) (i 6= j). (1)

The first part of Equation (1) is the computing cost sum of server Sk
e , such as for

state updating, game logic computing, environment rendering, etc. The last part is
the sum of computing cost caused by interaction between avatars in the server Sk

e .

The traffic load of server Sk
e can be represented by Equation (2):

LN(Sk
e ) =

SNk∑
d=1∩d6=e

(
∑
aki ∈Sk

e

∑
akj∈Sk

d

W (I(aki , a
k
j ))). (2)

The memory load of server Sk
e can be represented by Equation (3):

LM(Sk
e ) =

ANk∑
i=1

Mas(a
k
i ) + ENk ·mes + MROIA(Sk

e ). (3)

So, the total load on server can roughly be estimated by Equation (4):

L(Sk
e ) = LC(Sk

e ) + LN(Sk
e ) + LM(Sk

e ). (4)

Assume that LCserver(S
k
e ), LNserver(S

k
e ) and LMserver(S

k
e ) respectively are the

max computational load, traffic load and memory load of server Sk
e without degrad-

ing the user experience. So, the resource utilization of server Sk
e can be estimated



8 D. Liu

by Equations (5),(6) and (7), respectively.

UC(Sk
e ) =

LC(Sk
e )

LCserver(Sk
e )
, (5)

UN(Sk
e ) =

LN(Sk
e )

LNserver(Sk
e )
, (6)

UM(Sk
e ) =

LM(Sk
e )

LMserver(Sk
e )
. (7)

Let Threshold over denote the server overload threshold. When the resource uti-
lization of the server exceeds this threshold, it shows that the load of the server is
too much and asks for load migration. In addition, because dynamic ROIA and
static ROIA have a great difference in latency tolerance, therefore they may have
different overload threshold.

Threshold over =

{
1, dynamic ROIA,

0.95, static ROIA.
(8)

Let Threshold light denote the underloading threshold. When the server resource
utilization is under Threshold light, it shows that the server load is too light. To
avoid the problem of load jitter between servers, it uses the threshold Thresholdtop
for setting the upper limit of the server resource utilization after load balancing.

3.3 The Internal Load Balancing in Each ROIA

The internal load balancing works on each ROIA scheduler. Each one is responsible
for load balancing between the servers of each ROIA. It will provide an application
to MRCP Local Controller (MLC) for more hardware resources when the resources
are not enough for this ROIA. Also, it will release some resources to MLC when
there are excess idle resources in this ROIA.

The internal load balancing of ROIA k roughly shows as follows:

Step 1. Update the ServerList which contains the information of servers in ROIA
k, compute the resource utilization (denoted by Uk

i ) of each server in ROIA k
and update the ServerList in descending order.

Step 2. Select the first server (Sk
x) from ServerList, if the resource utilization (Uk

x )
of Sk

x is greater than ThresholdOver then continue to the next step, otherwise
skip to Step 6.

Step 3. Depending on the load capacity required to migrate, select some appro-
priate servers from the tail of ServerList . And according to Equation (2) to
estimate the cost of communication, the servers will be selected in accordance
with the size of the communication cost in ascending order to form an alternative
destination server list – CanList .



A New Dynamic Load Balancing Algorithm for Multi-ROIA 9

Step 4. If CanList is empty, the ROIA Scheduler will apply to MRCP Local Con-
troller for resources and jump to Step 6. Otherwise, choose the first server
(denoted by Sk

y ) from CanList , use Equation (4) to estimate the resource uti-

lization of Sk
y (denoted by Uk

y ), if Uk
y is greater than ThresholdTop then remove Sk

y

from CanList and repeat Step 4, otherwise continue to the next step.

Step 5. Migrate the load to Sk
y , update Uk

x , Uk
y and ServerList, and then jump to

Step 2.

Step 6. Select the last server (Sk
x) from ServerList , if the resource utilization (Uk

x )
is less than ThresholdLight then continue to next step, else skip to Step 11.

Step 7. Whether the application is a local application, if it is to continue to the
next step, otherwise ready to migrate back to the original resource center, and
remove it from ServerList , then jump to Step 6.

Step 8. Depending on the load capacity which needs to be migrated, select some
appropriate servers from the tail of ServerList . And use Equation (2) to estimate
the cost of communication, the servers will be selected in accordance with the size
of the communication cost in ascending order to form an alternative destination
server list – CanList .

Step 9. If CanList is empty, then jump to Step 11. Otherwise, choose the first
server (Sk

y ) from CanList , use Equation (4) to estimate the resource utilization

of Sk
y (Uk

y ), if Uk
y greater than ThresholdTop then remove Sk

y from CanList and
repeat Step 9, otherwise continue to the next step.

Step 10. Migrate the load to Sk
y , release the resource of Sk

x , update Uk
y and

ServerList , then jump to Step 6.

Step 11. Sleep a certain time, and then jump to Step 1.

The algorithm consists of two main parts: Step 2 to Step 5 in algorithm are
the processing of overloading, and Step 6 to Step 10 in algorithm are the processing
of underloading. The applications in local resource center are divided into two
classes: local applications and external applications. The external applications are
the applications migrated from other resource center which is overloading. For such
applications, the processing of underloading is different with the local applications.
The external applications prefer to migrate back to the original resource center,
rather than to remain in this local resource center.

3.4 The Load Balancing Between ROIAs and Resource Centers

The load balancing between ROIAs and resource centers works on MRCP Local
Controller. It mainly includes the processing of the local resources application, the
processing of receiving the response to migration application, and the processing of
receiving the application for resources release.

In the system, the applications for local resources can be divided into the fol-
lowing three categories:



10 D. Liu

1. The resource applications proposed by local static ROIA (SAppList represents
the queue with such applications)

2. The resource applications proposed by local dynamic ROIA (DAppList repre-
sents the queue with such applications)

3. The foreign resource applications proposed by other resources center
(InMAppList represents the queue with such applications)

These three types of resource applications have different priorities when they
are processed. To minimize the resource migration between the resource centers the
local resource application has its priority. Moreover, due to static ROIA has low
latency tolerance, so it will give priority to the resource application proposed by the
static ROIA.

In addition, the local resource center may send resource application to another
resource center during the peak period. This type of application ensures migrating
the load to other resource center, hence named the migration application.

In order to distinguish the above mentioned resource applications, it uses two
additional queues: OSAppList and ODAppList . OSAppList stores static ROIA’s
resource applications which made the system to send migration application but
temporarily has not received any response. ODAppList stores similar applications
of dynamic ROIA.

Therefore, the priority order is as follows:

OSAppList > SAppList > ODAppList > DAppList > InMAppList .

The processing algorithm for resource applications roughly shows as follows.
FreeList stores the relevant information of available resource in the local resource
center.

Step 1. If SAppList 6= ∅, select the first resource item (SA1) from SAppList and
continue to the next step. Otherwise, jump to Step 4.

Step 2. If FreeList 6= ∅, then search the appropriate resource (Sx) for SA1 in
FreeList . And if found then continue to the next step, else move SA1 from
SAppList into OSAppList , send migration application and jump to Step 1.

If FreeList = ∅ , move SA1 from SAppList into OSAppList , send migration
application and jump to Step 10.

Step 3. Assign the resource of (Sx) to SA1 and delete SA1 from SAppList . Then
jump to Step 1.

Step 4. If DAppList 6= ∅, select the first resource item (DA1) from DAppList and
continue to next step. Otherwise, jump to Step 7.

Step 5. If FreeList 6= ∅, then search the appropriate resource (Sy) for DA1 in
FreeList . And if found then continue to the next step, else move DA1 from
DAppList into ODAppList , send migration application and jump to Step 1.



A New Dynamic Load Balancing Algorithm for Multi-ROIA 11

If FreeList = ∅, move DA1 from DAppList into ODAppList , send migration
application and jump to Step 10.

Step 6. Assign the resource of (Sy) to DA1 and delete DA1 from DAppList . Then
jump to Step 1.

Step 7. If InMAppList 6= ∅, select the first item IMA1 from InMAppList and
continue to next step. Otherwise, jump to Step 10.

Step 8. If FreeList 6= ∅, then search the appropriate resource (Sz) for IMA1 in
FreeList . And if found then continue to the next step, else send message (“no
appropriate resource”) to the requester, delete IMA1 from InMAppList and
jump to Step 1.

If FreeList = ∅, send message (“no appropriate resource”) to all the requester
of InMAppList , delete all from InMAppList and jump to Step 10.

Step 9. Send message (“found appropriate resource”) to the requester of IMA1,
delete Sz from FreeList , delete IMA1 from InMAppList and jump to Step 1.

Step 10. Sleep a certain time, and then jump to Step 1.

In addition to the above-described algorithm, there is the processing of receiving
the response to migration application, the processing of receiving the application for
resource release, and so on, in the system.

4 SIMULATION AND RESULTS ANALYSIS

This section describes the simulation of DLBAM and the comparative analysis of
relevant results.

4.1 Experimental Environment

Experiments using Python 3.0 ran a simulation system of DLBAM and traditional
dynamic load balancing algorithm, and designed a simulation environment.

4.1.1 Simulation of Hardware Resources and Applications

In the experiment environment, it has simulated four resource centers in different
time zones. Each center has deployed six different ROIA and the proportion of
dynamic ROIA and static ROIA is 2 : 1. Each resource center has 180 servers and
assumed each ROIA assigned 30 servers initially. For simplicity, the experiment
mainly used the number of concurrent online users to simulate the load size. Under
the premise to ensure good quality of service, the assumed maximum load for each
server is 2 000 online users. If there are more than 2 000 users on one server, the
quality of service begin to decline and may even crash in severe cases (but our
experiment did not simulate the case of crash).



12 D. Liu

In addition, the traditional algorithm for comparison has the same simulation
hardware resource. But in the traditional method, the six ROIAs are deployed
independently, and there is no load balancing between the resource centers.

4.1.2 Simulation of Each Server Load

The experiment refers to the actual server load data in reference [5] and produces the
fluctuant load data for each server. Moreover, the peak load time of each resource
center (four resource centers are numbered by Center 0, Center 1, Center 2 and
Center 3) is different. It simulates the impact of different time zones to the load
changes.

(a) The load changes of server (0,0) in Center 0

(b) The load changes of server (0,0) in Center 1

(c) The load changes of server (0,0) in Center 2

(d) The load changes of server (0,0) in Center 3

Figure 2. The simulation load changes of server (0, 0) in 4 centers

Figure 2 shows the simulated load changes of the server (0, 0) in each resource
center. The ordinate unit of Figure 2 is the number of concurrent online users; the



A New Dynamic Load Balancing Algorithm for Multi-ROIA 13

horizontal axis unit is the timestamp. The interval between two time points in figure
represents two minutes. Figure takes a total of 1081 data points of time, i.e., the
figure shows the load variations during 36 hours (1 080 ∗ 2/60 = 36 hours).

4.2 Experimental Results and Analysis

The following results are all based on the simulate load change data which is de-
scribed in Figure 2. Figure 3 shows the difference between the results of traditional
algorithm and DLBAM based on the same server and same load input.

Figure 3 shows the load changes of server (0, 0) in Center 2 during the tra-
ditional algorithm and DLBAM running. The blue line represents results of the
traditional algorithm run. Due to the peak load of each server on the same re-
source center appears approximately at the same time and no migration between
resource centers in the traditional algorithm, so it happens that no resources are
available during the peak period, but too much resources are available during the
idle period, as blue line shows. Moreover, the number of users exceeds 2 000 approx-
imately during that time from 400 to 700. According to the pre-set experiments
standard, it is indicating that the quality of service begins to decline and may even
crash.

U
ser num

ber

Timestamp
DLBAMTraditional Algorithm

Figure 3. The load changes of server (0, 0) in center 2 during algorithm running

On the contrary, due to having migration between centers in the DBLAM, the
user number does not exceed 2 000 during the experiment time, hence the decline
of quality of service is avoided. In addition, due to receiving the load of other
centers, this server maintains relatively high resource utilization during the low
peak period.

Figure 3 shows the difference between the traditional algorithm and DLBAM
on one single server and Figure 4 shows the difference from the perspective of entire



14 D. Liu

resource center. In order to facilitate the representation, it takes the ratio of the
actual user number to the maximum load as the ordinate (the ratio is multiplied
by 100 in Figure 4). The maximum load is assumed having 2 000 online users for
each server to ensure good quality of service. The ratio may reflect the resource
utilization.

In Figure 4, it shows the ratio changes of each center during algorithm running.
The red lines in the figure generally vary between 40 and 100. This indicates that
it is not overloaded during the peak period and keeps some suitable load during the
low peak period. But the blue lines generally vary between 5 and 130. That means
it is overloaded during the peak period and a lot of free resources appears during
the low peak period.

From the above analysis, it can be seen that the performance of DLBAM on
a single server or on the whole center is better than the performance of traditional
algorithm.

5 RELATED WORK

Because some of related work has been introduced in the previous section, only a few
other related works about dynamic load balancing are introduced here.

Ren [7] proposed a dynamic load balancing algorithm for cloud computing on the
basis of an existing algorithm called WLC (Weighted Least Connection) [8]. WLC
assigned a new task based on the number of links on each node. Firstly, it calcu-
lated the number of links on each node in the cloud, and then selected the node with
minimum links and assigned the task to the node. So WLC algorithm did not con-
sider the other current situation of each node, such as CPU speed, storage capacity
and network bandwidth, etc. Ren proposed an improved algorithm called ESWLC
(Exponential Smooth Forecast based on Weighted Least Connection). ESWLC al-
gorithm determined whether the node receives a new task after achieving a relative
performance of the node, such as CPU power, memory performance, number of links
etc.

Mehta and other researchers took a variety of distributed computing environ-
ments (such as cloud computing, grid and cluster) into account and proposed WCAP
(Workload and Client Aware Policy) [9] based on content-aware dynamic load bal-
ancing algorithm. WCAP is a hybrid approach. However, the performance of WCAP
in the real distributed environment (e.g. Hadoop) needs a further research verifica-
tion.

Wang and other researchers proposed a hierarchy load balancing algorithm,
called LBMM (Load Balancing Min-Min) [10], based on the OLB (Opportunistic
Load Balancing) algorithm [11]. OLB algorithm is a static load balancing strategy
for the purpose of keeping each node of cloud with a certain load. It does not consider
the execution time of each node, which may lead to slow down of the task process-
ing and also a bottleneck problem may appear. In order to solve these problems,
LBMM algorithm takes three-layer architecture. The first layer is Request Manager



A New Dynamic Load Balancing Algorithm for Multi-ROIA 15

(d) The ratio changes of Center 3

Figure 4. The ratio changes of centers during algorithm running



16 D. Liu

which is responsible for receiving task requests and assigning the task requests to
a Service Manager. When Service Manager receives a task request, it divides it into
some subtasks in order to accelerate the processing speed. After the division Service
Manager assigns the subtask to service node which is responsible for the execution
of subtask.

Bezerra [12] presented a load balancing strategy which uses KD-tree algorithm to
dynamically divide the virtual world of ROIA. Kim [13] presented an adaptive load
algorithm for solving the problem of traditional graph partitioning method in ROIA.
Li [14, 15, 16] and Balogh [17] have done some related works on cloud computing
security problems. Nguyen [18] presented a novel development and deployment
framework for cloud distributed applications.

In addition, we have also done some preliminary related works on ROIA. Refer-
ence [2] proposed a first step of new approach to achieve high scalability in ROIA
under cloud environment. And to solve some problem in the traditional Dead Reck-
oning algorithm, the reference [19] proposed an improved DR algorithm based on
target-extrapolation in ROIA.

6 CONCLUSIONS

ROIA is an emerging class of large-scale distributed application which can support
millions of concurrent users spread across the world. MMOG is one of the popular
and market-relevant representatives of ROIA. Due to the dynamic changes in the
number of concurrent users as well as the uncertainty of user operations, the dynamic
load balancing is a key issue for ROIA. However, most of the previous works are
dedicated to the load balancing in a single ROIA without considering the variety of
ROIAs. We take the advantage of differences between ROIAs and propose a new
load balancing algorithm for multi-ROIA to improve the scalability of ROIA and
increase the resource utilization of the system.

This paper firstly describes the motivation of the new load balancing algo-
rithm. ROIA contains a variety of types, and the different type ROIA has some
differences in latency tolerance, interaction complexity, etc. We take an advan-
tage of these characteristics to improve the scalability of ROIA. In Section 3, we
present the basic idea of the new algorithm, related definition and formula and the
main part of the dynamic load balancing algorithm for multi-ROIA. At the end
we describe the simulation of DLBAM and the comparative analyses of relevant
results.

Acknowledgments

This work is supported by the National Natural Science Foundation of China
(No. 61402197).



A New Dynamic Load Balancing Algorithm for Multi-ROIA 17

REFERENCES

[1] Glinka, F.—Raed, A.—Gorlatch, S.—Ploss, A.: A Service-Oriented Interface
for Highly Interactive Distributed Application. In: Lin, H. X. et al. (Eds.): Euro-Par
2009 – Parallel Processing Workshops. Springer, Berlin, Heidelberg, Lecture Notes in
Computer Science, Vol. 6043, 2010, pp. 266–277, doi: 10.1007/978-3-642-14122-5 31.

[2] Liu, D.—Zhao, Y.-L.: A New Approach to Scalable ROIA in Cloud. Proceedings
of the 2013 4th Emerging Intelligent Data and Web Technologies (EIDWT), Xi’an,
2013, pp. 51–55, doi: 10.1109/EIDWT.2013.13.

[3] Claypool, M.—Claypool, K.: Latency and Player Actions in Online
Games. Communications of the ACM, Vol. 49, 2006, No. 11, pp. 40–45, doi:
10.1145/1167838.1167860.

[4] Claypool, M.: The Effect of Latency on User Performance in Real-Time
Strategy Games. Computer Networks, Vol. 49, 2005, No. 1, pp. 52–70, doi:
10.1016/j.comnet.2005.04.008.

[5] Nae, V.—Iosup, A.—Prodan, R.: Dynamic Resource Provisioning in Massively
Multiplayer Online Games. IEEE Transaction on Parallel and Distributed Systems,
Vol. 22, 2011, No. 3, pp. 380–395, doi: 10.1109/tpds.2010.82.

[6] Jagex Ltd.: RuneScape. http://www.runescape.com/, February 2014.

[7] Ren, X.—Lin, R.—Zou, H.: A Dynamic Load Balancing Strategy for Cloud Com-
puting Platform Based on Exponential Smoothing Forecast. Proceedings of Inter-
national Conference on Cloud Computing and Intelligent Systems (CCIS), Beijing,
IEEE, 2011, pp. 220–224, doi: 10.1109/ccis.2011.6045063.

[8] Lee, R.—Jeng, B.: Load-Balancing Tactics in Cloud. Proceedings of International
Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (Cy-
berC), Beijing, 2011, pp. 447–454, doi: 10.1109/cyberc.2011.79.

[9] Mehta, H.—Kanungo, P.—Chandwani, M.: Decentralized Content Aware Load
Balancing Algorithm for Distributed Computing Environments. Proceedings of the
2011 International Conference and Workshop on Emerging Trends in Technology
(ICWET ’11), Mumbai, 2011, pp. 370–375, doi: 10.1145/1980022.1980102.

[10] Wang, S.-C.—Yan, K.-Q.—Liao, W.-P.—Wang, S.-S.: Towards a Load Balanc-
ing in a Three-Level Cloud Computing Network. Proceedings of the 3rd International
Conference on Computer Science and Information Technology (ICCSIT), New York,
2010, pp. 108–113, doi: 10.1109/iccsit.2010.5563889.

[11] Sang, A.—Wang, X.—Madihian, M. et al.: Coordinated Load Balancing,
Handoff/Cell-Site Selection, and Scheduling in Multi-Cell Packet Data Systems. Wire-
less Networks, Vol. 14, 2008, No. 1, pp. 103–120, doi: 10.1007/s11276-006-8533-7.

[12] Bezerra, C. E. B.—Comba, J. L. D.—Geyer, C. F. R.: Adaptive Load-
Balancing for MMOG Servers Using KD-Trees. Computers in Entertainment, Vol. 10,
2012, No. 3, Art. No. 5, doi: 10.1145/2381876.2381881.

[13] Kim, T.-H.: Adaptive Load Partitioning Algorithm for Massively Multiplayer On-
line Games. In: Kim, K., Chung, K. Y. (Eds.): IT Convergence and Security
2012. Springer, Dordrecht, Lecture Notes in Electrical Engineering, Vol. 215, 2013,
pp. 383–391, doi: 10.1007/978-94-007-5860-5 47.

https://doi.org/10.1007/978-3-642-14122-5_31
https://doi.org/10.1109/EIDWT.2013.13
https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1016/j.comnet.2005.04.008
https://doi.org/10.1109/tpds.2010.82
http://www.runescape.com/
https://doi.org/10.1109/ccis.2011.6045063
https://doi.org/10.1109/cyberc.2011.79
https://doi.org/10.1145/1980022.1980102
https://doi.org/10.1109/iccsit.2010.5563889
https://doi.org/10.1007/s11276-006-8533-7
https://doi.org/10.1145/2381876.2381881
https://doi.org/10.1007/978-94-007-5860-5_47


18 D. Liu

[14] Li, J.—Wang, Q.—Wang, C.—Cao, N.—Ren, K.—Lou, W.: Fuzzy Keyword
Search over Encrypted Data in Cloud Computing. Proceedings of The 29th Con-
ference on Computer Communications (INFOCOM), IEEE, 2010, pp. 441–445, doi:
10.1109/INFCOM.2010.5462196.

[15] Li, J.—Chen, X. F.—Li, M.—Li, J.—Lee, P. P. C.—Lou, W.: Secure Dedu-
plication with Efficient and Reliable Convergent Key Management. IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 25, 2014, No. 6, pp. 1615–1625, doi:
10.1109/tpds.2013.284.

[16] Li, J.—Chen, X. F.: Efficient Multi-User Keyword Search over Encrypted Data in
Cloud Computing. Computing and Informatics, Vol. 32, 2013, No. 4, pp. 723–738.

[17] Balogh, Z.—Gatial, E.—Hluchý, L.—Toegl, R.—Pirker, M.—Hein, D.:
Agent-Based Cloud Resource Management for Secure Cloud Infrastructures. Com-
puting and Informatics, Vol. 33, 2014, No. 6, pp. 1333–1355.

[18] Nguyen, B. M.—Tran, V.—Hluchý, L.: A Generic Development and Deploy-
ment Framework for Cloud Computing and Distributed Applications. Computing and
Informatics, Vol. 32, 2013, No. 3, pp. 461–485.

[19] Liu, D.: An Improved DR Algorithm Based on Target Extrapolating in ROIA Cloud
Platform. International Journal of Distributed Sensor Networks, Vol. 9, 2013, No. 12,
Art. No. 637328, 8 pp., doi: 10.1155/2013/637328.

Liu Dong works in the Computer Science Department of JiNan University. His research
interests include resource management and monitoring in distributed systems.

https://doi.org/10.1109/INFCOM.2010.5462196
https://doi.org/10.1109/tpds.2013.284
https://doi.org/10.1155/2013/637328

