
Computing and Informatics, Vol. 37, 2018, 1363–1385, doi: 10.4149/cai 2018 6 1363

EXPLOITING THE USE OF COOPERATION
IN SELF-ORGANIZING RELIABLE MULTIAGENT
SYSTEMS

Sebnem Bora

Department of Computer Engineering
Ege University
35100 Izmir, Turkey
e-mail: sebnem.bora@ege.edu.tr

Abstract. In this paper, a novel and cooperative approach is exploited introducing
a self-organizing engine to achieve high reliability and availability in multiagent sys-
tems. The Adaptive Multiagent Systems theory is applied to design adaptive groups
of agents in order to build reliable multiagent systems. According to this theory,
adaptiveness is achieved via the cooperative behaviors of agents and their ability to
change the communication links autonomously. In this approach, there is not a cen-
tralized control mechanism in the multiagent system and there is no need of global
knowledge of the system to achieve reliability. This approach was implemented to
demonstrate its performance gain in a set of experiments performed under different
operating conditions. The experimental results illustrate the effectiveness of this
approach.

Keywords: Adaptive systems, availability, autonomous agents, redundancy, soft-
ware reliability

Mathematics Subject Classification 2010: 68T42, 68M15

1 INTRODUCTION

Today, technology has become an integral part in the majority of our lives. From
smart phones, to laptops to tablets – we are heavily connected to networks and sys-
tems; computers perform critical tasks in many areas of our lives every millisecond.



1364 S. Bora

High reliability and availability are of the utmost importance to the majority of
these computer systems. For example, such systems include nuclear reactor facili-
ties, global air traffic control systems, and banking systems.

In order to build reliable systems, the programming is quite complex since such
systems are usually software intensive. A promising approach to deal with com-
plexity is to provide robustness, autonomy, and adaptation to a system by applying
self-organizing algorithms. These algorithms are defined based on self-organization
mechanisms inspired by nature. Ant and bee swarms, flocks of birds, and school of
fish, the human immune system are typical examples of natural systems that exhibit
properties inherent to self-organization. Swarms provide inspiration for mobile net-
works systems management [1], such as load-balancing and routing [2]. Solutions
for the distribution of tasks to the available nodes and distribution of data between
nodes in computational grids vary from techniques inspired by bee foraging behav-
ior [3] to select the algorithms for executing small pieces of data, to business and
market inspired techniques for dynamically changing the task assignment [4, 5]. The
use of mobile agents makes us aware of network conditions. Mobile agents [6] can
be supportive for intrusion detection and intrusion response in large-scale network
infrastructures by following the behavior of the human immune system [7] and the
ant foraging behavior [8]. Insect colonies based models are exploited in agent-based
software for manufacturing control [9, 10]. PROSA is a representative example of
the ant-like approach, where agents mimic the ants’ behaviors [11, 12].

Reliability and availability are achieved via redundancy, i.e., duplication of crit-
ical functions exists in the system so that application software can reconfigure and
maintain (continue to perform) their tasks in the presence of faults in the system.
One technique that creates redundancy in a multiagent system (MAS) is adding ex-
tra computers or agents. In order to improve reliability and ensure the availability of
the MAS organization, critical agents for the system’s operation are replicated into
groups. This paper presents a novel replication approach that includes resilience,
self-organization, and adaptation as its primary properties. It employs a technique
grounded in the Adaptive Multiagent Systems (AMAS) theory; therefore, replicating
agents into groups and sharing limited resources among them are achieved without
a central control or global knowledge about the MAS organization. These properties
result from some simple behaviors of agents. The AMAS theory conceptualizes the
design of an adaptive multiagent system and provides agents with adaptive capabil-
ities [13]. According to this theory, adaptiveness is based on cooperative behaviors
meaning that an agent seeks to help the most troubled agent in the system while
achieving its goal. When agents encounter similar problems simultaneously, the
program computes a degree of criticality in order to understand potential impacts
of these problems on achieving its goal. Considering this criticality, the agent can
determine what the most cooperative action should be taken.

The AMAS theory has been applied in various application domains such as
dynamic ontologies [14], aircraft design [15], simulation of the functional behavior
of a yeast cell [16], crisis management [17], bioprocesses control [18], ambient sys-
tems [19], product design [20], maritime surveillance [21, 22], and self-organizing



Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1365

biological neural networks [23, 24, 25]. In this study, the AMAS theory is applied
to the adaptive replication to effectively improve reliability in MAS organizations.
Applying the AMAS theory to the model, in conjuncture with the software, creates
a more reliable and adaptive MAS distribution because the system is lacking a cen-
tralized control. A key element that sets this study apart from previous research is
that the adapting replica groups are achieved in a self-organized way without a cen-
tralized control. Agents applying this approach use local information and behave in
cooperative ways to help the troubled neighbors. In previous studies, agents were
usually associated with an adaptive replication manager which dynamically com-
puted the criticalities of agents [26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. The quantities
that define the criticalities of agents are used for calculations to share the limited
resources between the replica groups. The adaptive replication manager uses an ob-
servation service to collect global data about agents in the organization in order to
calculate agents’ criticalities.

In this study, the AMAS theory is adopted in the reliable MAS where each
agent observes whether there is an increase or a decrease in its criticality. If there
is an increase, it decides to increase the number of its replicas. However, during
the decision process, the leader exploits only its local information when making
a decision about the change in the agent’s criticality.

This research thoroughly explains how the AMAS theory is applied to MAS in
order to enhance reliability and availability. This approach is the first one that uses
the AMAS theory for managing adaptive replication (not only in multiagent systems,
but in general). A case study chosen to illustrate the AMAS theory is exemplified
in the design of a library system which includes cooperative agents with local goals
and partial views of their environment. In our conclusion some experimental results
are presented to exhibit the effectiveness of this approach. The remaining sections
of this paper are organized as follows. Section 2 explores related works; Section 3
provides background information detailing the AMAS theory; Section 4 introduces
the agent-based model; Section 5 illustrates the experimental model developed for
the study, presents data and provides the analysis and discusses the approach; and
Section 6 summarizes the study.

2 RELATED WORK

There is a large number of multiagent platforms; however just a few offer reliability.
Those multiagent platforms provide useful solutions of the problem of reliability in
MAS. Since the approach presented in this study is a replication-based approach,
scholarly articles and case studies associated with this topic published in computer
science literature have been investigated.

In order to increase reliability in MAS, Fedoruk and Deters implemented trans-
parent replication via proxies [36]. Their approach is a static replication approach
which disregards the idea of changing replication techniques at run time. Thus,
replication is only realized by a programmer before an application starts.



1366 S. Bora

Guessoum et al. presented an adaptive multiagent architecture that was im-
plemented with the DIMA [26] platform and DarX middleware [27, 28]. In DarX,
software components can either be replicated or not, and it is possible to change
the replication strategy at run time. DarX middleware must be integrated into any
multiagent organization in order to improve reliability in the organization.

DimaX [29] is a fault-tolerant multiagent development platform that is the inte-
gration of DarX into DIMA. DimaX is founded on system level (DarX middleware);
application level (agents); and monitoring level. In DimaX, the criticality of agents
is calculated by using an interdependence graph. At the monitoring level, the control
of replication is monitored by using an observation service [30, 31, 32].

Bora and Dikenelli proposed an approach which provided flexibility to multi-
agent organizations in terms of fault tolerance because the fault tolerance policies
were implemented as reusable plan structures. Thus, whenever an agent needed
to be made fault-tolerant, the action was performed by sending a request to that
agent [33]. Bora and Dikenelli introduced a self-adaptive replication approach to
exploit a feedback control loop and a proportional controller within a replication
infrastructure [34, 35]. This approach was used to examine the criticality of specific
agents. Moreover, Bora and Dikenelli presented a replication approach based on
role concept for multiagent systems. They defined a “fault tolerant” role that is
responsible for replicating instances of critical roles, coordination between critical
role instances and satisfying all replication-based fault tolerance requirements [37].

In this study, the AMAS theory is adopted in the reliable MAS where each
leader agent observes whether there is an increase or a decrease in its criticality.
The leader exploits only its local information when it decides to change the agent’s
criticality. This approach is the first one that uses the AMAS theory for manag-
ing adaptive replication (not only in multiagent systems but in general). Further,
the self-organizing replication approach in this study provided higher performance
when compared to other self-adaptive replication approaches [30, 32, 35, 28], replica
groups’ monitoring costs not present in this state of the art increased due to the
observation mechanisms and the need of global information when the self-adaptive
replication approach was applied.

3 AMAS THEORY

The Adaptive Multi-Agent System (AMAS) theory was developed to act as the en-
gine for any system to self-adapt itself to any changes encountered in a dynamic
environment. It explains the cooperative relationship between the system’s internal
operations and its functional adequacy, thus ensuring that the cooperative system
carries out the appropriate task it was designed for. It was proved that there is
at least one cooperative internal medium system that accomplishes an equivalent
function of any functionally adequate system in the same environment. In a cooper-
ative internal medium system, the components of a system are always collaborating.
This secures a symbiotic relationship and provides protection from Non Cooperative



Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1367

Situations (NCS) which may be harmful for their cooperative situations. In regard
to MAS, NCS represent situations that are against the cooperative social behaviors
of an agent; thus, when identifying an NCS, an agent alters its relationships with
other agents in order to return to a cooperative state [13].

If a multiagent system adopts AMAS, an agent can have two types of behavior:

1. nominal behavior; and

2. cooperative behavior,

which is divided into tuning, reorganization, and evolution. An agent with the
cooperative behavior attempts to assist other agents; consequently, this agent has
to detect and repair the NCS and avoid producing a new NCS [16].

A multiagent system applying AMAS includes agents that try to decrease the
criticality of troubled agents by exhibiting local and cooperative behaviors. These
behaviors maintain the system’s ability to produce an adequate global function.
Each agent calculates its own criticality, a function that calculates whether a signal
is activated for a NCS or not by examining the criticality value and a threshold [22].
If the agent decides that a NCS has occurred, it exploits the situation by adapting
itself to this new situation triggering tuning and reorganization behaviors. Tun-
ing behaviors modify the parameters computed by nominal behaviors. If it fails to
solve the NCS, it triggers the reorganization behavior by sending messages (feed-
back) and/or it informs the cooperative agents that, in turn, eliminate the NCS and
transmit feedback.

Reorganization behaviors modify the agent’s interaction with its environment or
with other agents. If an agent cannot execute its nominal behavior because of NCS,
experiences a failed tuning behavior and/or sends requests that cannot be served,
then it may create a new communication link with a new agent. If the reorganization
behaviors fail to solve the NCS, the evolution behaviors resolve the NCS by creating
new agents or removing agents [16, 24].

While applying the AMAS theory, a programmer defines the agents of the sys-
tem, the agents’ nominal behaviors, any NCS the agents may encounter, and co-
operative behaviors to overcome each NCS. In the following section, the nominal
behaviors of reliable agents are explained in detail.

4 SELF-ORGANIZING RELIABLE AGENTS

The self-organizing reliable MAS consists of three variables:

1. the domain agents (Agent-0 to Agent-N) and their replicas;

2. the environment agents and their replicas; and

3. the environment.

Agents and their replicas run on computers and are grouped according to either
active or passive replication approaches [38, 39]. The methods of building consis-
tency in groups vary in active or passive replication approaches; nevertheless, in



1368 S. Bora

both approaches, one replica is designated as the leader and is responsible for pro-
viding responses. If a leader fails, any replica can become a leader. Domain agents
(Agent-0 to Agent-N) are leaders of their groups.

In addition to replication techniques, the replication degree, which provides
the level of redundancy and assigns the number of replicas within a group, is es-
sential in achieving redundancy in MAS while using replication policies. In static
replication, both the replication degree and approach are set by a programmer dur-
ing initialization. In adaptive replication, the group leader primarily decides on
its replication degree based on system resources and its criticality. The agent’s
criticality is a numerical quantity that indicates its importance in the system.
However, there is not just one general description and/or definition attached to
an agent’s criticality. It is the programmer who decides, after careful considera-
tion, the agent’s varying properties. In general, this process incorporates an ob-
servation service that transparently monitors the agents’ behaviors as well as the
availability of resources, and adaptively reconfigures the system according to the
agents’ criticalities according to data evaluation collected by the observation ser-
vice [26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

According to this design, when the leader performs a self-organizing replication,
the group leader will either increase and/or decrease the replication degree without
a central control (without an observation service or a replication manager) based
on global knowledge of the environment. The leader collects data related to its
communication activities and calculates the change in the value of its criticality. The
value of an agent’s criticality is determined by a quantity that indicates whether the
importance of an agent to the system increases or not. If the leader agent’s criticality
increases, a request message is transmitted to the environment agent which provides
resources (hosts in the environment) to agents for replication. Next, a new replica
of that particular agent is created. On the other hand, if there is a gradual decrease
in the agent’s criticality, the replica must be removed after a certain period.

4.1 Nominal Behaviors of Reliable Agents

In this section, reliable agents’ nominal behaviors are briefly described. These be-
haviors are implemented to form the infrastructure for achieving reliability and
availability in a goal-oriented MAS architecture [40].

In a reliable self-organizing MAS, each agent performs its actions without a glo-
bal function (goal) for the system; hence, a dependable (reliable and available)
multiagent system emerges. Each reliable agent achieves specific goals, such as
Group Communication, Failure Detection, Election of a New Leader, Recovery from
Failure, and Adaptive Replication (shown in Figure 1), while being cooperative.
In order to achieve these identified goals, their plans and the reusable services are
realized. These services and plans are described in more detail in [41].

In order to improve replication in a self-organizing manner, the replication plan
was modified and Self-Organizing Replication, Evolution, and Reorganization plans
were created. To replicate new replicas, the leader executes the Replication plan



Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1369

Figure 1. Goals and plans for the system’s reliability

as many times as the number of replicas needed to be replicated, and asks the
environment agent to locate a suitable host where new replicas can be placed.

For self-organizing replication, the critical agents must be identified. Each leader
agent determines whether the change in the criticality occurs or not. The number of
messages received by each agent, the degree of system’s reliability, and the agent’s
role criticality are the example of certain metrics needed to calculate the agents’
criticalities. In order to achieve the Adaptive Replication goal, the Self-Organizing
Replication plan is executed.

4.2 Applying the AMAS Approach for Reliability

In order to achieve reliability in MAS, critical agents periodically monitor their
criticalities. This data indicates the potential impact of the agent’s failure in the
MAS. We must consider two cases to ensure reliability in multiagent systems. Firstly,
multiagent systems must have static organization structures so that critical agents
can be identified and replication performed by the programmer before run time.

Secondly, if the agent’s criticality cannot be determined before run time due
to the multiagent systems’ dynamic organization structures, critical agents can be
dynamically evaluated at run time. In addition, metrics can be used for dynamically
estimating and updating agents’ criticalities in the MAS. Within the MAS organi-
zation, a role is defined as an abstract characterization of social agent’s behavior in
a specific domain and has a different operational impact in the MAS organization.
The concept of a role represents the importance of an agent in an organization,
and its dependencies from other agents, i.e., those affecting their criticalities in the
multiagent organization.

The agent’s dependency on another specific agent is yet another metric that
indicates the agent’s criticality. If for some reason, a critical agent that relies on an-



1370 S. Bora

other agent fails, then goals will be difficult to achieve. The dependency on an agent
is obtained from the number and performatives of the messages received. Messages,
which are considered in terms of an agent’s criticality in this work, contain perfor-
matives such as request, request-whenever, query-if, query-ref, and subscribe [37].

In this research, the change in the value of an agent’s criticality is calculated
by using precise formulas. If there is an increase in the value of agent’s criticality,
it signals the agent has become more critical than before and needs to have new
replicas. The change in the agent’s criticality in the current period, ∆Critic(t), is
given below:

∆Critic(t) = Activity(t) − Activity(t− 1) + Creliable(t). (1)

• Creliable(t): Is the contribution of the reliability of the system to the criticality in
the current period. The Creliable is the difference between the number of failures
in a group and half the number of replicas in the group in terms of a time
interval. If the value of Creliable is larger than 0, then the contribution of the
Creliable to the criticality is added. If the number of failures for a replica group
is less than half the number of replicas, there is no point worrying about the
system’s reliability. In this case, the contribution of the reliability of the system
is set to zero.

• Activity(t): Is the degree of an agent’s activity in the current period. Activity(t−
1) is determined for the last period and stored in the data structure. The value of
the agent’s role criticality and the ratio of the change in the number of messages
sent to an agent for a specific role relative to the average number of messages over
a number of periods are used for calculations of Activity(t) as in the following
equation.

Activity(t) = a ∗ role(t) + b ∗ Ratio req(t) (2)

• a, b: Coefficients for contributions of the weight of the role and the average
number of requests to the Activity(t).

• role(t): The value corresponding to the weight of the role in the current period.
The weights of the roles are explicitly defined in the role ontology before the
program starts.

• Ratio req(t): The ratio of the change in the number of messages sent to an agent
for a specific role to the average number of messages over a number of periods.

If ∆Critic(t) < 0, it specifies the agent’s criticality has decreased; however, if
∆Critic(t) > 0, it signals the agent’s criticality has increased. Next, the number of
replicas of the group must be increased by 1. The agent asks the environment agent
to provide a resource to create a new replica.

Following the calculations that determine the agent’s criticality value, the leader
of a replica group executes a Self-Organizing Replication plan in which a self-orga-
nizing replication is performed. The Self-Organizing Replication plan is given in
Figure 2.



Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1371

Figure 2. Algorithm for self-organizing replication

The first task of the Self-Organizing Replication plan is to determine the change
in the agent’s criticality, ∆Critic(t), by using the number of requests received over
several periods, the number of failed replicas, and the weight of the role the agent
has played (line 1 in Algorithm 1 in Figure 2).

If ∆Critic(t) is a positive integer, then a message containing a copy request is
prepared and sent to the environment agent by using the send method (line 3 in
Algorithm 1 in Figure 2). When the environment agent receives this message, it at-
tempts to find a suitable host where new replicas will be placed. After an available
host’s address is obtained, the environment agent sends a request message to the
agent to be replicated in order to convey the agent’s internal state. As previously
stated, the agent’s internal state is serialized and written to a text file (line 7 in
Algorithm 1 in Figure 2). Several Remote Method Invocation (RMI) messages are
then sent to the environment agent to transfer both the agent’s knowledge and in-
ternal state (line 8 in Algorithm 1). Thus, both sets of data are needed to commence
the replication process.

The remote host’s cloning server provides storage for the replicated agent. Mul-
tiple messages using RMI are sent to the cloning server by the environment agent to
transfer the agent’s knowledge and internal state received from the critical agent to
be replicated. Upon receiving the RMI messages from the environment agent, the
cloning server creates a new replica by using the contents of RMI messages. Next,
the cloning server places the unserialized agent’s state, libraries and source code to
the selected paths and executes the agent’s source code.



1372 S. Bora

When the new replica is launched, it has identical state as the leader and contains
the last view of the group. It then multicasts a JOIN message informing the other
replicas that it has joined the group; subsequently, the other replicas register the
new replica to their membership lists.

When ∆Critic(t) is a negative integer, it demonstrates the agent’s criticality
has decreased in the current period. If this occurs, the freqdec variable is increased
by 1 so that it is possible to determine the number of periods in which the agent
has experienced low levels of criticality (line 2 in Algorithm 1).

4.3 Identification of Non-Cooperative Situations

The proposed self-organizing replication architecture, in which replica agents can
either be inserted or removed, is subject to NCS. Each NCS is identified by analyzing
problematic stages of reliable multiagent systems.

Two kinds of NCS are identified in this work, the first being Unable to create
a new replica. It occurs when the environment does not provide a resource to
an agent that needs to replicate a new replica. The second NCS is Bad Message
Density.

4.3.1 NCS: Unable to Create Replica

If an environment agent does not provide a resource to an Agent i that needs to
replicate, it will send a message informing that there are no available resources. If
an agent receives this message, it increases freqa, which is termed a complain variable
(see line 5 in Algorithm 1).

During the next period, the agent’s criticality might increase. If so, it will then
send the environment agent a new request for creating a new replica. The envi-
ronment agent must find available resources for replication. If it fails, it informs
the agent by sending a message containing No available resources. In this case, the
Unable to create a replica NCS occurs and freqa is increased by 1 (line 5 in Algo-
rithm 1). Concurrently, the environment agent waits to receive a message containing
Available resource:IP. When it receives the message, it is able to provide a resource
to Agent i and initialize the Create a Replica plan [41] in order to replicate a new
replica of Agent i.

4.3.2 Bad Message Density

The number of requests received by an agent exceeds a threshold value.

4.4 Cooperative Behaviours

In AMAS theory, an agent can exhibit two types of behaviour, nominal and cooper-
ative. An agent’s nominal behaviours in a reliable MAS are explained in Section 3.



Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1373

As aforementioned, the cooperative behaviours are categorized into tuning, reorga-
nization, and evolution.

One would presume an autonomous and cooperative agent is able to modify
its replicas by adjusting its internal parameters by adopting a tuning behaviour.
However, the tuning behaviour is not considered in this work since the consistency
between replicas is one of the main issues in reliable systems. If the internal param-
eters of agent replicas are modified by triggering a tuning behaviour to overcome
any NCSs, consistency between replicas cannot be continuously maintained. Since
the tuning behaviour is not adopted in this approach, a cooperative agent adopts
a reorganization behaviour in which it tries to change the way it interacts with
others. The reorganization behaviours of reliable agents are implemented using the
Reorganization plan.

The last category behaviour that may be adopted by a reliable agent is the
evolution. In evolution behaviour, a replica can either be created or removed (e.g.,
if ineffective, it must leave the system). In these two last levels, the propagation of
a problem to other agents is indeed possible if an agent is not able to execute its
nominal behaviour.

The evolution behaviours of reliable agents are implemented using the Evolution
plan (illustrated in Figure 3), which corresponds to the creation and/or removal of
reliable agent’s replicas. There is an underlying assumption that no replica can be
created or removed simultaneously.

NCS is suppressed by executing the aforementioned plans as described in the
following subsections. By executing two plans, an agent’s criticality value will de-
crease, as these NCS increase the agent’s criticality. The evolution behaviour of
reliable agents will be explained first.

4.5 Suppression of “Unable to Create Replica” NCS

When an environment agent does not provide a resource to an Agent i and the
complain variable freqa exceeds a predefined threshold thresha, the Agent i sends the
feedback message Need a new replica to its neighbours. This message specifically
requests an increase in the number of replicas (line 6 in Algorithm 1).

When an agent receives feedback from one or more neighbours (or from its
environment), it may retro-propagate a feedback to its own neighbours. When the
agent receives the Need a new replica message, the Evolution plan in Figure 3 is
initialized. If the agent is a neighbour, it then stores the number of the Need a new
replica messages (nofai) in a data structure (line 1 in Algorithm 2 in Figure 3). If
nofai exceeds a certain value threshc (line 2 in Algorithm 2), it tries to cooperate
with the Agent i.

If its criticality decreases over a certain number of periods (i.e. freqdec is larger
than threshdec), it then kills one of its replicas (line 3 and 4 of the Evolution plan).
After removing the replica, the other replicas in the group also delete this agent
from their membership lists and it informs the environment agent (line 5 of Algo-
rithm 2 in Figure 3). Upon receiving a new replica creation request, the environ-



1374 S. Bora

Figure 3. Algorithm for the evolution behaviour

ment agent will then create a new replica in the host that has been released by
the neighbour’s replica. In this case, the number of replicas of Agent i increases
by 1, thus the Agent i stops complaining and sets the value freqa to zero (line 9
of Algorithm 1 in Figure 2). If there is no decrease in the neighbour’s criticality
value of Agent i (i.e., it is still complaining) during a certain number of periods, it
then forwards the Need a new replica message to its neighbours (line 6 in Algo-
rithm 2).

4.6 Suppression of “Bad Message Density” NCS

When the number of requests received by Agent i exceeds a threshold value threshm,
the Agent i sends the querying agent a message informing that the message density
is inadequate.

When the number of messages received by the querying agent is high, the pri-
mary action of the Reorganization plan is activated by identifying the provision as
the sender agent (i.e. Agent i). Whenever Agentn has received this message, the
value of nofm is increased by 1 (line 2 in Algorithm 3 in Figure 4). If the value
of nofm exceeds a threshold threshfm, Agentn searches for a new agent in order to
send its queries. Therefore, it asks the Directory Facilitator (DF) to send Agent j
so that it can provide the same service as Agent i for its queries (line 3 in Algo-
rithm 3 in Figure 4). In order to prevent interaction with Agent i, Agent i is removed
from the knowledge base when DF sends the identifier of Agent j (line 4 and 5 in
Algorithm 3).

Next, when a new agent’s identifier has been received from the Directory Facil-
itator (DF), the new agent’s identifier is included to the knowledge base of Agentn
in order to contact with Agent j. Afterwards, it will be possible for it to send its
queries to that agent (line 6 in Algorithm 3 in Figure 4). In this case, both the



Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1375

agent’s activity and criticality value decrease.

Figure 4. Algorithm for the reorganization behavior

5 EXPERIMENTS

In order to evaluate the self-organizing replication based on AMAS theory, a library
system was designed that included two specific agents – library assistant agents and
user agents. The latter were designed to query library assistant agents. Each library
assistant agent manages a different library and stores the library knowledge (i.e.
bibliographical information) using the library ontology. Instances of this ontology
hold the properties of all periodicals and books; for example, the title, the author(s),
the ISBN number, and keywords related to documents.

In the case study, each user agent interacted with a user when it received a book
and/or periodical request and then forwarded the request directly to all of the library
assistant agents. Next, the library assistant agent executed a single plan to match
the request to the document’s ontology instance(s) and responded with the sources
of the bibliographical information contained in a message. When the user agent
received the response from the library assistant agents, it then selected a library
where the source was located and provided the result to the user. In this case
study, the user agents were dependent upon the library assistant agents since the
library assistant agent was a critical and reliable agent for the library system’s
operation.

The library system was implemented by using Semantic Web Enabled Multiagent
System Development Framework (SEAGENT) [42] and Java Version 1.5.0. The tests
were run on a computer with Intel Core i7 CPU and 64 GB of RAM.



1376 S. Bora

5.1 Costs of Reliability

In a reliable multiagent system, there must be multiple replicas of an agent. Ac-
cording to the preferred replication approach, those replicas may run concurrently,
possibly in different environments. The cost of reliability of a multiagent system us-
ing a replication approach is the sum of the cost of replica creation/deletion, replica
usage, and overheads incurred by the coordination of its replicas. Moreover, a con-
stant number of resources in a system are reserved to provide redundancy for the
performance of a certain task. However, usage of a constant number of resources in
a system can be expensive. Varying the replication degree in a multiagent system
can decrease the cost caused by replication of critical agents of the system. Adaptive
replication techniques enable a multiagent system to change its replication degree
in accordance with its environment.

In order to evaluate the costs of applying a self-organizing replication, a test en-
vironment was implemented, which included library assistant agent leaders ranging
from 10 to 60, plus their replicas, and a user agent. In the first case, the library as-
sistant agent leaders applied a static replication technique in the system. Next, the
programmer manually deployed replicas of the leader agents in the system. When
the static replication technique was applied, the number of replicas increased, dou-
bling the number of the leaders.

In the second case, the library assistant agent leaders applied the self-organizing
replication in the system. The programmer deployed the library assistant agent
leaders in the system whereby they were automatically and dynamically replicated
in accordance with their criticalities at runtime. The highest number of possible
replicas in the system was set to two times that of the deployed leaders. The time
of the test’s sampling period was set to 400. In this test, the threshold value thresha

was set to 2, the threshold value threshc was set to 1, and the threshold value
threshdec was set to 2.

In the third case, in order to compare the systems’ costs, whether in static or
self-organizing replication techniques, the systems’ response times were compared
to the control (i.e. response time of a system without using a replication approach).
The user agents sent their requests to the library assistant agents without applying
any replication technique. In this test, it was observed if the effects of self organizing
replication influenced the overall performance of the system.

In the first and second case, semi-active replication was employed in the library
systems. In order to measure the cost of the self-organizing replication approach,
the user agent sent queries to the leaders. The number of requests sent to the
leaders changed the agent’s criticality accordingly. However, in all cases, the total
number of requests sent to the organization were equal in every step of the tests.
Response times, for queries were measured in all cases. The response time is the time
it takes a querying agent to receive the reply after sending its request to a leader
agent.



Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1377

5.1.1 Test Results

The results of tests are illustrated as graphs in Figure 5. When the test environment
included library assistant agent leaders ranging from 10 to 30, the systems’ response
times were very close to each other since the number of agents was not large in the
systems and the computer performed all operation very fast. As illustrated by the
graphs, the slopes of the average response times of the systems applying the static,
self-organizing replication techniques, and no replication increased with the number
agents, as seen from Figure 5.

Figure 5. The effect of the self-organizing replication approach

The increase in response times was anticipated due to the fact that the leader
of the group multicasts all incoming requests to the replicas; thus, the number of
requests sent to the system increased. All replicas processed these requests. Finally,
the number of messages exchanged also increased with the number of agents due to
leader’s multicasting of requests and heartbeat messages. Moreover, in SEAGENT,
the communication module uses the RMI based communication infrastructure and
all functionalities of internal architecture are based on threads. Therefore, when all
agents were created in a single machine, then agents’ threads were initialized and



1378 S. Bora

the amount of time contributed by computation was slightly increased because of
a computational load of the computer.

5.1.2 Discussion

According to the results, the self organizing replication approach is very promis-
ing and outperforms the static replication. As indicated in Figure 5, the system’s
response time, when the static replication is applied, is longer than the system’s
response time when the self-organizing replication is applied. Further, the system’s
response times, when the self-organizing replication is applied, are very close to the
system’s response time when no replication is applied. This result was expected,
since the number of replicas in the system effects the system’s response times, as
mentioned in the previous sections.

When the self organizing replication technique is applied to the system, the
number of replicas in each group may change with respect to the criticalities of the
leader agents. The highest number of replicas in the system applying self organizing
replication can equal the total number of replicas in the system applying static
replication, for the same number of leaders. Sometimes, the agents may not receive
any requests for a period of time or the number of requests they have received
decreases. Thus, the degree of agents’ activities will decrease as will the agents’
criticalities during these periods. If a decrease in criticality is present for a certain
period of time, the leader agent decreases the number of its replicas by removing
useless replicas. In this case, the system’s response time decreases as the number of
replicas in the system decreases. If its criticality increases, it increases the number
of its replicas in order to decrease its criticality. As the number of replicas in the
system increases, the response time of the system also increases because the leader
agent multicasts the received requests to its replicas and the replicas process the
requests simultaneously.

However, when applying static replication, the programmer himself/herself de-
cides on the number of replicas before executing the application. During execution,
the number of replicas are fixed to a certain value in the organization (2×number of
leaders). In the system applying self organizing replication, the highest number of
possible replicas can total the number of replicas in the system applying static repli-
cation. Although, the number of requests sent to the systems might be equal, the
number of total replicas can change in accordance to the criticalities of the agents
in self organizing replication. Therefore, the system’s average response time when
static replication is applied is longer than the system’s average response time when
self organizing replication is applied.

The most important advantage of the self organizing replication is the lack of
centralized control. Indeed, the presence of a centralized control actually increases
the system’s response times since the centralized control mechanism needs to have
global information of the system. Having the system’s global information increases
the number of messages sent and received; therefore, the response time also increases
in the system applying a centralized self-adaptive reliable approach compared to the



Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1379

system applying a static approach as explained in [35]. The agents in the system
applying the self-organizing replication use the local information and behave in
a cooperative manner in their system. Thus, the reliable self-organizing system
takes advantage of applying the AMAS theory.

High reliability and availability are of the utmost importance to air traffic control
(ATC) systems. The Advanced Automation System (AAS) [38] was a distributed
real-time system that integrated all the services of the US air traffic control net-
work. Critical services were replicated using either the active or passive approach,
according to the application semantics and the hardware configuration. ATC sys-
tems are complex in the sense of complex systems. The control and knowledge are
distributed in these systems and the flight data will be more complicated than the
processed data at present to be processed by these systems. Therefore, adoption of
new technologies and procedures must be taken into consideration when ATC sys-
tems are built. The self-organizing approach presented in this paper can be used in
such systems in order to alleviate the effects of software failures and provide a great
support to achieve high reliability and availability in ATC systems.

5.2 Evaluation of Suppression of “Bad Message Density” NCS

In order to observe whether a Bad Message Density NCS was suppressed or not,
a user agent sent 80 queries to one of the library assistant agents with low processing
capacity in each sampling period. Since the threshold threshm was set to 25, the
library assistant agent sent The number of messages high message to the user agent.
The user agent receiving this message increased nofm by 1. When the user agent
detected that nofm was larger than threshfm (it was set to 1), it asked the DF agent
to obtain a new library assistant agent’s identifier that it could get the same service.
The DF agent sent another library assistant agent’s identifier to the user agent. The
user agent removed the old library assistant agent’s identifier from its knowledge base
and added the new library assistant agent’s identifier. As a result, the user sent its
queries to the new agent. After receiving The number of messages high message, all
operations were executed in a time frame ranging from 1 921–2 682 ms.

5.3 Evaluation of Robustness of the Self-Organizing Approach

A test bed consisting of five library assistant agent leaders and five user agents,
and a failure simulator were designed and implemented in order to evaluate the
robustness of the self-organizing replication approach. The failures ranging from 85
to 111 were injected into the system by a failure simulator which simply sent “kill”
messages to the agents within a certain time frame. The agents receiving the “kill”
messages stopped executing their threads. The majority of the kill messages were
sent to the library assistant agents since they were the critical agents for the system’s
operation. A smaller number of kill messages were sent to the user agents. In this
test, the number of available resources was set to 100; therefore, the maximum
number of replicas in the whole multiagent system could be 100.



1380 S. Bora

As shown in Figure 6, the number of failures injected to the multiagent system
gradually increased, and the rate of success was observed and recorded. The rate
of success is defined as the percentage of the replica groups that could accomplish
their tasks in MAS within a certain time frame. The data in Figure 6 revealed
the rate of success declined while the number of failures in multiagent system rose.
This association was expected due to the fact that only 100 replicas existed in the
multiagent system in order to tolerate failures.

Figure 6. Robustness of the self-organizing replication approach

In the static replication approach, the replication degrees of the groups were fixed
to certain numbers; therefore, the number of failures and agents’ activities never
changed the numbers of replicas in the groups. Since the majority of the failures
influenced the library assistant agents, most of the library assistant agent groups
failed to complete their tasks during these experiments; however, there existed the
user agent groups in the multiagent system at the end of the experiments.

When the system employing self-organizing replication started, the replication
manager determined the numbers of replicas of each library assistant agent leader
and each user agent leader with respect to their criticalities. As the number of kill
messages received by the replica groups linearly increased, each leader took into
consideration the number of failures in order to calculate the change in the agent’s
criticality and it required a resource to create a new replica if the agent’s criticality
increased. Therefore, when the number of failures increased in the system, the
self-organizing approach showed a stronger performance as compared to the static
replication approach. From these experiments, it was observed that a replication
approach required f+1 replica library assistant agents in order to survive up to



Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1381

f library assistant agent crashes in the replica group. Moreover, the number of
replicas in a multi-agent system should be at least equal to the number of library
assistant agent leaders which were critical for the system’s operation.

6 CONCLUSION

In this paper, a self-organizing approach based on AMAS theory was proposed for
improving reliability in MAS. Based on observations, when the self organizing repli-
cation based on the AMAS theory was applied to the groups, the cost of reliability
decreased. Therefore, this new approach to adaptive replication highly outperformed
static replication.

In conclusion, the results indicated that the efficient replication was sustainable
using this approach. Reliable systems can benefit from the self-organizing replica-
tion that utilizes resources more efficiently, and can also achieve greater flexibility.
Some other future research opportunities can also be pursued to evaluate the perfor-
mance of the various algorithms based on self-organization mechanisms inspired by
nature. In the future, adaptive immune system concepts can be utilized to design
and implement self-organizing reliable multiagent systems. Moreover, stigmergy and
genetic algorithms can be used as the mechanisms to enhance reliability in multia-
gent systems. Especially, adaptive stigmergic mechanisms are good candidates for
providing self-organization to reliable multiagent systems. Future work concerns
a deeper analysis of those mechanisms, costruction of the reliable systems in differ-
ent agent platforms, or implementation of a system that improves reliability in the
cloud.

REFERENCES

[1] Brueckner, S. A.—Van Dyke Parunak, H.: Self-Organising MANET Manage-
ment. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O. F., Zambonelli, F.
(Eds.): Engineering Self-Organising Systems (ESOA 2003). Springer, Berlin, Hei-
delberg, Lecture Notes in Artificial Intelligence, Vol. 2977, 2004, pp. 20–35, doi:
10.1007/978-3-540-24701-2 2.

[2] Montresor, A.—Meling, H.—Babaoglu, O.: Messor: Load-Balancing
Through a Swarm of Autonomous Agents. In: Moro, G., Koubarakis, M. (Eds.):
Agents and Peer-to-Peer Computing (AP2PC 2002). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2530, 2003, pp. 125–137, doi: 10.1007/3-
540-45074-2 12.

[3] Ko, S. Y.—Gupta, I.—Jo, Y.: Novel Mathematics-Inspired Algorithms for Self-
Adaptive Peer-to-Peer Computing. Proceedings of the First International Conference
on Self-Adaptive and Self-Organising Systems (SASO 2007), 2007, pp. 3–12, doi:
10.1109/SASO.2007.40.

[4] Li, Y.—Chen, F.-H.—Sun, X.—Zhou, M.-H.—Jiao, W.-P.—Cao, D.-G.—
Mei, H.: Self-Adaptive Resource Management for Large-Scale Shared Clusters. Jour-

https://doi.org/10.1007/978-3-540-24701-2_2
https://doi.org/10.1007/3-540-45074-2_12
https://doi.org/10.1007/3-540-45074-2_12
https://doi.org/10.1109/SASO.2007.40


1382 S. Bora

nal of Computer Science and Technology, Vol. 25, 2010, No. 5, pp. 945–957, doi:
10.1007/s11390-010-9379-0.

[5] Wrzesinska, G.—Maassen, J.—Bal, H. E.: Self-Adaptive Applications on
the Grid. Proceedings of the 12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’07), 2007, pp. 121–129, doi:
10.1145/1229428.1229449.

[6] Foukia, N.: IDReAM Intrusion Detection and Response Executed with Agent Mo-
bility. Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS ’05), Utrecht, The Netherlands, IEEE
Press, New York, 2005, pp. 264–270, doi: 10.1145/1082473.1082513.

[7] Forrest, S.—Hofmeyr, S. A.—Somayaji, A.—Longstaff, T. A.: A Sense of
Self for Unix Processes. Proceedings of the 1996 IEEE Symposium on Research in
Security and Privacy, IEEE, 1996, pp. 120–128, doi: 10.1109/SECPRI.1996.502675.

[8] Holland, O.—Melhuish, C.: Stigmergy, Self-Organization, and Sorting in
Collective Robotics. Artificial Life, Vol. 5, 1999, No. 2, pp. 173–202, doi:
10.1162/106454699568737.

[9] Buyurgan, N.—Meyyappan, L.—Saygin, C.—Dagli, C. H.: Real-Time Rout-
ing Selection for Automated Guided Vehicles in a Flexible Manufacturing System. In-
ternational Journal of Manufacturing Technology Management, Vol. 18, 2007, No. 2,
pp. 169–181, doi: 10.1108/17410380710722881.

[10] Clair, G.—Kaddoum, E.—Gleizes, M.-P.—Picard, G.: Self-Regulation in
Self-Organising Multiagent Systems for Adaptive and Intelligent Manufacturing
Control. Proceedings of the 2008 Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems (SASO ’08), IEEE, 2008, pp. 107–116, doi:
10.1109/SASO.2008.19.

[11] Valckenaers, P.—Van Brussel, H.—Kollingbaum, M.—Bochmann, O.:
Multi-Agent Coordination and Control Using Stigmergy Applied in Manufacturing
Control. In: Luck, M., Mař́ık, V., Štěpánková, O., Trappl, R. (Eds.): Multi-Agent
Systems and Applications (ACAI 2001). Springer, Berlin, Heidelberg, Lecture Notes
in Computer Science, Vol. 2086, 2001, pp. 317–334, doi: 10.1007/3-540-47745-4 15.

[12] Van Brussel, H.—Wyns, J.—Valckenaers, P.—Bongaerts, L.—Pee-
ters, P.: Reference Architecture for Holonic Manufacturing Systems: PROSA.
Computers in Industry, Vol. 37, 1998, No. 3, pp. 255–274, doi: 10.1016/S0166-
3615(98)00102-X.

[13] Capera, D.—George, J.-P.—Gleizes, M.-P.—Glize, P.: The AMAS Theory
for Complex Problem Solving Based on Self-Organizing Cooperative Agents. Proceed-
ings of the Twelfth IEEE International Workshops on Enabling Technologies Infras-
tructure for Collaborative Enterprises (WET ICE 2003), IEEE, 2003, pp. 383–388,
doi: 10.1109/ENABL.2003.1231441.

[14] Ottens, K.—Gleizes, M.-P.—Glize, P.: A Multi-Agent System for Building
Dynamic Ontologies. Proceedings of the 6th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS ’07), ACM, 2007, Art. No. 227,
doi: 10.1145/1329125.1329399.

https://doi.org/10.1007/s11390-010-9379-0
https://doi.org/10.1145/1229428.1229449
https://doi.org/10.1145/1082473.1082513
https://doi.org/10.1109/SECPRI.1996.502675
https://doi.org/10.1162/106454699568737
https://doi.org/10.1108/17410380710722881
https://doi.org/10.1109/SASO.2008.19
https://doi.org/10.1007/3-540-47745-4_15
https://doi.org/10.1016/S0166-3615(98)00102-X
https://doi.org/10.1016/S0166-3615(98)00102-X
https://doi.org/10.1109/ENABL.2003.1231441
https://doi.org/10.1145/1329125.1329399


Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1383

[15] Combettes, S.—Sontheimer, T.—Rougemaille, S.—Glize, P.: Weight Opti-
mization of Aircraft Harnesses. In: Demazeau, Y., Müller, J., Rodŕıguez, J., Pérez, J.
(Eds.): Advances on Practical Applications of Agents and Multi-Agent Systems.
Springer, Berlin, Heidelberg, Advances in Intelligent and Soft Computing, Vol. 155,
2012, pp. 229–232, doi: 10.1007/978-3-642-28786-2 26.

[16] Bernon, C.—Capera, D.—Mano, J.-P.: Engineering Self-Modeling Systems Ap-
plication to Biology. In: Artikis, A., Picard, G., Vercouter, L. (Eds.): Engineering
Societies in the Agents World IX (ESAW 2008). Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 5485, 2009, pp. 248–263, doi: 10.1007/978-3-642-
02562-4 14.

[17] Lacouture, J.—Rodriguez, I.—Arcangeli, J.-P.—Chassot, C.—Des-
prats, T.—Drira, K.—Garijo, F.—Noel, V.—Sibilla, M.—Tessier, C.:
Mission-Aware Adaptive Communication for Collaborative Mobile Entities. Hand-
book of Research on Mobility and Computing Evolving Technologies and Ubiquitous
Impacts, 2011, pp. 1056–1076, doi: 10.4018/978-1-60960-042-6.ch064.

[18] Videau, S.—Bernon, C.—Glize, P.—Uribelarrea, J.-L.: Controlling Biopro-
cesses Using Cooperative Self-Organizing Agents. In: Demazeau, Y., Pěchoucěk, M.,
Corchado, J. M., Pérez, J. B. (Eds.): Advances on Practical Applications of Agents
and Multiagent Systems. Springer, Berlin, Heidelberg, Advances in Intelligent and
Soft Computing, Vol. 88, 2011, pp. 141–150, doi: 10.1007/978-3-642-19875-5 19.

[19] Guivarch, V.—Camps, V.—Péninou, A.: AMADEUS: An Adaptive Multi-Agent
System to Learn a User’s Recurring Actions in Ambient Systems. ADCAIJ Advances
in Distributed Computing and Artificial Intelligence Journal, Vol. 1, 2013, No. 3,
pp. 1–10.

[20] Kaddoum, E.—Georgé, J.-P.: Collective Self-Tuning for Complex Prod-
uct Design. Proceedings of 2012 IEEE Sixth International Conference on Self-
Adaptive and Self-Organizing Systems (SASO 2012), IEEE, 2012, pp. 193–198, doi:
10.1109/SASO.2012.14.

[21] Brax, N.—Andono, E.—Gleizes, M.-P.: A Self-Adaptive Multi-Agent System
for Abnormal Behavior Detection in Maritime Surveillance. In: Jezic, G., Kusek, M.,
Nguyen, N. T., Howlett, R. J., Jain, L. C. (Eds.): Agent and Multi-Agent Systems.
Technologies and Applications (KES-AMSTA 2012). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 7327, 2012, pp. 174–185, doi: 10.1007/978-
3-642-30947-2 21.

[22] Mano, J.-P.—Georgé, J.-P.—Gleizes, M.-P.: Adaptive Multi-Agent System for
Multi-Sensor Maritime Surveillance. In: Demazeau, Y., Dignum, F., Corchado, J. M.,
Pérez, J. B. (Eds.): Advances in Practical Applications of Agents and Multiagent
Systems (PAAMS 2010). Springer, Berlin, Heidelberg, Advances in Intelligent and
Soft Computing, Vol. 70, 2010, pp. 285–290, doi: 10.1007/978-3-642-12384-9 34.

[23] Gürcan, Ö.: An Emergent Model for Mimicking Human Neuronal Pathways in
Silico. Proceedings of the 12th European Conference on Artificial Life (ECAL 2013),
MIT Press, 2013, pp. 1172–1173, doi: 10.7551/978-0-262-31709-2-ch180.

[24] Gürcan, Ö.—Bernon, C.—Türker, K. S.—Mano, J.-P.—Glize, P.—
Dikenelli, O.: Simulating Human Single Motor Units Using Self-Organizing
Agents. Proceedings of the 2012 IEEE Sixth International Conference on Self-

https://doi.org/10.1007/978-3-642-28786-2_26
https://doi.org/10.1007/978-3-642-02562-4_14
https://doi.org/10.1007/978-3-642-02562-4_14
https://doi.org/10.4018/978-1-60960-042-6.ch064
https://doi.org/10.1007/978-3-642-19875-5_19
https://doi.org/10.1109/SASO.2012.14
https://doi.org/10.1007/978-3-642-30947-2_21
https://doi.org/10.1007/978-3-642-30947-2_21
https://doi.org/10.1007/978-3-642-12384-9_34
https://doi.org/10.7551/978-0-262-31709-2-ch180


1384 S. Bora

Adaptive and Self-Organizing Systems (SASO 2012), IEEE, 2012, pp. 11–20, doi:
10.1109/SASO.2012.18.

[25] Gürcan, Ö.—Türker, K. S.—Mano, J.-P.—Bernon, C.—Dikenelli, O.—
Glize, P.: Mimicking Human Neuronal Pathways in Silico: An Emergent Model
on the Efective Connectivity. Journal of Computational Neuroscience, Vol. 36, 2014,
No. 2, pp. 235–257, doi: 10.1007/s10827-013-0467-3.

[26] Guessoum, Z.—Briot, J.–P.: From Active Objects to Autonomous Agents. IEEE
Concurrency, Vol. 7, 1999, No. 3, pp. 68–76, doi: 10.1109/4434.788781.

[27] Guessoum, Z.—Briot, J. P.—Sens, P.—Marin, O.: Toward Fault-Tolerant
Multi-Agent Systems. European Workshop on Modeling an Autonomous Agent in
a Multi-Agent World (MAAMAW 2001), Annecy, France, 2001.

[28] Marin, O.—Bertier, M.—Sens, P.: DARX – A Framework for the Fault-Tolerant
Support of Agent Software. 14th International Symposium on Software Reliability
Engineering (ISSRE 2003), 2003, pp. 406–416, doi: 10.1109/ISSRE.2003.1251062.

[29] Faci, N.—Guessoum, Z.—Marin, O.: DimaX: A Fault Tolerant Multi-Agent
Platform. Proceedings of the Fifth International Workshop on Software Engineering
for Large-Scale Multi-Agent Systems (ICSE ’06, SELMAS ’06), ACM, Shangai, China,
pp. 13–20, 2006.

[30] Guessoum, Z.—Faci, N.—Briot, J.-P.: Adaptive Replication of Large-Scale
Multi-Agent Systems – Towards a Fault-Tolerant Multi-Agent Platform. In: Gar-
cia, A., Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (Eds.):
Software Engineering for Multi-Agent Systems IV (SELMAS 2005). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 3914, 2005, pp. 238–253, doi:
10.1007/11738817 15.

[31] Guessoum, Z.—Briot, J.-P.—Marin, O.—Hamel, A.—Sens, P.: Dynamic
and Adaptive Replication for Large-Scale Reliable Multi-Agent Systems. In: Gar-
cia, A., Lucena, C., Zambonelli, F., Omicini, A., Castro, J. (Eds.): Software En-
gineering for Large-Scale Multi-Agent Systems (SELMAS 2002). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 2603, 2003, pp. 182–198, doi:
10.1007/3-540-35828-5 12.

[32] Guessoum, Z.—Ziane, M.—Faci, N.: Monitoring and Organizational-Level Adap-
tation of Multi-Agent Systems. Proceedings of the Third International Joint Confer-
ence on Autonomous Agents (AAMAS ’04), Vol. 2, 2004, pp. 514–522.

[33] Bora, S.—Dikenelli, O.: Implementing a Multi Agent Organization That
Changes Its Fault Tolerance Policy at Run-Time. In: Dikenelli, O., Gleizes, M. P.,
Ricci, A. (Eds.): Engineering Societies in the Agents World VI (ESAW 2005).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 3963, 2006,
pp. 153–167, doi: 10.1007/11759683 10.

[34] Bora, S.—Dikenelli, O.: Applying Feedback Control in Adaptive Replication
in Fault Tolerant Multi-Agent Organizations. Proceedings of the Fifth International
Workshop on Software Engineering for Large-Scale Multi-Agent Systems (ICSE ’06,
SELMAS ’06), ACM, Shangai, China, 2006, pp. 5–12, doi: 10.1145/1138063.1138066.

[35] Bora, S.—Dikenelli, O.: A Centralized Self-Adaptive Fault Tolerance Approach
Based on Feedback Control for Multi-Agent Systems. Turkish Journal of Electrical

https://doi.org/10.1109/SASO.2012.18
https://doi.org/10.1007/s10827-013-0467-3
https://doi.org/10.1109/4434.788781
https://doi.org/10.1109/ISSRE.2003.1251062
https://doi.org/10.1007/11738817_15
https://doi.org/10.1007/3-540-35828-5_12
https://doi.org/10.1007/11759683_10
https://doi.org/10.1145/1138063.1138066


Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems 1385

Engineering and Computer Sciences, Vol. 24, 2016, pp. 4707–4723, doi: 10.3906/elk-
1405-58.

[36] Fedoruk, A.—Deters, R.: Improving Fault-Tolerance by Replicating Agents. Pro-
ceedings of the 1st International Joint Conference on Autonomous Agents and Multi-
Agent Systems, Bologna, Italy, 2002, pp. 737–744, doi: 10.1145/544862.544917.

[37] Bora, S.—Dikenelli, O.: Replication Based on Role Concept for Multi-Agent
Systems. In: Aldewereld, H., Dignum, V., Picard, G. (Eds.): Engineering Societies
in the Agents World X (ESAW ’09). Springer, Berlin, Heidelberg, Lecture Notes in
Computer Science, Vol. 5881, 2009, pp. 165–180, doi: 10.1007/978-3-642-10203-5 15.

[38] Cristian, F.—Dancey, B.—Dehn, J.: Fault-Tolerance in the Advanced Automa-
tion System. Proceedings of the 4th Workshop on ACM SIGOPS European Workshop
(EW 4), ACM, 1990, pp. 6–17, doi: 10.1145/504136.504156.

[39] Elnozahy, E. N.—Zwaenepoel, W.: Replicated Distributed Processes in
Manetho. Fault-Tolerant Computing. Digest of Papers, Twenty-Second International
Symposium on FTCS-22, IEEE, 1992, pp. 18–27.

[40] Stollberg, M.—Rhomberg, F.: Survey on Goal-Driven Architectures. Technical
Report DERI-TR-2006-06-04, DERI, Austria, 2006.

[41] Bora, S.: Implementing Fault-Tolerant Services in Goal-Oriented Multiagent Sys-
tems. Advances in Electrical and Computer Engineering, Vol. 14, 2014, No. 3,
pp. 113–122, doi: 10.4316/AECE.2014.03015.

[42] Dikenelli, O.—Erdur, R. C.—Gumus, O. et al.: SEAGENT: A Platform
for Developing Semantic Web Based Multi Agent Systems. Fourth International
Joint Conference on Autonomous Agents (AAMAS ’05), 2005, pp. 1271–1272, doi:
10.1145/1082473.1082728.

Sebnem Bora received her Ph.D. degree from Ege University,
Turkey in 2006. She is currently Assistant Professor in the Com-
puter Engineering Department at Ege University. Her research
interests include dependable computing, self-adaptive systems,
and agent-based modeling and simulation.

https://doi.org/10.3906/elk-1405-58
https://doi.org/10.3906/elk-1405-58
https://doi.org/10.1145/544862.544917
https://doi.org/10.1007/978-3-642-10203-5_15
https://doi.org/10.1145/504136.504156
https://doi.org/10.4316/AECE.2014.03015
https://doi.org/10.1145/1082473.1082728

