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Abstract. Discrete-Event Systems are discrete in nature, driven by discrete events.
Petri Nets are one of the mostly used tools for their modelling and control synthesis.
Place/Transitions Petri Nets, Timed Petri Nets, Controlled Petri Nets are suitable
when a modelled object is deterministic. When the system model contains uncon-
trollable/unobservable transitions and unobservable/unmeasurable places or other
failures, such kinds of Petri Nets are insufficient for the purpose. In such a case
Labelled Petri Nets and/or Interpreted Petri Nets have to be used. Particularities
and mutual differences of individual kinds of Petri Nets are pointed out and their
applicability to modelling and control of Discrete-Event Systems are described and
tested.
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1 INTRODUCTION AND PRELIMINARIES

Discrete-Event Systems (DES) are frequently modelled by Petri Nets (PN). As to
their structure, PN are [9] bipartite directed graphs with two kinds of nodes –
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places pi ∈ P , i = 1, . . . , n (i.e. |P | = n) and transitions tj ∈ T , j = 1, . . . ,m (i.e.
|T | = m) – and two kinds of arcs – the arcs directed from places to transitions
F ⊆ P × T and the arcs directed from transitions to places G ⊆ T × P . Here,
P ∩ T = ∅ and P ∪ T 6= ∅, where ∅ symbolizes an empty set. Hence, B = F ⊆
P × T ∪G ⊆ T ×P represents the PN structure. Thus, the net structure is [29, 30]
N = 〈P, T,B〉. The preset of a transition t (i.e. the set of its input places) is defined
as (p)t = {p|(p, t) ∈ B}, while the postset of t (i.e. the set of its output places) is
defined as t(p) = {p|(t, p) ∈ B}. On the other hand, the preset of a place p (i.e. the
set of its input transitions) is defined as (t)p = {t|(t, p) ∈ B} while the postset of p
(i.e. the set of its output transitions) is defined as p(t) = {t|(p, t) ∈ B}. If for p ∈ P ,
t ∈ T , {(p, t) ∈ B) ⇒ (t, p) /∈ B}, i.e., if no self-loops occur in PN, then the net is
said to be pure. A transition is said to be the source transition if (p)t = ∅ and the
sink transition if t(p) = ∅.

Places model particular operations or activities of DES, states of which are
expressed by marking – i.e. by the number of tokens nt ∈ Z≥0 put into them. It
means that marking m is a vector m : P → Z≥0 where Z≥0 represents positive
integers including 0. PN transitions model the discrete events in DES. A transition
can be disabled (when it cannot be fired) or enabled (when it can be fired). Of course,
the enabled transition might be, but need not to be, fired. An event modelling
a failure is fired spontaneously. A set of transitions T ⊆ T is enabled by means of
the marking m if ∀p ∈ P , m(p) ≥ |p(t) ∩ T |. It means that m(p) is greater than the
number of transitions in T for which p is the input place or equal to this number.
The occurrence of a discrete event is modelled by means of firing the corresponding
enabled transition.

Theoretically, more than one transition can be fired at any instant [29, 62]. Thus
two possibilities offer:

1. to fire more than one transition at any instant – so called concurrency assump-
tion (in short the C assumption);

2. to fire only one of the transitions at any instant – so called no concurrency
assumption (in short the NC assumption).

In the former case, if a set of transitions T ⊆ T is enabled at marking m, then T
may fire and the new marking m′ is obtained as m′(p) = m(p)+ |(t)p∩T |−|p(t)∩T |.
It means that firing the set of transitions T ⊆ T causes that one token will be
removed from each place p ∈ (p)t and one token will be added to each place p ∈ t(p).
In literature about PN, the case C is used very rarely.

The latter case NC is usual in the total most of PN literature. Here, it is assumed
that only a single transition is fired at any instant. Under such assumption, T is
a singleton set (a set having exactly one element). Here, in this paper, the NC
assumption will be applied.

A firing sequence from an initial marking m0 is a sequence of transition sets
U = {τ1τ2 . . . τk} such that m0[τ1 > m1[τ2 > . . .mk−1[τk > mk. The set may
also be empty. The notation m0[U denotes that the sequence U can be fired at
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m0 and the notation m0[U > mk denotes that the firing of U yields mk. Un-
der the NC assumption, each τi is a singleton set, and U is a sequence of tran-
sitions. To denote that by firing of U the state mk can be reached from m0 it
can be written that m0[U > mk. This is connected with the reachability of PN
markings (states). In general, marking m is reachable in a net system 〈N,m0〉
if there exists a firing sequence U such that m0[U > m. When the net system
〈N,m0〉 is given, the set of reachable markings is R(N,m0). Markings reach-
able from a given initial marking can be expressed by means of the reachabil-
ity tree (RT) and/or the reachability graph (RG). RG arises from RT by con-
necting all RT nodes with the same name into one node. The incidence ma-
trix of RG is the same as that of RT. A certain RT appertains to each initial
state of PN unambiguously. Unfortunately, the opposite relation does not exist.
In general, it is practically impossible to unambiguously obtain PN from a given
RT.

In some PN the number of states (i.e. the reachability set) is also infinite. Conse-
quently, RT (RG) is also infinite. To compute a substitutional finite graph, so called
coverability graph (CG), a different algorithm has to be used. Each arc corresponds
to a transition, but each node corresponds either to a single reachable marking or it
represents an infinite set of reachable markings – in such case loops are originating
in corresponding CG nodes.

PN-based models can be created either intuitively, based on a creator’s empirical
experience and knowledge acquired from the external observation of the behaviour
of real systems (a usual approach) or by means of a systematic approach – see
e.g. [6, 60, 15, 16, 17, 18, 3, 24]. However, during the model creation PN properties
should be considered. The basic properties (as safeness, liveness, boundedness,
reachability, reversibility, deadlock-freeness, conservativeness, etc.) are defined e.g.
in basic literature [49, 47, 11] and in many other papers.

A net N is well-formed if there exists a marking m0 of N such that 〈N,m0〉 is
a live and bounded system.

More details about PN can be found especially in the fundamental literature [49,
47, 11] but also in many other newer sources which are specialized in extending the
fundamental knowledge towards different application areas (e.g. supervision, control,
etc.).

1.1 Place/Transitions Petri Nets

The later naming of above mentioned PN is Place/Transition PN (P/T PN) – see
e.g. [11]. Because linear algebra can be used at PN-based modelling DES, it is
useful to apply the better arranged (from the mathematical point of view) vector
notation [7, 8] at modelling DES by means of P/T PN. Because from the system
point of view markings correspond with state vectors of places and the transitions
correspond with control variables, the marking evolution (dynamics) of P/T PN can
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be expressed as the following restricted linear discrete state equation:

xk+1 = xk + B.uk, k = 0, 1, . . . , N, (1)

F.uk ≤ xk. (2)

Here, xk = (σk
p1
, . . . , σk

pn)T is the state vector of the places in the step k with σk
pi
∈

{0, 1, . . . ,∞}, i = 1, . . . , n; uk = (γkt1 , . . . , γ
k
tm)T is the state vector of the transitions

in the step k (named as the control vector) with γktj ∈ {0, 1}, j = 1, . . . ,m, where

0 denotes the disabled transition and 1 denotes the enabled one; B = GT − F is
the structural matrix. Here, the matrices B, G, F correspond, respectively, to the
sets B, G, F . F ∈ Zn×m

≥0 , G ∈ Zm×n
≥0 and B ∈ Zn×m, where Z represents all integers

including zero.

For illustration, an example of P/T PN is displayed in Figure 1. Its incidence
matrices are

F =



0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0



; GT=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0



. (3)

The initial state x0 = (0 0 0 0 1 0 0 0 0 1 0 0 1)T displayed in Figure 1 yields RT
given in Figure 2.
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Figure 1. An example of P/T PN

The nodes of the corresponding RT/RG creating the state space of the PN are
the vectors being the columns of the following reachability matrix:

Xr =



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1
1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0



(4)

Connecting the RT nodes with the same name, RT turns to RG. It expresses the
possibilities of passing the system from a given state to another state by means of
firing the transitions assigned to the corresponding RT arcs.

It is still necessary to mention the Parikh’s vector. That is to say, the develop-
ment of the system (1) is the following:

xk = xk−1 + B.uk−1 = xk−2 + B.(uk−1 + uk−2) = . . .

= x0 + B.(u0 + u1 + . . .+ uk−1) = x0 + B.v (5)
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Figure 2. The RT of the P/T PN

where v = u0+u1+ . . .+uk−1 is named as the Parikh’s vector. It yields information
on how many times the particular transitions are fired during the evolution of P/T
PN from the initial state x0 to a prescribed terminal state xk.

There exist some special kinds of P/T PN. The mostly used are the following:

• P/T PN where every place has exactly one incoming arc, and exactly one
outgoing arc are named as marked graphs (MG). Mathematically expressed
∀p ∈ P : |p(t)| = |(t)p| = 1. No conflicts in MG occur, but a concurrency can
be expressed there. In a graph interpretation, MG is a graph where each place
represents an arc and each transition represents a node.

• P/T PN where every transition has exactly one incoming arc, and exactly one
outgoing arc and all markings have exactly one token then are named as state
machines (SM). Mathematically expressed ∀t ∈ T : |t(p)| = |(p)t| = 1. Concur-
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rency cannot be expressed there, but conflicts appear caused by more outgoing
transitions from a place (i.e. a kind of uncertainty or nondeterminism).

• P/T PN where every arc from a place to a transition is either the only arc from
that place, or the only arc to that transition, are named as a free-choice PN –
see Figure 3.

Figure 3. A fragment of the free-choice PN (left), a simple free-choice PN (in the centre)
and its RT (right)

A net N = 〈P, T,B〉 is free-choice [12] if (p, t) ∈ B implies (p)t × p(t) ⊆ B
for every place p and every transition t. A net system 〈N,M0〉 is free-choice if its
underlying net N is free-choice. In [12] also the fundamental property of a free-
choice PN was proved. If a marking of N enables some transition of p(t), then it
enables every transition of p(t).

1.2 Timed Petri Nets

Timed Petri Nets (TPN) [64, 59, 7, 9] are based on P/T PN structure. They rise by
introducing time into P/T PN transitions through their duration function D : T →
Q+

0 (Q+
0 symbolizes non-negative rational numbers). The timing can be deterministic

(time delays) or nondeterministic (expressed by a probability distribution – e.g.
exponential, discrete uniform, etc.). More details can be found in [59, 7, 9]. As to
the DES control, at P/T PN a supervisor can be synthesized. By means of TPN
the performance evaluation of the supervised system can be tested.

1.3 Closing Remark

The P/T PN and TPN are very useful tools for modelling, analysing and control of
DES. Such models of DES represent an initial point (a base) for some procedures
of DES control synthesis. However, in the course of time other kinds of PN arising
from P/T PN were developed, that are more suitable for specific kinds of DES,
especially designated for control – Controlled Petri Nets, and for control of DES
containing nondeterminism in the form of unobservable/uncontrollable transitions
and/or unmeasurable places – Labelled Petri Nets and Interpreted Petri Nets.
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Because of the extent the problem (a broad issue), publication is divided into
two separate parts – Part 1 and Part 2. The particular parts will be published as
individual papers in successive steps. This paper represents the individual Part 1. It
is devoted to presentation of the mentioned kinds of PN and marking the possibilities
for applicability at modelling DES (in the first place) and also to point out that the
PN can be used for control purposes. In the planned consecutive Part 2 more
detailed case studies on applicability at control of different kinds of DES, will be
introduced, including the error recovery approach at a fault occurrence. The Part 2
will be published as the separate paper.

2 SOME OF OTHER KINDS OF PN RELATED TO DES CONTROL

P/T PN is a good mathematical tool for modelling and analysing DES. However,
creation of the model is not sufficient for the DES control. After creating the model
of the system to be controlled, it is necessary to synthesize the procedure of control.
The best way is when it is possible to utilize the model for the control synthesis not
only in deterministic cases when all transitions are controllable and all places are
measurable but also in cases where uncontrollable transitions and non-measurable
places or even faults occur in the model. Then, two sets of transitions arise. That
is to say, the set Tc of controllable transitions and the set Tu of uncontrollable
transitions. T = Tc ∪ Tu. Analogically, also two sets of places arise – the set Pm

of the measurable places and the set Pnm of unmeasurable places, P = Pm ∪ Pnm.
Because of the existence Tc and Tu, there exist structural matrices Bc and Bu. There
are also Parikh’s vectors vc

k and vu
k . When ti, tj, tk, . . . is a firing transition sequence,

corresponding Parikh’s vector vk = vc
k + vu

k where a vc
k component vck = v(i) if ti is

measurable, otherwise vck = 0, and a vu
k component vuk = v(i) if ti is unmeasurable,

otherwise vuk = 0. Because of the existence of the Pm and Pnm the output vector yk

has to be introduced. Namely, only measurable states are observable from outside.
Thus,

xk+1 = xk + Bc.uc
k + Bu.uu

k ; k = 0, 1, . . . , N, (6)

yk = C.xk. (7)

To deal with such a problem, there are several approaches how to do it. Some
other kinds of PN exist which are more suitable for DES control. Moreover, they
utilize the P/T PN model presented above. In order to present how they can be
used in this direction, let us introduce some of them: Controlled PN, Labelled PN
and Interpreted PN.

For the completeness’ sake, it is necessary to bring to mind the above mentioned
TPN suitable to analyse performance evaluation – see the author’s papers [7, 8]
where TPN were applied. Moreover, we must not forget Hybrid PN (HPN), more
precisely First Order HPN (FOHPN), suitable for modelling hybrid systems con-
taining a continuous part and a discrete-event part, that were also applied in [7, 8].
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For these reasons given, these two kinds of PN are not mentioned in details here, in
this paper.

2.1 Controlled Petri Nets

The P/T PN described above can be influenced from outside by means of external
interferences and/or controller in order to affect the movement of tokens. In such
a case we are speaking about Controlled Petri Nets (CtPN) – see e.g. [36, 32, 28,
29, 30, 31]. While P/T PN can be formally represented by the triple N = 〈P, T,B〉,
CtPN can be expressed as the triple

PNc = 〈N,Pc, Bc〉 (8)

with Pc being a finite set of control places where Pc ∩ P = ∅, Pc ∩ T = ∅, and
Bc ⊆ Pc×T being the set of directed arcs from control places to P/T PN transitions.
In CtPN the places p ∈ P are named as state places. The set of control places
entering a transition t ∈ T can be expressed as (pc)t = {pc|(pc, t) ∈ Bc}. On the
other hand for a control place pc ∈ Pc the set of its output transitions can be denoted

as p
(t)
c = {t|(pc, t) ∈ Bc}. Denote the set of all controlled transitions by Tc.
A control for a CtPN is understood to be a function u : Pc → {0, 1}. It assigns

a binary value to each control place. All such controls are denoted by U . They
influence a set of transitions T ∈ T . When for all t ∈ T , u(pc) = 1 for all pc ∈ (pc)t
the set T is said to be control enabled. An example of CtPN is displayed in Figure 4.
In the vector/matrix expression, CtPN can be described as follows:(

xk+1

xc
k+1

)
=

(
xk

xc
k

)
+

(
B
Bc

)
.uk, k = 0, 1, . . . , N, (9)(

F
Fc

)
.uk ≤

(
xk

xc
k

)
, (10)

xct
k+1 = xct

k + Bct.uk, k = 0, 1, . . . , N, (11)

Fct.uk ≤ xct
k (12)

where xct
k = (xT

k (xc
k)T )T , Bct = (BTBT

c )T , Fct = (FTFT
c )T , GT

ct = (GGc)
T , B =

GT − F and Bc = GT
c − Fc. Because F and GT are the same as in (3), only the

incidence matrices Fc and GT
c are introduced as follows:

Fc =

 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0

 ; GT
c =

 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 .

(13)
However, because the control places have no input transitions, GT

c = 0. It means
that the firing of transitions does not contribute to the marking development of the
control places.
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Figure 4. An example of CtPN (left) and its RT (right)

At the initial state x0 = (0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1)T the particular states of
the state space (i.e. the nodes of RT) are the columns of the following matrix:

Xr =



0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0
1 1 0 0 0 0 0 1 0 1
− − − − − − − − − −
1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1



. (14)
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However, a suitable setting of the control place markings from outside, e.g. by means
of a suitable controller, makes possible to control the model of the system. In such
case the control places permanently represent an output of the controller.

Over time many approaches how to synthesize controller and/or supervisor for
DES control were developed. There exist different kinds of the supervisor synthesis –
see e.g. [61, 44, 45, 46, 50, 19, 66, 33, 34] and many others included also in [9, 7, 27].

2.1.1 An Example

Consider e.g. the group of five simple autonomous agents GrA = {A1, A2, A3, A4,
A5} with the same structure expressed by a working cycle {pi, ti, pi+1, ti+1} – see
Figure 5 – where particular places and transitions mean: pi – the agent is idle; pi+1 –
the agent is working; ti – the agent is starting the work; ti+1 – the agent is ending
the work.

Figure 5. An example of the P/T PN

Figure 6. An example of the CtPN

Let us solve the situation when it is necessary to ensure that only one agent
from the subgroup Sgr1 = {A1, A4, A5} (a representative), only one agent from
the subgroup Sgr2 = {A2, A4, A5}, and only one agent from the subgroup Sgr3 =
{A3, A4, A5} can simultaneously cooperate with other agents from GrA. In other
words, the agents inside the designated subgroups must not work simultaneously.
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Even, the agents A4 and A5 can work only individually (any cooperation with other
agents is excluded). However, the agents A1, A2, A3 can work simultaneously. The
conditions prescribing the cooperation of agents are:

σp2 + σp8 + σp10 ≤ 1, (15)

σp4 + σp8 + σp10 ≤ 1, (16)

σp6 + σp8 + σp10 ≤ 1. (17)

After applying the method of the supervisor synthesis (based on P-invariants of PN)
presented in [7, 9] the PN model of the cooperating agents is displayed in Figure 6.
As it can be seen, the supervisor (controller in DES relations) created by p11, p12,
p13 coordinates the activities of the five agents. In other words, it becomes the
additional sixth agent enabling the prescribed cooperation of the five agents.

2.1.2 Petri Nets Controllability and Observability

In PN the terms controllability and observability are nearly related. As to observ-
ability, the so called silent transitions [10, 13] are invisible in an environment and
may cause problems with observability of discrete events. They represent the dis-
crete events that cause a change in the state of the DES, however they are not
observable from outside – i.e., they become unobservable. Therefore, it is partic-
ularly important to obtain a powerful approach to PN-based DES control which
relies only on information about the observable transitions and forbids firing the
unobservable ones. When a controller is not allowed to influence some transitions,
such transitions become uncontrollable. Both such groups of transitions bring un-
certainty into the DES control. Therefore, it is necessary to deal with the problem
how to control DES in such uncertainty conditions.

More precisely said, a transition is named to be unobservable when its firing
cannot be directly detected or measured. A transition is named to be uncontrol-
lable when its firing cannot be inhibited by an external action. All unobservable
transitions are implicitly uncontrollable [43, 44].

In [24, 47] controllability in the framework of Petri nets is mentioned. Unfor-
tunately, the necessary and sufficient conditions being able to decide about control-
lability and observability are known only in continuous and/or discrete-time linear
systems. In continuous linear time invariant systems on the controllability of a sys-
tem with the state equation ẋ = A.x + B.u, x ∈ Rn (where R represents real
numbers), u ∈ Rm decides – see e.g. [38, 20, 48] – the rank of the controllability
matrix CM = [B|AB|A2B| · · · |An−1B] with the dimensionality (n × n.m). The
system is controllable when rank(CM) = n. This is valid not only for continuous
linear systems but also for discrete-time modification of linear time invariant sys-
tems. A system is called controllable (or reachable) if all states are reachable (i.e.
the reachable set R ∈ Rn). The uncontrollable system in which uncontrollable part
is stable is named the stabilizable system.
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When the output equation of the continuous linear time invariant systems is
y = C.x + D.u, y ∈ Rp, the observability is decided on the rank of the observabil-
ity matrix OM = [CT |ATCT |(AT )2CT | · · · |(AT )n−1CT ]. The system is observable
when rank(OM) = n. In other words, a system is observable if the initial state
can be obtained (observed) from the knowledge of the input and the output. Un-
observable system in which the unobservable subsystem is stable is named as the
detectable system.

However, in PN modelling the completely different kind of systems, i.e. DES,
the rank of such controllability matrix Mc = (B|B| · · · |B) of the system (1) always
coincides with the rank of the PN incidence matrix B, because in (1) A = I (i.e.
the identity matrix). Therefore, rank(B) = n is only a necessary condition for
controllability if the control input is restricted to uk ∈ {0, 1}m and to xk+B.uk ≥ 0.
Moreover, the PN state equation (1) itself only provides a necessary but not sufficient
condition for reachability.

Figure 7. An example on the controllability of P/T PN

For example, consider the net system in Figure 7 with the structure

F =


1 0
1 0
0 1
0 0

 ; GT =


0 0
0 1
1 0
0 1

 ; B = GT − F =


−1 0
−1 1

1 −1
0 1

 (18)

and initial state x0 = (1, 0, 0, 0)T . Although the rank(B) = 2, even for u0 = (1, 1)T

when x0+B.u0 ≥ 0 the state x1 = (0, 0, 0, 1)T is not reachable. In fact, no transition
is enabled at the initial state. Namely, neither the sequence t1t2 nor the sequence
t2t1 can be fired because they are not enabled. It means practically that no RT
exists (more precisely, RT consists of only one node x0 and has no arcs).

Still more complicated situation than that in case of the controllability is the
situation with the observability of PN. Because A = I the rank of the observability
matrix Mo = (CT |CT | · · · |CT ) is reduced on the rank of the matrix CT , which
principally cannot have the rank(CT ) = n. Really, the number of measurable
places p < n, where n is the total number of places.

Only very few published works appertain to observability in PN – see e.g. [52,
25, 22, 54, 65]. In [65] CtPN model is used for forbidden state avoidance under
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partial event observation with the assumption that the initial marking is known.
The observability properties depend not only on the net structure N , but also on
the initial marking m0, that in [22] is assumed to be unknown. The structural
observability and marking observability are distinguished.

The structural observability requires the study of the system properties for all
possible initial markings. If a place p ∈ P is observable in 〈N,M〉 then it is also
observable in 〈N,M ′〉 ∀M ′ ≥M with M ′(p) = M(p).

The marking observability means that there exists at least one word that is
complete, while strong marking observability means that all words can be completed
in a finite number of steps into a complete word. Here, the term word means
a word of events – i.e. a sequence of transition firings. It has the direct relationship
with RG and/or CG. Observability in general [54] allows, through an observer, the
computation of state variable values that cannot be directly measured. Observers
are used to estimate the system state.

Finally, it has to be said that for control of PN with unobservable/uncontrollable
transitions and non-measurable places CtPN are not too suitable. Consequently, it
is necessary to apply next kinds of PN mentioned below, i.e. Labelled PN and
Interpreted PN.

2.2 Labelled Petri Nets

Labelled Petri nets (LbPN) are the standard Petri nets with a function attaching
a label to each event. As a fundamental operation in modular design the parallel
composition LbPN is used. Often, models of subsystems are combined into a model
of the whole system. PN languages (at least their simple forms) are applied in
LbPN.

In terms of a separate set of event labels, PN languages were defined e.g. in [14,
35, 37, 40, 47, 49, 63], etc. Events can be assigned to some transitions, even to all
of the transitions. Then, the firing of a transition represents an event labelled by
the corresponding label. The set of all sequences of admissible event is named as
PN language.

In general, the formal definition of LbPN is the following:

LbPN = 〈N,L, l,m0, Fm〉 . (19)

Here N is the PN structure; L = L ∪ ε is an alphabet representing a finite set of
events, where L represents observable events and ε represents unobservable events;
l : T → L is a labeling function assigning an event to each transition; m0 ∈ M is
an initial marking, with M being a set of markings; Fm ∈ M is a finite set of final
markings.

At the simplest understanding of LbPN – in the sense of the λ-free PN lan-
guage [49] – no transition is labelled with the empty string λ and two or more
transitions may have the same label. Otherwise, especially in case of so called silent
events [23, 4] being unobservable and causing a change of DES markings (states),
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transitions may be labelled with the empty string ε. In case of indistinguishable
events, that may yield two or more new states from a given state, two or more
transitions are labeled with the same symbol and enabled at a given state.

2.2.1 State Estimation

In linear time invariant systems (continuous and/or discrete-time) in case of presence
of the state disturbance or noise and sensor noise or error which are described
statistically, or assumed to be small, when u(t) and y(t) are observed on an interval
(0, t−1) the problem of the state estimation is the following. To estimate x(s) from
u(t) and y(t) three possibilities exist:

1. to estimate the initial state (s = 0);

2. the current state (s = t− 1);

3. to estimate (i.e. predict) next state (s = t).

The algorithm or a system yielding the estimate x̂(s) is called an observer or state
estimator.

In PN the situation is different, likewise as in case of the controllability and
observability. The state estimation depends on the so called PN sensors.

2.2.2 Sensors in PN

The model of PN with outputs consists not only from the state equation but also
from the output equation yk = C.xk. PN with outputs [2, 56] are PN with the so
called place sensors which count the tokens contained in some places – named as
measured or observable places (in modelled DES e.g. vision sensors, touch sensors,
etc.), and transition sensors which detect the firing of some of the transitions –
named as measured or observable transitions (in real DES e.g. motion sensors, speed
sensors, etc.). However, not all places and not all transitions may have a sensor. As
it was premised above, in modelled DES not all state variables and not all control
variables can be measured or observed. More precisely, a place sensor configuration
V is a vector (v1, v2, . . . , vn)T , where vi = 0 if no place sensor exists on place pi and
vi = 1 otherwise. |V | =

∑n
i=1 vi ≤ n denotes the total number of place sensors in

the place sensor configuration V . On the other hand, analogically, |L| ≤ m is the
total number of transition sensors in use and could be zero if no transition sensor is
used.

As it was already mentioned, LbPN may have nondeterministic transitions – i.e.
transitions that share the same label or unobservable transitions associated with the
null label. Other faults are modelled also as unobservable transitions.

The set of transitions T = Td∪Tn, where Td is a set of deterministic transitions,
while Tn is the set of nondeterministic transitions. For deterministic PN with the
so called λ-free labeling function it is defined [23] that if two transitions are labelled
with the same symbol they cannot simultaneously be enabled atM. Therefore, for
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structurally deterministic function two different transitions cannot be labelled with
the same symbol. Thus, a transition t is nondeterministic if its label is associated
also to other transitions, otherwise a transition t is said to be deterministic. The
association between sensors and transitions can be captured by a labeling function
L : T → L ∪ {ε} that assigns to each transition t ∈ T either a symbol from a given
alphabet L or the empty string ε. The set of transitions whose label is ε is denoted
as Tu = {t ∈ T |L(t) = ε}. Transitions t ∈ Tu are called unobservable or silent. To
denotes the set of transitions labelled with a symbol in L. Transitions t ∈ To are
called observable, because when they fire, their label can be observed. In general,
the same label l ∈ L can be associated to more than one transition. In particular,
two transitions t1, t2 ∈ To are called non-distinguishable if they share the same label,
i.e., L(t1) = L(t2). The set of transitions sharing the same label l are denoted as Tl.

In LbPN whose initial marking is not known exactly [5], marking estimation is
possible. It is sufficient to know only that the marking belongs to a given convex
set. The silent transitions (i.e. labelled with the empty word) and indistinguishable
transitions (i.e. sharing the same label with other transitions) are allowed on that
way.

For the partially observed LbPN with a place sensor configuration V, a labeled
function L and an observation sequence, the set of consistent firing sequences and
consistent markings can be found [55]. The firing of t will generate token changes
in place sensors and/or an observable transition label.

2.2.3 Illustrative Example 1

Consider a partially observed P/T PN given in Figure 8 (left), where t4, t5 are
unobservable.

Figure 8. An example of partially observed LbPN (left) and the RT corresponding to the
fully observable net (right)
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Consequently, p4 is unobservable too because both of its input transitions are
unobservable. Thus, Po = {p1, p2, p3} is the set of observable places while Puo = {p4}
is the set (singleton) of unobservable ones. Consider that only p2 is equipped by
a sensor. Next, To = {t1, t2, t3} is the set of observable transitions while Tu = {t4, t5}
is the set unobservable ones. The labeling function L is given as L1 = a, L2 = L3 =
b, L4 = L5 = ε.

An observable transition t ∈ To can have a sensor that indicates when a tran-
sition within a given subset of transitions has fired. Any unobservable transition
t ∈ Tu = T − To cannot have such a sensor associated with it. The association
between sensors and transitions is captured by a labeling function L : T → L ∪ {ε}
that assigns a label to each transition. Unlike the fixed labeling function in LbPN,
the labeling function L in a partially observed PN can be configured subject to the
constraint that unobservable transitions must be assigned the null label – L(t) = ε
for all t ∈ Tu.

In case of fully observable net, its RT has the form as it is displayed in Figure 8
(right) with the nodes represented by the columns of the matrix

Xr =


2 1 0 1 1 0 0 0 0 0
0 1 2 0 0 1 1 0 0 0
0 0 0 1 0 1 0 2 1 0
0 0 0 0 1 0 1 0 1 2

 . (20)

LbPN are suitable for testing the observability of places and transitions. For example
let the transition t5 be the only fault transition which needs to be detected. Firing
the sequence of transitions S = t2t5 the system trajectory is M0[t2 > M1[t5 > M4,
where M0 = (2000)T , M1 = (1100)T and M4 = (1001)T , and the corresponding
observation from place and transition sensors is M0 → b → M1 → ε → M4 →
a → M0. Hence, we can deduce that the fault transition t5 had to be occurred.
Namely, only the firing of t5 can decrease the number of tokens in p2 by 1 and
at the same time not generate any label – b in t3. The observation is driven by
token changes in observable places with sensors and/or observed labels. When the
observed label is ε, it means that there is no observation output from transition
sensors. Because of the unobservable transitions and the unobservable place, the
actual marking of p4 and actual firing of t4, t5 cannot be anticipated (they are
unpredictable).

2.2.4 Illustrative Example 2

To illustrate LbPN deeper, consider the example of such a net given in Figure 9.

There are 13 transitions in the net. Consider that the observable transitions
create the set To = {t1, t2, t6, t7, t8, t9, t12} while the unobservable ones create the set
Tu = {t3, t4, t5, t10, t11, t13}, i.e. Tu = {ε1, ε2, ε3, ε4, ε5, ε6}. Let the labeling functions
of the observable transitions be L(t1) = a, L(t2) = L(t6) = b, L(t7) = L(t8) = c,
L(t9) = L(t12) = d. RT of the fully observable net is given in Figure 10.
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Figure 9. An example of LbPN

Figure 10. The RT of the corresponding P/T PN
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It has 25 nodes being columns of the matrix where the first column represents
the initial marking M0.

Xr =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1


. (21)

When we consider the input word w = ab, we obtain the set of consistent firing
sequences in the form S(w) = {t1t2, t1t2ε1, t1t2ε1ε2, t1t2ε1ε2ε6, t1t2ε1ε3}. In RT they
cause the set of consistent markings M1,M2,M4,M8 and M7 represented by the
columns 2, 3, 5, 9, 8 of the reachability matrix Xr, respectively. When the word is
considered to be w = acd, then S(w) = {t1t8t9, t1t8ε4ε5t12}, the set of markings is
represented by the column 2. Both cases of the word w are displayed in Figure 11 –
the former word on the left branch of the cropped RT, while the latter one on the
right branch.

Figure 11. The cropped RT expressing the reachable markings corresponding to the both
words – on the left side to the word w = ab and on the right side to the word w = acd
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2.3 Interpreted Petri Nets

IPN can be formally described [1, 39, 54, 57, 58, 8] by the quadruplet as follows:

IPN = 〈N,Σ,Φ, λ,Ψ, ϕ〉 (22)

where N is the PN structure; Σ = {α1, α2, . . . , αr} is an input alphabet with
αr, i = 1, 2, . . . , r being input symbols; Φ = {δ1, δ2, . . . , δs} is the output al-
phabet with δi, i = 1, . . . , s, being the output symbols; λ = T → Σ ∪ {ε} is
the labeling function of transitions (assigning either an input symbol αi ∈ Σ or
the internal event ε to each transition) with the constraint: ∀tj, tk ∈ T , j 6=
k, if ∀pi F (pi, tj) = F (pi, tk) 6= 0 and both λ(tj) 6= ε, λ(tk) 6= ε then λ(tj) 6=
λ(tk) – i.e. each transition is assigned a unique label; Ψ : P → Φ ∪ {ε} labels
the places (either an output symbol δi ∈ Φ or the null output signal ε is as-
signed to each PN place by this function); ϕ : R(IPN,M0) → Zq×n

≥0 is an out-
put function that associates an output vector to each marking R(IPN,M0). Here
q ∈ Z>0 is a positive integer representing the number of available output signals
and n = |P | – i.e. the number of all places in the set P . It means that ϕ is (q × n)
matrix.

IPN are to model the DES behavior that includes partially observable both
events and states [53]. The net system where each transition is assigned a unique la-
bel is named as free-labeled PN. Identifying of such nets is possible. The approaches
consist in observing the marking of a subset of places and (when some additional
information on the dependency between transitions is given) allow to reconstruct
the part of the net structure related to unobservable places. Such approaches can
be found e.g. in [41, 42] and the approach based on integer programming in [26].

3 IPN IN MODELLING AND CONTROL OF DES

The control specifications create [21] a set of forbidden markings MF which corre-
spond to undesirable states. Namely, they either jeopardize the system safety or
they give birth to deadlock situations. Therefore, it is necessary to determine a con-
venient set of places that, after adding to the PN model of the plant, will prevent
the whole system from reaching these states. When the PN model has uncontrol-
lable transitions it is necessary to prevent the system from reaching the forbidden
markings, containing all dangerous markings from which a forbidden one may be
reached by firing a sequence of uncontrollable transitions from Tu.

Let MD be the set of dangerous markings, i.e. MD = {M ∈ R(N,M0) | ∃M ′ ∈
MF ∧ τ ∈ T ∗u ,M [τ > M ′}, where T ∗u is a sequence of uncontrollable transitions.
Of course, MF ⊆ MD. The controlled system has to be safe (without forbidden
markings) and live (without deadlocks). Then, the set ML of legal (i.e. admissible)
markings is the maximal set of reachable markings such that

1. ML ∩ MD = ∅;
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2. it is possible to reach the marked marking M0 from any legal marking without
leaving the set ML;

3. any transition t from a legal marking to a nonlegal marking is a controllable
transition.

Of course the full RG is cropped into Rc being the RG containing all legal markings.
Thus, ML ⊆ R(N,M0) \MD.

It was shown in [50] that ML exists and it is called the maximally permissive
behavior. ML is such that, whatever the marking in ML, the system cannot be
uncontrollably led outside ML.

IPN are closely related to LbPN. Even, it may be said that IPN are a modifica-
tion of LbPN. They are [51] an extension of PN that allow to represent the output
signals generated when a marking is reached, and the input signals associated with
transitions that are controllable. These signals are useful to infer the initial marking
of the net. Such a kind of PN is also suitable to model and control DES the PN
model of which contains uncontrollable transitions and unmeasurable places.

Let us introduce two illustrative examples concerning

1. the principle of creating the IPN model of DES at the existence of uncontrollable
transitions and unmeasurable places;

2. the principle of its control.

3.1 Example – Creation of IPN Model

To show how to create the IPN model let us consider the simple PN-model given in
Figure 12.

Figure 12. An example of the PN-based model

The full RT (of the net without taking unmeasurable places and uncontrollable
transitions into account) is displayed in Figure 13 left. The particular RT nodes
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create the columns of the following matrix:

Xr =



0 0 0 0 1 1 0 0 0 0
2 0 2 0 0 0 2 2 2 0
0 0 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0 1 0
1 1 0 0 1 0 1 0 2 2
0 1 0 1 0 0 0 0 0 1
1 2 0 1 2 1 2 1 2 3
1 1 2 2 0 1 0 1 0 0


. (23)

Suppose that the measured places are Pm = {p1, p5, p6} and the unmeasured ones
(filled by the gray color) are Pum = P\Pm = {p2, p3, p4, p7, p8}. Consider that the
controllable transitions are Tc = {t1, t5} while the uncontrollable ones (filled by the
gray color) are Tu = T\Tc = {t2, t3, t4}. Consider for such IPN the input alphabet
Σ = {a, b} and the output alphabet Φ = {δ1, δ2, δ3}. Consequently, λ(tk)k=1,...,5 =
{a, ε, ε, ε, b}, Ψ(pi)i=1,...,8 = {δ1, ε, ε, ε, δ2, δ3, ε, ε}. The output equation is as follows:

yk = ϕ.xk where ϕ =

 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 . (24)

It is necessary to say that the RT of such IPN is not connected in spite of the fact
that t1, t5 are controllable, because we do not know what is up with the marking de-
velopment inside of the foggy area (containing uncontrollable transitions and states
containing unmeasurable places – see the right side of Figure 13).

Because at the beginning p1 is passive (σp1 = 0) and p5 is active (σp5 = 1), the
initial state is x0 = (0, ε, ε, ε, 1, 0, ε, ε)T . Neither t1 nor t5 are enabled (regardless
of the activity or passivity of unmeasurable places p2 and p8, respectively) because
measurable places p1, p6 are passive (without tokens).

On the other hand for the initial state x0 = (0, 2, 0, 1, 1, 0, 1, 1)T the output of
the PN (without taking the influence of uncontrollable transitions into account) is
y0 = (0, 1, 0)T .

3.2 Example – Principle of IPN Model Control

To explain how the IPN model is controlled, consider a segment shown in Figure 14
left. While the upper line containing p4 and t3 represents the fragment of the model
of the control system PNcs (containing the control specifications), the lower line
represents the fragment of the IPN model of the controlled plant PNpl. The RG
of the model is given in Figure 14 right, where x0 = (1, 0, 0, 1)T , x1 = (0, 1, 0, 1)T ,
x2 = (0, 0, 1, 1)T and x3 = (0, 0, 1, 0)T .

Here, the controllable transition t1 is enabled because it is required to reach
the stated output while p4 represents the state of a sensor. The self-loop between
them represents the relation between the place of the control specification and the
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Figure 13. The RT corresponding to the PN-based model (left) and to the IPN model
(right)

Figure 14. The controlled segment of the IPN-based model (left) and its RG (right)

plant controllable discrete event. The transition t3 represents enabling the event
expressing the situation when the plant and control specification have the same
output and p3 represents the state of the sensor. The self-loop between them ex-
presses the relation between the plant measured place and the control specification.
Thus, t2 is bypassed and it can fire (as an internal event) or not. Note that the
fragment of RG accordant with the segment of the controlled plant is straight-lined.
Such fragments occur also in more complicated structures. Of course, RG of more
complicated structures of the plant models will not be straight-lined.

3.3 Illustrative Example on Robotized Cell

Consider the robotized cell schematically drawn in Figure 15.
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Figure 15. The schema of the plant

There are two robots R1, R2 serving, respectively, machines M1, M2. R1 inserts
into M1 a raw material feeded by the Conveyer from an input buffer. M1 machines
the raw material. After finishing operations the intermediate product is unloaded
from M1 by R1 and put on the Conveyor. By means of the Conveyor the semi-
product proceeds towards M2. R2 takes it up and inserts it into M2. After finishing
operations the final product is unloaded from M2 by R2 and put on the Conveyor
which conveys it to an output buffer. The PN model of the plant operation is given
in Figure 16 left. Its RT is given in Figure 16 right. It is very simple, however only in
case when all transitions are controllable and all places (states) are measurable. The
nodes of the RT are given by rows of the following reachability matrix representing
the state vectors x0, x1, . . ., x8:

XT
r =



1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0
0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0
0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0


. (25)
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Figure 16. The PN model of the plant (left) and its RT (right)

In opposite case, when there are the uncontrollable transitions and unmeasurable
places in the model, the situation is dramatically changed. The IPN model of the
plant – see Figure 17 left – has the same structure, but transitions and places filled
in gray color complicate the situation. They represent uncontrollable transitions
Tu = {t3, t7, t8, t12, t14} and unmeasurable places Pum = {p4, p6, p8, p11, p14}. Of
course, controllable transitions create the subset Tc = T \Tu and measurable places
create the subset Pm = P \Pum.

Figure 17. The IPN model of the plant (left) and its RT (left)
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In such a case also the previous RT is not clear because of the uncontrollable
transitions t ∈ Tu – see Figure 17 right. Then,

X′r =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 ε 0 0 0 0 0 0
1 1 1 0 1 0 1 0 1
0 0 0 ε 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 ε 0
1 1 1 1 1 1 1 0 1
1 1 1 1 0 1 0 1 0
0 0 0 0 ε 0 0 0 0
0 0 0 0 0 0 1 0 1
1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 ε
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0



. (26)

Because of p ∈ Pum the output vector of such a system is the following:

yk = ϕ.xk (27)

where

ϕ =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


.

Also in such a case the plant can be controlled by the controller. The structure of
the plant with the incorporated controller is in Figure 18.
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RT of this model is given in Figure 19. Nodes of the RT are represented by the
following reachability matrix

Xr =



1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1
0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0
0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0



. (28)

At meeting the priorities t1 � t16, t17 � t8, t9 � t17, t5 � t17, t2 � t19, t3 � t19,
t15 � t18, t18 � t14 corresponding to sequence of technological operations, the finite
path (trajectory) ensuring the working cycle of the controlled plant is the following:

x0
t1→ x1

t16→ x3
t5→ x5

t7→ x8
t9→ x12

t17→ x18
t8→ x13

t6→ x9
t4→ x6

t10→ x10
t12→ x15

t15→ x21
t18→

x27
t14→ x22

t13→ x16
t11→ x11

t2→ x17
t3→ x7

t19→ x0. Although the uncontrollable transitions
t ∈ Tu = {t3, t7, t8, t12, t14} occur in the sequence of the transitions, the control is
possible.

4 CONCLUSION

Several kinds of PN and their application to modelling and control of DES were
introduced and described. Particularities and curiosities of individual kinds were
pointed out, especially with respect to their advisability to model and control of
DES. For deterministic PN models, where all transitions are controllable and ob-
servable and all places are observable (measurable), the P/T PN, TPN and CtPN are
suitable. Also HPN (or FOHPN), mentioned for completeness’ sake in the Section 2,
are useful.

For PN models of DES where unobservable/uncontrollable transitions (where
also transitions modelling failures belong) and unobservable (unmeasurable) places
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Figure 18. The controlled IPN model of the plant

occur, especially LbPN and IPN are suitable. In both areas of PN models illustrative
examples were introduced.

While in the former PN area it is possible to find feasible paths (control tra-
jectories) without big problems, in the latter one this cannot be said. Namely,
uncertainty demands completely different approach not only to the model creation
in order to express appropriately the uncontrollable/unobservable transitions and
unobservable (unmeasurable) places but also to the control synthesis. Though the
model is created, it still does not mean that the control synthesis will be simple.
Consecutive problems yet occur concerning the controllability and observability of
the model which are fundamental over the control synthesis. Moreover, for the
state estimation PN sensors are very important as well as the points in PN where
they have to be located. Only after the correct dislocation of sensors the successful
control can be expected.

For modelling and simulation of DES by means of PN the simulation tools are
used. In principle, there are two kinds of simulators:

1. graphical, and

2. computational.
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Figure 19. The controlled IPN model of the plant

In case of graphical simulators the PN is drawn by means of clicking on icons (place,
transition, arc, token). Then, the marking evolution can be monitored step-by-
step by means of clicking on enabled transitions (being distinguished from disabled
transitions in color). Some of such simulators are able to draw RT and/or test
the basic properties of PN. The graphical simulators are either free or commercial.
The list of some available simulators is on the web site http://www.informatik.

uni-hamburg.de/TGI/PetriNets/index.php. The graphical simulators are appli-
cable for not very large PN models. The computational simulators are built on
different bases (C++, Java, etc.). However, for common users the simulators utiliz-
ing Matlab tool are most friendly and applicable. Although Matlab contains own
PN graphical tool, from computational point of view the simulator HYPENS (suit-
able for computational simulation of P/T PN, TPN, HPN, FOHPN) [59] used in
Matlab is more user friendly. It works with matrix/vector based model for which
the Matlab tool is an ideal environment. The computational simulators are suitable
for reasonable larger PN models in comparison with the graphical ones. Moreover,
Matlab itself makes possible to utilize prearranged computational procedures for

http://www.informatik.uni-hamburg.de/TGI/PetriNets/index.php
http://www.informatik.uni-hamburg.de/TGI/PetriNets/index.php
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the supervisor synthesis as well as to test the behaviour and properties of the final
model of the supervised system.

The presented paper represents only Part 1 of the whole paper. It is planned to
publish also the separate Part 2 of this paper where also several deeper case studies
(including the error recovery approach at fault occurence, e.g. when a part drops
from the robot gripper during an assembly process) will be presented in order to
better document the applicability of the approaches on models of DES in a real
environment (practice).
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