
Computing and Informatics, Vol. 37, 2018, 1231–1257, doi: 10.4149/cai 2018 5 1231

ONTOLOGY-BASED RESOLUTION
OF CLOUD DATA LOCK-IN PROBLEM

Darko Andročec, Neven Vrček

Faculty of Organization and Informatics
University of Zagreb
Pavlinska 2
42000 Varaždin, Croatia
e-mail: {dandrocec, nvrcek}@foi.hr

Abstract. Cloud computing is nowadays becoming a popular paradigm for the pro-
vision of computing infrastructure that enables organizations to achieve financial
savings. On the other hand, there are some known obstacles, among which ven-
dor lock-in stands out. Furthermore, due to missing standards and heterogeneities
of cloud storage systems, the migration of data to alternative cloud providers is
expensive and time-consuming. We propose an approach based on Semantic Web
services and AI planning to tackle cloud vendor data lock-in problem. To complete
the mentioned task, data structures and data type mapping rules between different
types of cloud storage systems are defined. The migration of data among different
providers of platform as a service is presented in order to prove the practical ap-
plicability of the proposed approach. Additionally, this concept was also applied to
software as a service model of cloud computing to perform one-shot data migration
from Zoho CRM to Salesforce CRM.

Keywords: Cloud data portability, data migration, platform as a service, software
as a service, data type mappings, semantic web services

Mathematics Subject Classification 2010: 68-P20

1 INTRODUCTION

Many end users and corporations store parts of their data in clouds. For now, it is not
easy to move these data from one cloud vendor to another. Due to different cloud

1232 D. Andročec, N. Vrček

storage models and implementations, it is difficult for users to switch to another
cloud storage solution in case of service dissatisfaction or change of users’ needs.
The cloud data lock-in problem is characterized by time-consuming and costly mi-
gration of data to alternative cloud solutions offered by different vendors. Currently,
each cloud vendor offers its own tools, remote application programming interfaces
(APIs), and cloud storage data models. The numerous heterogeneities among dif-
ferent vendors make cloud data portability an interesting and complex research and
practical problem. The migration of data between different offers of platform as
a service is the main focus of this work. The same approach was applied to soft-
ware as a service model, where we have chosen to migrate data between two cloud
customer relationship management (CRM) systems: Zoho CRM and Salesforce.

The presence of several coexisting cloud storage models introduces the need for
translation techniques and tools. The main research questions of this paper can
be stated as: How to leverage automatic data migration between cloud solutions?
How to provide cross cloud data type mappings for different cloud storage systems
used by various cloud offers? There are many data migration/interoperability prob-
lems among cloud providers, so the answer to the mentioned research questions is
not trivial. For example, there exists a difference between data storage models of
various commercial cloud providers; storage data types differ in name, value space,
permitted range of values, precision of data; data import or export is often complex;
some offers have a predefined standard data container or have some naming restric-
tions. The main contribution of this work is a flexible data migration among cloud
storage systems that uses Semantic Web and AI planning to avoid point-to-point
mappings. We have used a standard data model in the form of the OWL ontol-
ogy representing data schema, data types, and data elements. The result of this
work is the architecture design for automated data migration among different cloud
providers.

This paper proceeds as follows. First, in Section 2, the related work is listed.
Section 3 lists the main steps of our research. In Section 4 we present the chosen PaaS
offers and storage types. Section 5 shows how we use OWL as an intermediate format
for the migration of data structure and data from one PaaS storage to another.
Section 6 briefly describes the developed PaaS ontology and our implementation
of data type mappings between different PaaS storage offers. The following three
sections show the approach we proposed, and explain the use of Semantic Web
services, AI planning, and Apache CXF framework to migrate data between PaaS
providers. In Section 10, the validation of our data migration approach was done by
migrating a more complex set of PaaS and SaaS data. Our conclusions are provided
in the final section.

2 RELATED WORK

Cloud storage interoperability problems are similar to interoperability conflicts
among multiple independent database systems. These problems are well investi-

Ontology-Based Resolution of Cloud Data Lock-in Problem 1233

gated in the current literature. For example, Sheth and Kashyap [1] classified and
defined the most important interoperability conflicts among multiple independent
database systems. They listed the following main categories of incompatibilities [1]:
domain definition incompatibility (attributes have different domain definitions), en-
tity definition incompatibility (descriptors used for the same entity are partially
compatible), data value incompatibility (inconsistency between related data), ab-
straction level incompatibility (the same entity is represented at different levels of
abstraction), schematic discrepancy (data in one database correspond to schema
elements in another). For each incompatibility category, Sheth and Kashyap listed
possible concrete conflicts. Parent and Spaccapietra [2] listed the most relevant is-
sues and the approaches to tackle data interoperability problems when integrating
databases. They distinguished seven categories [2]: heterogeneity conflicts, gener-
alization/specialization conflicts (different generalization/specialization hierarchies
and different classification abstractions), description conflicts (types have different
properties and/or their properties are described differently [2]), structural conflicts
(different structures of related types), fragmentation conflicts (the same object is
depicted by decomposition into different elements [2]), metadata conflicts, and data
conflicts (data instances have different values for the same properties).

Park and Ram [3] conclude that semantic conflicts among databases can occur
at two levels: data and schema. Data-level conflicts include data-value conflicts (the
data value has different meaning in different databases), data representation con-
flicts (such as different representations of date and time), data-unit conflicts (differ-
ent units are used in different databases), and data precision conflicts. All data-level
conflicts can occur at the attribute level or at the entity level. Schema-level con-
flicts include [3]: naming conflicts, entity-identifier problems, schema-isomorphisms,
conflicts of generalization, aggregation conflicts, and schematic discrepancies. Are-
nas et al. [4] tackled the problem of exchanging data between different relational
databases that have different schemas. They mentioned three key problems of rela-
tional and XML data exchange: how to build target solutions; how to answer queries
over target solutions; and how to manipulate with schema mappings (metadata
management)[4]. Rocha et al. [5] presented their framework to support migrating
from relational (MySQL) to NoSQL databases (MongoDB). Their framework con-
sists of migration and mapping module. However, their work is not focused on
cloud storage systems and how to access these storage systems. It also supports
only MongoDB, a document-oriented NoSQL solution.

There are several cloud APIs and frameworks that act as intermediaries be-
tween different clouds. Apache Libcloud [6] is a Python library containing a unified
API that can manage cloud resources of different providers. This library is focused
on infrastructure as a service and supports cloud servers, block storage, cloud ob-
ject storage, load balancers, and DNS as a service. Deltacloud API [7] contains
a cloud abstraction API working as a wrapper around a large number of clouds to
abstract their differences. It is also focused on IaaS providers and provides drivers
for Amazon, Eucalyptus, GoGrid, OpenNebula, etc. Apache jclouds [8] is an open-
source library offering blob (binary content) store and compute service abstraction

1234 D. Andročec, N. Vrček

for 30 IaaS providers. There are also some commercial (industrial) approaches to
tackle cloud portability and interoperability. For example, Cloutex can integrate
and synchronize data between Salesforce, Quickbooks Online and Magento. A simi-
lar offer, Import2.com, enables the transfer of data between cloud applications such
as Salesforce, Tumblr, Nimble, Pipedrive, SugarCRM, and Zoho CRM. Import2 is
currently focused on CRM, helpdesk and blog migration of cloud data. These are
all commercial offers with closed source code, and adding new cloud providers to
their offers can be expensive or impossible.

There are some known approaches in the current literature to tackle cloud stor-
age interoperability and migration problems. One of the first attempts to define
cloud computing ontology to achieve cloud interoperability was introduced in Yous-
eff et al. [9]. They presented an ontology which differentiates five main layers of
cloud computing (applications, software environments, software infrastructure, soft-
ware kernel and hardware). Ranabahu and Sheth [10] present the usage of semantic
technologies to overcome cloud vendor lock-in issues. They distinguish four types
of semantics for an application: data semantics (definitions of data structures, their
relationships and restrictions), logic and process semantics (the business logic of the
application), non-functional semantics (e.g. access control and logging) and system
semantics (deployment descriptions and dependency management of the applica-
tion).

Quinton et al. [11] proposed SALOON, a software product lines-based platform
to select among cloud environments the best one for a specific purpose. Their plat-
form automates the deployment of cloud environment configurations through the
generation of executable configuration scripts. Tsai et al. [12] proposed a service-
oriented computing architecture for cloud interoperation. However, the implementa-
tion or use case of the proposed architecture is still missing. Bastiao Silva et al. [13]
developed a unified API for delivering services using cloud resources of multiple
vendors with abstract layers for cloud blob stores, cloud columnar data (e.g. Azure
Table), and Publish/Subscribe mechanism (Channel API of Google App Engine and
Azure Queue). However, the focus of their work is to allow different applications to
interoperate using a normalized API interface, and the authors did not tackle the
issue of the cloud data migration.

Vision Cloud project [14] was primarily concerned with developing the archi-
tecture of a cloud-based infrastructure to provide a scalable and flexible framework
for optimized delivery of data-intensive storage services. Its main aim is to solve
the data management conflicts in cloud federations and multi-clouds. Five areas of
innovation in the VISION Cloud platform [14] include: data objects are enriched
with a detailed metadata, data lock-in should be avoided, computations are put
close to the data, efficient retrieval of objects is enabled, and strong QoS guaran-
tees, security and compliance with international regulations are guaranteed. Data
objects are grouped into containers that can have associated metadata descriptions.
Researchers working on Vision Cloud project used CDMI standard to achieve in-
teroperability among CDMI-compliant cloud storage vendors. They also introduced
the on-boarding federation to move data from one cloud storage provider to an-

Ontology-Based Resolution of Cloud Data Lock-in Problem 1235

other. Vision Cloud’s approach uses a cloud storage container as the basic unit of
the federation. Vision Cloud offers a RESTful API to manage data federation. How-
ever, commercial cloud vendors are rarely CDMI-compliant at the moment. Scav-
uzzo et al. [15] propose a migration system for columnar NoSQL databases (Google
App Engine Datastore and Windows Azure Tables) that consists of intermediate
metamodel and database-specific translators. Our approach is more comprehensive,
because it includes different types of cloud storage systems (columnar NoSQL, rela-
tional and object databases), platform as a service and software as a service models,
and it is tested on four cloud providers (Microsoft Azure, Google App Engine, Sales-
force and Zoho CRM). Additionally, when migration is not successful, our system
returns found interoperability problems and their descriptions. Data type mappings
of different types of cloud storage systems are also addressed in our solution.

Shirazi et al. [16] provided a formal way for migrating data between HBase as
a column family database to Neo4j graph database. However, their approach is spe-
cific to the two mentioned data storage types, it is not general nor can be extended
to include other types of cloud data storage. Ali et al. [17] proposed a cloud bro-
ker solution for the data migration between different software as a service providers.
Their approach has several steps, which include: collection and analysis of the meta-
data, development of a mapping model, solution design, implementation and testing
of the solution. The main drawbacks of their approach include the need for the def-
inition of point-to-point data mappings, and the need to implement a broker for
each specific mapping, so our approach is better since we have many different cloud
storage providers and it is more flexible. Bansel et al. [18] proposed a NoSQL data
migration meta-model driven framework to foster data portability across cloud-
based heterogeneous NoSQL databases. Our work is more comprehensive, because
it includes relational and object databases, and is tested on more cloud providers’
storage systems, and their approach is tested only on Microsoft Azure (Azure Tables
to MongoDB or Neo4j) and includes only NoSQL databases.

Definite solutions to interoperability and portability issues of platform as a ser-
vice and software as a service remain elusive due to the technical complexity and
a lack of accepted standards [19]. The vendor lock-in is omnipresent in cloud offers,
and many clients have postponed their investment because they fear the significant
costs if they decide to migrate to another provider. The gaps in the existing lit-
erature include the lack of data portability among different types of cloud storage
systems, especially between relational and NoSQL cloud data storage systems. Fur-
thermore, there is no existing work that solves the problem of data type mappings
among different types of cloud data storage systems (NoSQL, relational database,
object databases). Our work deals with the mentioned problems. Our approach
aims to ease the migration of data between cloud data storage systems. Once wrap-
pers for a platform have been built, it requires little manual intervention to migrate
data between various cloud data storage systems. The big advantages of our ap-
proach arise when one has to migrate many different data types and data among
multiple cloud storage systems, because it is easy to incrementally add new mapping
rules. The main contribution of our work is an ontology-based architecture for the

1236 D. Andročec, N. Vrček

automatic cloud data migration between cloud storage systems (including relational
and NoSQL storage systems). The approach is general for cloud storage systems,
and we have checked it using two use cases, one for platform as a service, and one
for software as a service model of cloud computing.

3 RESEARCH METHODOLOGY

The basic steps in this research include: design and implementation of use cases,
development of the ontology used for semantic annotations, definition and develop-
ment of semantic web services, and identification of interoperability problems among
different commercial providers of platform as a service. In the first step of the re-
search, use cases are defined. These use cases are examined to determine technical
and semantic interoperability problems among APIs of different providers of cloud
data storage systems and how to detect and resolve interoperability problems. The
migration of data among different providers of platform as a service (Google, Mi-
crosoft, Salesforce) is the first use case used to prove the practical applicability of
the proposed approach. Additionally, the concept was also applied to software as
a service model of cloud computing to perform one-shot data migration from Zoho
CRM to Salesforce CRM. In the future, similar use cases can be defined. Many pa-
pers and research projects (e.g. FP7 or Horizon2020) in the computer science field
use a similar research method, i.e. begin with a definition of use cases to explain
requirements and to later test the approach.

The second step of this research is the development of the ontology for resources
and operations. The aim is to clearly describe and categorize the existing function-
alities, features and specificities of commercial platform as a service offers. Addi-
tionally, the ontology supports data mappings among the heterogeneous APIs and
various data storage systems. The offerings of platform as a service often use pro-
prietary and non-standard databases (relational and non-relational). Representing
these data models by means of ontology can provide a common layer for information
exchange.

The PaaS ontology developed in the previous step is used to create semantic
web services that represent remote functions (APIs) of platform as a service offers.
Every operation from the cloud vendor’s API will be semantically described using
a web application developed for this purpose. The aim of these semantic web services
is to simplify determination and resolution to interoperability problems among the
existing commercial vendors. All cloud providers offer APIs to access and manage
their cloud storage systems, and to integrate or migrate data from multiple providers.
We can use these services that are further semantically annotated in our approach to
enable automatic or semi-automatic data migration. In the end, we try to determine
the existing interoperability problems among the selected commercial cloud solutions
by comparing their associated semantic web services. For this purpose, the AI
planning methods were used. AI planning was chosen because it is one of the most
promising techniques to solve the problem of web service composition.

Ontology-Based Resolution of Cloud Data Lock-in Problem 1237

4 CHOSEN PAAS OFFERS AND STORAGE SYSTEMS

Our approach was first applied to platform as a service model of cloud computing.
There are many providers of platform as a service. We have chosen the following
three prominent providers of platform as a service: Microsoft, Google, and Sales-
force. These offers were chosen because they are currently among the leading offers
on the platform as a service market with many current users. For example, in the
magic quadrant for enterprise application platform as a service published in January
2014, Gartner [20] listed Microsoft and Salesforce.com as the only two market lead-
ers, and Google as the only market challenger among the total of 18 reviewed com-
mercial PaaS providers. Furthermore, the mentioned PaaS offers support different
types of data storage systems that can possibly identify more data interoperability
problems in comparison to moving data only among the cloud storage systems of
the same types.

On the Force.com platform, data objects are called custom objects (similar
to tables in databases). In Salesforce [21], an organization represents a database
with built-in user identity and security. Objects are similar to tables in relational
databases and they contain fields and records. Objects are related to other objects
by using relationship fields instead of primary and foreign keys. There are two types
of objects: standard objects (predefined, created automatically by Salesforce) and
custom objects (objects that you create in your organization). Each custom object
has some predefined, standard fields. Every custom object’s name on Salesforce
must finish with the postfix c (e.g. Customer c).

Next, Google App Engine has three options for data storage: App Engine Datas-
tore, Google Cloud SQL and Google Cloud Storage. The App Engine Datastore [22]
is a schema-less object datastore. The datastore holds data objects named entities;
each entity has one or more properties of one of the supported data types; and each
entity is identified by its kind and key. Google Cloud SQL [23] enables the usage of
relational MySQL databases in Google’s cloud. The Google Cloud Storage is an ex-
perimental service that provides storage for big objects and files (up to terabytes in
size). The first option (App Engine Datastore) was selected because it is the only
free option. Furthermore, it is a good example of key-value cloud storage. Datastore
objects can be created programmatically by means of Java object classes, servlets,
HTML and JavaScript.

There are three main storage offerings on the Azure platform [24]: Local Storage,
Windows Azure Storage, and SQL Database. Local Storage provides temporary
storage for a running application and it represents a directory that can be used
to store files. Windows Azure Storage consists of blobs (storage of unstructured
binary data), tables (a schema-less collection of rows such as entities, each of which
can contain up to 255 properties) and queues (storage for passing messages between
applications) that are accessible by multiple applications. SQL Database is based on
SQL Server technology and provides a relational database for the Azure platform.
For the purpose of these use cases, SQL Database option was chosen. To be better
at detecting interoperability problems among different types of PaaS storage, this

1238 D. Andročec, N. Vrček

relational storage option was chosen, because in the first two providers different
types of PaaS storage were selected. More various interoperability problems can
be detected if different types of PaaS storage were chosen, instead of choosing the
same or similar storage types (such as key-value datastore, relational database-like
storage, or object storage) for each PaaS provider. A database can be created by
means of Microsoft Azure management portal (https://windows.azure.com). It
can also be created programmatically.

Most API data operations deal with one data container (table, entity, or cus-
tom object), so if users want to migrate all data, they must first learn how to get
names or identifiers of data containers. All three chosen PaaS providers enable CSV
export, and these files can be used to obtain the required names or identifiers. The
obtained basic structure can be used to call remote API functions to retrieve de-
tailed information about the structure of data and data types from cloud storage
systems.

5 TRANSFORMATION OF DATA STRUCTURES
AND DATA TO ONTOLOGY

Data structures and data of each platform as a service’s storage will be represented
as the unified data model ontology, so OWL will be used as an intermediate for-
mat to migrate data between PaaS vendors. We have chosen OWL, because we
also use it for semantic web services. The mappings could be implemented in
any other format. This architecture is inspired by a direct mapping approach [25]
proposed by the RDB2RDF Working Group. The transformation of data struc-
tures from cloud storage to ontologies is based on mapping rules that specify how
to map PaaS data constructs to the ontological models. Astrova et al. [26] pro-
posed an approach to automatic transformation of relational databases to ontolo-
gies. They listed the mapping rules [26] which inspired the rules presented later
in this paper. Inevitably, some of the semantics captured in a relational database
will be lost when transforming the relational database to the ontology [26], the
same situation will certainly also happen when dealing with PaaS storage sys-
tems.

Due to many differences among cloud storage types supported by major com-
mercial providers of platform as a service, the basic transformation rules were de-
fined to build data model ontology’s classes, data properties and instances (see
Table 1). The mappings in the other direction (from OWL ontology to cloud
storage) could also be defined, so representing these data models by means of
the OWL ontology can provide a common layer for information exchange. The
web services for reading and writing OWL data ontologies were created using the
above specified transformation rules and the Apache Jena framework [27] for build-
ing Semantic Web applications in Java programming language. Jena provides an
API to work with OWL and RDFS files and a rule-based reasoning inference en-
gine.

https://windows.azure.com

Ontology-Based Resolution of Cloud Data Lock-in Problem 1239

Azure SQL GAE Datastore Salesforce OWL

table entity kind object OWL class

column property field data type property

row entity record instance

primary key identifier from
an entity key

identifier of an ob-
ject (recognized
as a field of Sales-
force’s ID data
type)

data property identifier
in an instance

foreign key relationship be-
tween two entities

relationship be-
tween two objects
(recognized as
a field of Sales-
force’s reference
data type)

object property
hasLinkToObject with
the appropriate do-
main and range in
an instance

Table 1. Basic transformation rules to and from an intermediate OWL file

6 PAAS ONTOLOGY AND DATA TYPE MAPPINGS

Our architecture for PaaS data migration is using OWL as data intermediate format.
Additionally, we have used PaaS ontology to define mappings between data types
of different PaaS providers and to list all relevant providers’ API operations for
manipulating and management of underlying PaaS data. For the purpose of the
development of PaaS ontology, the Ontology Development 101 [28] methodology was
selected. This methodology was chosen among others, because it is the simplest and
it is really focused on the results, i.e. building the first ontology version very fast
and then refining it according to requirements. Web Ontology Language (OWL)
was chosen because it has the needed expressive power and is the most widely
used language for ontologies in the papers in the field of computer science and
research projects related to this field of study. The aim of the ontology is to describe
clearly and to categorize the existing functionalities and features of commercial
providers of platform as a service. Our ontology is publicly available at https:

//github.com/dandrocec/PaaSInterop/tree/master/PaaSOntology5.

Initially, the concepts in this ontology were derived from the existing cloud on-
tologies (mostly from mOSAIC project), PIM4Cloud [29] metamodel from REMICS
project, OASIS Reference Ontology for Semantic Service Oriented Architecture [30],
relevant related works from literature [9], remote cloud functions specified in the API
documentation of the most prominent commercial providers of platform as a ser-
vice (Google App Engine, Microsoft Azure, Salesforce), standards for Semantic Web
services such as OWL-S and WSMO, relevant cloud computing standards (OCCI,
TOSCA, CDMI), and using personal experience in building applications for platform
as a service. A total of 146 classes were defined that are organized in 17 top level
classes (Table 2). The ontology is described in more detail in our previous work [31].

https://github.com/dandrocec/PaaSInterop/tree/master/PaaSOntology5
https://github.com/dandrocec/PaaSInterop/tree/master/PaaSOntology5

1240 D. Andročec, N. Vrček

For this paper, the most important part of the PaaS ontology is its application for
data type mappings which will be explained in the next chapter.

Each platform as a service provider supports its own set of data types. Data
types differ in their name, value space, permitted range of values, precision of data,
etc. Data types from the three chosen PaaS storage types (Google App Engine
Datastore [32], Microsoft Azure SQL Database [33], Salesforce [34]) are mapped to
XSD (because OWL uses Schema Data Types – [35] and [36]), more specifically to
an OWL data property’s range of data model ontology. OWL (XSD) data types are
chosen as a baseline system.

Figure 1. Instances of DataTypeMapper class for mapping different cloud providers’ data
types

Data type mappings were implemented by means of instances of the ontology.
Two classes deal with data types mappings between different PaaS storage sys-
tems: DataType and DataTypeMapper. The subclasses of the DataType class are
OWL data types and data types of each platform as a service storage model (Azure-
DataType, GoogleDataType, OWLDataType, and SalesforceDataType). Each data
type is represented by an individual (instance) of the associated class. As an illus-
tration, XsdDate is an instance of the OWL class OWLDataType and it represents
the xsd:date type. The second important class is DataTypeMapper. This class has
two object properties (hasSource and hasDestination), and instances of this class are
actually data type mappings (see Figure 1). For instance, SalesforceToOwl 2 is an
instance of the DataTypeMapper hasSource SalesforceBoolean and hasDestination
XsdBoolean, so it shows that the Salesforce’s Boolean data type is mapped to the
OWL Boolean data type.

Web services were created to handle these mappings automatically by read-
ing the OWL ontology and performing the needed mappings and transformations.

Ontology-Based Resolution of Cloud Data Lock-in Problem 1241

Top Class Description

Api It represents vendors’ Application Programming
Interfaces (APIs).

Application It contains all instances of applications that are de-
ployed to a PaaS offer and run in the Applicatio-
nEnvironment.

ApplicationEnvironment PaaS application environment such as Google App
Engine Java runtime environment.

ApplicationServer Application server dedicated to efficient execution
of cloud applications on vendor’s servers.

DataContainer This class is an abstraction of containers of data
objects, e.g. tables, entities, objects, files directo-
ries.

DataObject This class includes instances of data objects of
various storage options such as NoSQL, relational
database, object database and cloud file systems.

DataType Data types in cloud storage systems or cloud ser-
vices.

DataTypeMapper Its instances are used for data type mappings be-
tween different storage systems of different PaaS
vendors.

Operation It represents all instances of remote operations de-
fined in various vendors’ APIs.

OperationException It includes all instances of possible exceptions
thrown by remote operations defined in vendors’
APIs.

PaaSProvider It includes instances of commercial vendors who
offer platform as a service.

PaaSResource A generic resource provided by a PaaS vendor.

Programming-Language It contains instances of computer languages used
for developing applications in vendor’s environ-
ment.

Queue It covers all instances of FIFO queues supported by
commercial providers of platform as a service.

Service It includes all kinds of services provided by com-
mercial vendors of platform as a service.

ServiceDescription A description of the functionality provided by ser-
vice

Variable Its subclasses include input, output, and results of
APIs’ web services.

Table 2. Top level classes of our ontology

1242 D. Andročec, N. Vrček

For now, DataTypeMapper has approximately 150 instances (mappings). If some
mappings are not correct, they can be fixed in the PaaS ontology and data type
conversion will work. If another platform as a service provider is added, another
subclass of DataType must be added, as well as instances for each data type of the
new PaaS storage, and mapping instances from and to OWL data types must be
created. Web services for data mapping to deal with the new storage provider also
need to be slightly upgraded. This enables great flexibility regarding the mapping
of data types supported by different PaaS providers. Some data types have unsup-
ported mappings (for example, for Salesforce’s anyType we can not find anything
similar in OWL). In these cases, data migration will stop and error will be shown
to the user suggesting that there is an interoperability problem connected to data
types of different PaaS storage systems.

Ontology Development 101 methodology does not have an explicit evaluation
step and it lacks evaluation procedure and recommendations, but evaluating the
ontologies is useful to refine the ontologies and see whether they can be used in ap-
plications as expected. The ontology was evaluated by four human experts working
in the field of cloud computing interoperability and related science projects. Their
feedback was used to refine the ontology. After their initial feedback, the ontologies
were revised and improved, and contact was kept (by email) with the experts who
offered more comments on the newer versions of the ontologies. Several pitfalls were
found by four experts and the ontology was improved.

7 SEMANTIC PAAS WEB SERVICES

All cloud providers enable developers to access their cloud storage systems using
their application programming interfaces (APIs). They also provide custom tools or
scripts, but these are specific for a certain cloud platform and not usable on another
platform. If we want to integrate different cloud storage systems, the best solution is
to use APIs (RESTful or SOAP service designed to be used exactly for this purpose,
i.e. to integrate custom application or systems with cloud storage systems). Current
web services provide only syntactical descriptions, so web service integration must
be done manually. Semantic web services are the integration of Semantic Web and
service-oriented architecture implemented in the form of web services. Semantic web
services are aimed at an automated solution to the following problems: description,
publishing, discovery, mediation, monitoring and composition of services. For this
reasons, we have decided to use semantic web services. Web services that encapsu-
late remote API operations of three commercial providers (Google, Microsoft, and
Salesforce) were developed to access these services in a unique way (providers of-
fer their remote APIs in different forms - REST, SOAP or programming language
libraries). These services directly call remote vendors’ APIs. Some composite ser-
vices (that call more than one cloud API operation and perform some additional
tasks) were also developed (e.g., some of the services used for the data migration
between PaaS storage types). Web services and all other parts of the authors’ pro-

Ontology-Based Resolution of Cloud Data Lock-in Problem 1243

totype were implemented in Java. The source code of the tool is publicly available
at https://github.com/dandrocec/PaaSInterop.

SAWSDL (W3C’s Semantic Annotations for WSDL) [37] lightweight annota-
tion was used to define semantic web services. SAWSDL was chosen due to its
simplicity, its rich ontology-based data mediation mechanism for mapping inputs to
outputs of web services and tool availability. The SOWER tool developed as part
of the SOA4All FP7 project [38] was used to facilitate the manual annotation of
WSDL service descriptions with the semantic information [38]. The web services
that invoke API operations of the providers of platform as a service were devel-
oped, and each particular API operation with a term defined in this ontology of
platform as a service can now be annotated. For instance, the Azure’s createTable
web service operation can be referenced to CreateDataOperation class of the OWL
ontology.

8 AUTOMATED PAAS SERVICE COMPOSITION

As we have already mentioned in the previous section, what all cloud providers
have in common is that they provide APIs for cloud storage management. To
move data among different cloud providers, we have chosen to use semantically
annotated web services representing cloud APIs. The next step is to automati-
cally or semi-automatically compose semantic web services to retrieve data from
one cloud storage, perform data type mappings, and store data into another cloud
storage.

In the current literature, the automated composition of web services was per-
formed using numerous methods, such as: Event Calculus, Petri Nets, Colored Petri
Nets, Linear Logic theorem proving, AI planning, logic programming, Markov pro-
cess, States Machines, etc. AI planning is one of the most promising techniques to
solve the problem of the automated web service composition, and was chosen for the
mentioned task in this work. We also wanted to determine the existing data inter-
operability problems among the selected commercial cloud solutions by comparing
their associated Semantic Web services to find out which of these problems can be
solved using the currently available API operations of commercial vendors. For this
purpose, the AI planning methods were used and are described in more detail in
Section 9.

A JSHOP2 planner was used for the AI planning process. The JSHOP2 plan-
ner was chosen because it is implemented in Java and can be easily incorporated
into other parts of the prototype system that was developed using Java technolo-
gies, and it was used in the past for similar purposes, i.e. the composition of web
services in various contexts. JSHOP2 is a Java version of Simple Hierarchical Or-
dered Planner (SHOP). It is used to generate sequential plans. It is based on or-
dered task decomposition where tasks are planned in the same order as later in the
execution [39]. The objective of JSHOP2 and other HTN planners is to accom-
plish a set of tasks where each task can be decomposed, until primitive tasks [40]

https://github.com/dandrocec/PaaSInterop

1244 D. Andročec, N. Vrček

are reached. The inputs of JSHOP2 are a planning domain and a planning prob-
lem. In JSHOP2, primitive tasks are called operators whose name must begin with
an exclamation mark. The body of an operator consists of a precondition (must
be satisfied to execute the action), a delete list (a set of properties that will be
removed), and an add list (a set of properties that will be added) [39]. Solving
a planning problem in JSHOP2 is done in three steps: the domain description file
is compiled into Java code, the problem descriptions are converted into Java class,
and the second Java class should be executed to initiate the planning process and
inspect the planning results. These three steps were incorporated into the authors’
prototype.

The problem description file is composed of logical atoms showing the initial
state and a task list [39]. The task list and the initial state are created on the
fly, when the user executes some interoperability actions using the client web ap-
plication. Based on the choices of the user, the tasks that need to be completed
are generated and saved in JSHOP2 problem description file. For example, if the
user selects the data migration between Salesforce’s and Google App Engine’s PaaS
storage, it looks like this:

((migrateData Sa l e sForce GoogleAppEngine))

Java class was developed that handles this and writes the appropriate content to file
using standard Java I/O and file classes and methods. In this case, the task lists are
simply methods defined in the domain description file described later. The initial
state (a set of logical atoms) is also created programmatically based on SAWSDL
files and the PaaS ontology. A SAWSDL parser was developed in Java by using
an EasyWSDL open-source library and its extension EasySAWSDL. The class for
parsing the OWL ontology was implemented by using the Apache Jena library.
Based on these two files, various logical atoms could be generated to represent
the initial state. The most important logical atoms regarding PaaS data migration,
together with their definition and the description of their creation are systematically
listed in Table 3.

The domain description file is defined manually. A method called migrateData
shows which operators should be called to migrate data from one PaaS storage to
another:

(: method (migrateData ? from ? to)
()
((! checkDataTypeMappings ? from)
(! createDataModelOntology ? from)
(! createDataElementsFromOntology ? to))

)

First, the existence of the needed data type mappings are checked, then data model
ontology is created, and finally data is migrated to target PaaS storage. The op-
erator !checkDataTypeMappings includes preconditions that check whether all data
types from data to be migrated have the appropriate data type mappings defined

Ontology-Based Resolution of Cloud Data Lock-in Problem 1245

Logical Atom (with
Example)

Description and Generating Method

hasApiOperation (has-
ApiOperation Azure
CreateDataOperation)

– it claims that a specific PaaS API has a specific API
operation
– cross-PaaS operation names are specified in the PaaS
ontology, and services are annotated using SAWSDL
– it is generated based on SAWSDL files – if Java class
parsing SAWSDL finds a semantic annotation by means
of sawsdl:modelReference on a service operation, it then
generates hasApiOperation logical atom in JSHOP2 prob-
lem description file

typeInCurrentData
(typeInCurrentData
salesforcecurrency)

– it shows which type is present in storage system of the
chosen PaaS offers
– present data types in PaaS storage are obtained calling
remote APIs of PaaS providers

dataTypeMappingExists
(dataTypeMappingEx-
ists azuresmallmoney
xsddecimal)

– it specifies the data type mapping between data types of
different PaaS storage systems
– the PaaS ontology is parsed to obtain all instances of
DataTypeMapper OWL class that represent data type
mappings between PaaS storage systems

Table 3. Logical atoms in the initial state

in the JSHOP2 problem file. The operators !createDataModelOntology and !cre-
ateDataElementsFromOntology include preconditions to check whether the selected
PaaS providers have the appropriate operations to execute the migration of data
from source to target PaaS offer.

9 ARCHITECTURE FOR CLOUD DATA MIGRATION

After the domain and problem description files were successfully created, these def-
initions are forwarded to a component in the prototype which invokes JSHOP2
planner to get a plan if it exists. The domain and problem descriptions are dynami-
cally compiled into Java code, and the resulting Java files are redeployed to Glassfish
server. AI planning process can then be started. If JSHOP2 planner finds a plan,
this plan is printed on the client web application, and an option to execute the plan
(to invoke relevant web services) is given to the user. If the planner finds the appro-
priate plan, then no interoperability problems were found at this stage. The plan
given by JSHOP2 is parsed to retrieve adequate web services from SAWSDL files
that need to be executed. Apache CXF framework [27] was used to dynamically
invoke the appropriate web services.

If there is no suitable plan returned by the JSHOP2 planner, the client web
application displays the error message. In this case, some interoperability problems
exist and the cause of the failure needs to be determined. In the existing literature,

1246 D. Andročec, N. Vrček

there are few approaches to tackle gaps in the planning domains. Our approach
is similar to the one proposed by Goebelbecker and Keller [41]. They proposed to
change the initial state, when no plan can be found, with the aim to find reasons why
some tasks cannot be solved. They named this change “an excuse”; they created
a method for finding the candidates for the excuse where they replan with new initial
states to find out whether they found the cause why the plan is not found. Our
approach differs from the one proposed by Goebelbecker and Keller [41], because
it does not need replanning that is an expensive and time-consuming task. This
algorithm consists of four main steps:

Find problematic operator or method – The domain description file of
JSHOP2 is simple. The data migration action is represented by a method that
describes a set of operators that need to be executed. There is only one way to
successfully get a plan – all operators defined in a particular JSHOP2 method
must be successfully finished. JSHOP2 supports a function to programmati-
cally inspect every step in the planning process. This function was used to get
the list of all the steps of the planner. This list of steps was programmati-
cally parsed in Java, and an operator or a method were found where the first
BACKTRACKING action occurs. This action occurs when some preconditions
of the operator or the method are not satisfied, and then the JSHOP2 planner
goes back up in the tree to try to find another path to the solution. In this
case, the first BACKTRACKING action in a plan step represents the problem-
atic atom (problematic method or operator where interoperability problem had
occurred).

Parse concrete preconditions – The next step is to parse preconditions of the
problematic operator or method. JSHOP2 domain file is directly parsed to get
all the relevant preconditions. A list of preconditions was created, and in the
next step it was determined which of the preconditions is the cause of the prob-
lem.

Check whether the preconditions are satisfied in the end state – The end
state (the last state after the AI planner fails to get a plan) is parsed to com-
pare which of the preconditions are not satisfied in this state, and one or more
preconditions are listed as indicators of interoperability problems.

List interoperability problems – Each logical atom that is used in states and
preconditions has some meaning (for example, hasApiOperation describes that
one PaaS offer has a particular API operation annotated with the cross-PaaS
concept from the ontology). Using this meaning, error messages were program-
matically created to explain the found interoperability problem in the client web
application to a user. For example, if the problematic precondition contains has-
ApiOperation, then there is a missing API operation problem in the concerned
PaaS offer.

Let us now examine the proposed architecture for data migration. The user
starts data migration using the client web application (Figure 2). The CSV files

Ontology-Based Resolution of Cloud Data Lock-in Problem 1247

are parsed and data, data structures and types are retrieved by calling remote API
functions. The data model ontology is created, and data is ready for migration to
another PaaS provider. There are also internal web services that can read the data
ontology, perform mappings, create data and data structures and move them into
target PaaS storage. The mentioned internal web services parse SAWSDL files and
the PaaS ontology, and use the techniques described in the previous sections. The
AI planning component deals with the AI planning files and executes the required
semantic web services. If the user chooses only one data container (table, entity,
or Salesforce’s custom object) the migration flow is the same, only data container
name is forwarded as a filter to include only the chosen container and disregard the
other remaining data during migration.

Figure 2. Architecture for data migration between PaaS providers

10 VALIDATION AND ASSESSMENT

10.1 Migration of PaaS Storage Data

The validation of the data migration architecture was done by migrating a more
complex set of data and manually checking all of the migrated data elements. For
this purpose, sample data of an open-source content management system (CMS)
Vosao [42] was chosen. Vosao CMS uses Google App Engine Datastore and initially

1248 D. Andročec, N. Vrček

consists of 19 entity kinds, 186 entites, and 203 properties (see Table 4 for more
details).

Entity Kind Number of Entities Number of Properties

ConfigEntity 1 23

ContentEntity 23 9

ContentPermissionEntity 1 10

FieldEntity 3 15

FileChunkEntity 43 8

FileEntity 43 11

FolderEntity 15 8

FolderPermissionEntity 3 8

FormConfigEntity 1 1

FormEntity 1 14

GroupEntity 1 6

LanguageEntity 1 7

PageEntity 26 30

PageTagEntity 13 7

StructureEntity 1 7

StructureTemplateEntity 2 11

TagEntity 5 9

TemplateEntity 2 8

UserEntity 1 11

Table 4. Quantitative information about sample Vosao’s data

Its data were then migrated to the other two chosen PaaS offers (Microsoft
Azure and Salesforce) to check whether the developed prototype migration tool
works smoothly when there is a real cloud application with more data contain-
ers and data objects. The implementation of the migration consists of eight main
steps:

Prepare migration – We developed two composite web services to transform the
source data into an intermediate OWL file, and vice versa: from the interme-
diate OWL data ontology to concrete data in target PaaS offer’s storage. The
mentioned composite web services invoke remote PaaS APIs and call our de-
veloped services that parse CVS, SAWSDL and JSHOP2 files. Next, they were
semantically annotated (classes CreateDataModelOntologyOperation and Cre-
ateDataElementsFromOntologyOperation from the PaaS ontology describe this
functionality) using SAWSDL. Finally, a JSHOP2 domain description file is de-
fined manually (see Section 7 for more details).

Export CSV files from PaaS provider – Our prototype first needs to identify
the names of entities used by Vosao, because most API data operations deal with
only one data container, and entity name is a required input parameter for these
operations. Google provides the bulk loader tool in Python SDK that provides

Ontology-Based Resolution of Cloud Data Lock-in Problem 1249

functionalities to download CSV data from a specific application’s Google App
Engine Datastore (an instance of Vosao CMS application deployed on Google
App Engine in our example). Vosao’s data consist of 19 entities, so we get
19 separate CSV files, where each file represents one entity.

User chooses action, source, and target of the migration – We start the
data migration using our developed client web application. We have an option
to choose to port all data, or only one chosen data element (e.g., a specific
entity of GAE Datastore), and we select source and target PaaS offers. In
our case, we selected Vosao instance as source and two other PaaS offers (our
test instances of Salesforce and Microsoft Azure) as targets. For now, our web
application enables migration to one target PaaS offer at a given time, so we
need to repeat this step twice to migrate Vosao data to the two mentioned target
platforms.

Generate problem description file and execute AI plan – JSHOP2 problem
description file is generated based on the user’s choices, SAWSDL files, and the
PaaS ontology (see Section 7). For example, when we choose to move Vosao’s
data from Google App Engine to Salesforce, the generated goal is:

((migrateData GoogleAppEngine Sa l e sForce))

Next, the AI planner is executed to see whether there are interoperability prob-
lems (e.g. missing operations, missing or impossible data type mappings). If
there is no suitable plan returned by the JSHOP2 planner, the client web ap-
plication displays the error message. In this case, some interoperability prob-
lems exist and the cause of the failure needs to be determined. The detailed
algorithm is presented in Section 8. In our migration use case there were
no identified problems, so we could proceed to the next step described be-
low.

Dynamic invocation of web services – The JSHOP2 and SAWSDL files are
parsed to execute adequate web services using Apache CXF framework. For
instance, the web services annotated with CreateDataModelOntologyOperation
in SAWSDL representing Google App Engine’s operations and CreateDataEle-
mentsFromOntologyOperation in SAWSDL file representing Salesforce’s opera-
tion are executed. Two transformations were performed:

a) Transformation to unified data model ontology – On the server side, we im-
plemented web services in Java that parse CSV files, call the appropriate
data manipulation remote provider’s API to extract details about data (at-
tributes, identifiers, relationship between different data elements), perform
data type mappings defined in the PaaS ontology, and use Jena framework
to construct the data model ontology according to the rules presented in
Section 4. For each Vosao’s data store entity, attributes, identifiers, data
types, and the number of instances were checked and the conclusion was
that the transformation was successful. The data ontology contained all the

1250 D. Andročec, N. Vrček

entities and data from Vosao’s data stored in Google App Engine Datas-
tore.

b) Transformation to target data model – During this transformation, the in-
termediate OWL data file is transformed to data elements in the target
PaaS storage. The verification of migration of Vosao’s data to Salesforce
and Google App Engine was done manually in Excel. All data contain-
ers, their names, the names and the number of their attributes, and the
number of records were listed there. Additionally, all the data for ran-
domly chosen entities were also checked. Some errors were initially found
and bugs in the prototype were fixed until the migration was properly done.
In Salesforce, custom objects must have c postfix, so it is necessary to
add these to the names of entities stored in Google App Engine’s Datas-
tore. The names of custom fields must also end with c string. In Ex-
cel, the number of properties (of entities from GAE Datastore) and custom
fields of each custom objects were compared, and the numbers were identi-
cal. Salesforce automatically creates an ID standard field for each object,
so the identifier c custom field was created to save the Google’s identi-
fier. When creating a new object, Salesforce always adds some obligatory
standard fields (Name, CreatedBy, LastModifiedBy, and Owner). Then,
the data record numbers in Google’s and Salesforce’s platforms were com-
pared, and identical values were obtained. ApexDataLoader tool was used
to get data records from Salesforce. Next, the data migrated from Google
App Engine to Microsoft Azure was checked in the similar way. The num-
ber of properties (of entities from GAE Datastore) and columns of tables
created in Microsoft Azure were compared, and the numbers were iden-
tical. Then, the data record numbers in Google’s and Azure’s platforms
were compared, and identical values were obtained. Microsoft SQL Server
Management Studio tool was used to inspect the data migrated to the Mi-
crosoft Azure instance. Finally, some entities were randomly chosen and all
the data and mappings of data types in one and the other platform were
checked.

Furthermore, the migrated data was taken and put again using the migration
tool to a new instance of Google App Engine (datafromazure.appspot.com and
datafromsalesforce.appspot.com) and then this data was compared to the origi-
nal Vosao’s data in its original instance of Google App Engine and its underlying
datastore. The number and the names of entities, properties and identifiers were
manually checked. When migrating from Salesforce, the only difference in data is
the identifier, because Salesforce platform automatically assigns identifiers (ID field
of each custom object). The same procedure was repeated to migrate data back
from Microsoft Azure to the new instance of Google App Engine. The video of the
sample PaaS data migration using our developed tool and ontology is available at
https://www.youtube.com/watch?v=tmwoV6XgIhs.

https://www.youtube.com/watch?v=tmwoV6XgIhs

Ontology-Based Resolution of Cloud Data Lock-in Problem 1251

10.2 Migration of SaaS Storage Data

The same approach was used to migrate sample data of Zoho CRM to Salesforce.
We believe that our approach for migrating cloud storage data is general, and
we have used the mentioned sample use case to further analyse, test and vali-
date our approach. Zoho CRM [43] provides REST API to access its data. It
is a cloud based customer relationship management (CRM) software. We have
created a free instance and filled it with initial data. The sample Zoho’s data
contains 20 standard objects and a total of 553 columns. Each object has been
filled with a couple of rows. Zoho’s API for the free version supports method
getRecords for the following standard objects: Account, Campaign, Contact, Lead,
Potential, and Task. We have created new mappings to the data ontology from
Zoho CRM (similar to the one described in Section 5 for the other three cloud
providers) and a new web service that calls Zoho CRM REST API to get the
records. Then we have semantically annotated the mentioned web service and
added the needed data type mappings in the ontology. The new cloud provider
was also added to the AI planning problem. We started the migration, and it
was successfully finished, besides that custom objects were created in Salesforce.
Salesforce CRM offer has standard objects similar to Zoho’s account, campaign,
contact, lead, potential and task objects, and to use data directly in Salesforce’s
cloud application, the migration to standard objects needs to be performed. To
successfully migrate data at software as a service level, the standard objects of
one CRM offer (e.g. Zoho CRM) need to be translated into standard objects of
another CRM (e.g. Salesforce) cloud offer. For this purpose, the data migration
architecture described in Section 9 of this work was changed only in the step
where intermediate data ontology is created. An adapter Java class that reads
the XML file representing standard objects mappings of different SaaS offers (in
our test case two different cloud CRM offers) and changes intermediate data on-
tology representing cloud storage data was developed. Apache Jena was used to
rename or delete names of standard data objects (OWL classes in the ontology)
and objects’ attributes (data properties in the intermediate ontology). The mi-
gration was finished successfully, and with this example we have shown that our
approach with minor modifications (the addition of simple intermediate data on-
tology transformation according to mappings of standard objects and their at-
tributes) can also be used for the data migration at SaaS level. The samples of
migrated data and generated intermediate OWL data ontologies are available at
https://github.com/dandrocec/PaaSInterop/tree/master/migratedData.

11 CONCLUSION

There are many data migration problems among cloud providers. To minimize
the possible data migration problems in the cloud domain, users should carefully
choose a cloud offer, underlying cloud storage systems, and features. It is best to
avoid using vendors’ specific features that are not supported in any other cloud

https://github.com/dandrocec/PaaSInterop/tree/master/migratedData

1252 D. Andročec, N. Vrček

offer. For example, most data types problems can be avoided if the established
variants of data types (for example, integer, string, etc.) were used and if the
usage of new or innovative data types (e.g., Salesforce’s anyType, calculated, or
DataCategoryGroupReference data type) that cannot be mapped to data types of
different cloud storage is avoided. The more users use advanced and innovative
functionalities that are vendor specific, the more difficult it will be for migration
and interoperability to occur.

In this paper, we proposed a flexible data migration architecture. Our work
aims to develop a configurable method for batch migration of data from one cloud
data store to another provider’s platform. The chosen approach rests on a standard
intermediate representation of data and meta-data (in OWL), along with custom-
built wrappers for the data manipulation operations available on the source and
target platforms. This architecture answers two research questions: How to lever-
age automatic data migration between cloud solutions? How to provide cross cloud
data type mappings for different cloud storage systems used by various PaaS of-
fers? Automatic data migration between cloud offers was done by using OWL
as an intermediate format, PaaS ontology, semantic web services implemented in
SAWSDL, and AI planner JSHOP2. The validation of the data migration archi-
tecture was done by migrating a more complex set of PaaS and SaaS data (con-
cretely, data of the open-source content management system Vosao and data of
Zoho CRM) and manually checking all of the migrated data elements. Data type
mappings were implemented by means of the ontology, where instances of data type
mapping classes were used for this purpose. Our approach enables one-shot migra-
tion of cloud data between different types of cloud storage systems (e.g. NoSQL
and relational cloud databases). It uses a flexible approach to avoid point-to-
point mappings. The main novelty of the paper is a specific application domain
(ontology-based migration of data between different cloud offers) and the imple-
mentations of mappings among different types of cloud data storage types (NoSQL,
relational database, object database). We also provide a comprehensive descrip-
tion of the design and an implementation of the automated cloud data migra-
tion solution using state of the art Semantic Web and AI planning techniques.
The identified cross-PaaS concepts of the defined PaaS storage data types and
their mappings improve the understanding of PaaS and SaaS models in more de-
tail than any other models and ontologies in the existing literature. These con-
cepts also enable semantic annotations and help solve known interoperability prob-
lems.

There are several limitations of this work that need to be considered. The
AI planning component of this system does not take into consideration the non-
determinism of the domain (as an example, some of the remote API operations
could be unavailable at specific time; the output of one web service could differ from
the expected one, etc.). For this purpose, a contingent planner could be used for
planning under uncertainty. Four prominent commercial cloud offers (Google App
Engine, Salesforce, Zoho CRM, and Microsoft Azure) were used in this work, and it
would be certainly beneficial to include other providers as well.

Ontology-Based Resolution of Cloud Data Lock-in Problem 1253

Some possible future research topics could arise by solving the mentioned lim-
itations. In addition to the JSHOP2 planner that is used in this approach, our
architecture could be upgraded to use some contingent planners to address the non-
determinism of the domain. The presented PaaS ontology can be extended including
the other cloud providers. The ontology is designed to be easily extended with addi-
tional API operations, data types and mappings of data types. Our approach could
be integrated with TOSCA and/or other existing multi-cloud orchestration systems,
e.g. to migrate web applications together with their data. TOSCA aims to leverage
the portability of application layer services between different clouds. Generally, the
automatic migration of cloud data is a very complex research and practical problem,
and we hope that our paper will be a solid foundation for future research in this
field.

Aknowledgement

This work has been fully supported by the Croatian Science Foundation under the
project IP-2014-09-3877.

REFERENCES

[1] Sheth, A. P.—Kashyap, V.: So Far (Schematically) Yet So Near (Semanti-
cally). Proceedings of the IFIP WG 2.6 Database Semantics Conference on Inter-
operable Database Systems, North-Holland Publishing Co., 1993, pp. 283–312, doi:
10.1016/B978-0-444-89879-1.50022-1.

[2] Parent, C.—Spaccapietra, S.: Database Integration: The Key to Data Inter-
operability. In: Papazoglou, M. P., Spaccapietra, S., Tari, Z. (Eds.): Advances in
Object-Oriented Data Modeling, MIT Press, 2000.

[3] Park, J.—Ram, S.: Information Systems Interoperability: What Lies Beneath?
ACM Transactions on Information Systems, Vol. 22, 2004, No. 4, pp. 595–632.

[4] Arenas, M.—Barceló, P.—Libkin, L.—Murlak, F.: Foundations of Data Ex-
change. Cambridge University Press, Cambridge, New York, 2014.

[5] Rocha, L.—Vale, F.—Cirilo, E.—Barbosa, D.—Mourão, F.: A Framework
for Migrating Relational Datasets to NOSQL. Procedia Computer Science, Vol. 51,
pp. 2593–2602.

[6] The Apache Software Foundation: Welcome to Apache Libcloud’s Documentation!
2013, available at: https://ci.apache.org/projects/libcloud/docs/#main.

[7] Apache: About Deltacloud. 2013, available at: http://deltacloud.apache.org/

about.html.

[8] Apache: What Is Apache jClouds? 2013, available at: http://jclouds.incubator.
apache.org/documentation/gettingstarted/what-is-jclouds/.

[9] Youseff, L.—Butrico, M.—Da Silva, D.: Toward a Unified Ontology of
Cloud Computing. Grid Computing Environments Workshop (GCE ’08), IEEE, 2008,
pp. 1–10, doi: 10.1109/GCE.2008.4738443.

https://doi.org/10.1016/B978-0-444-89879-1.50022-1
https://ci.apache.org/projects/libcloud/docs/#main
http://deltacloud.apache.org/about.html
http://deltacloud.apache.org/about.html
http://jclouds.incubator.apache.org/documentation/gettingstarted/what-is-jclouds/
http://jclouds.incubator.apache.org/documentation/gettingstarted/what-is-jclouds/
https://doi.org/10.1109/GCE.2008.4738443

1254 D. Andročec, N. Vrček

[10] Ranabahu, A.—Sheth A.: Semantics Centric Solutions for Application and
Data Portability in Cloud Computing. IEEE Second International Conference on
Cloud Computing Technology and Science (CloudCom 2010), Indianapolis, 2010,
pp. 234–241, doi: 10.1109/CloudCom.2010.48.

[11] Quinton, C.—Romero, S.—Duchien, L.: SALOON: A Platform for Selecting
and Configuring Cloud Environments. Software: Practice and Experience, Vol. 46,
2016, No. 1, pp. 55–78.

[12] Tsai, W.-T.—Sun, X.—Balasooriya, J.: Service-Oriented Cloud Computing Ar-
chitecture. 2010 Seventh International Conference on Information Technology: New
Generations (ITNG), IEEE, 2010, pp. 684–689, doi: 10.1109/ITNG.2010.214.

[13] Bastião Silva, L. A.—Costa, C.—Oliveira, J. L.: A Common API for Deliv-
ering Services over Multi-Vendor Cloud Resources. Journal of Systems and Software,
Vol. 86, 2013, No. 9, pp. 2309–2317, doi: 10.1016/j.jss.2013.04.037.

[14] Gogouvitis, S. V.—Kousiouris, G.—Vafiadis, G.—Kolodner, E. K.—Ky-
riazis, D.: OPTIMIS and VISION Cloud: How to Manage Data in Clouds. In:
Hutchison, D., Kanade, T., Kittler, J. et al. (Eds.): Euro-Par 2011: Parallel Pro-
cessing Workshops. Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 7155, 2012, pp. 35–44.

[15] Scavuzzo, M.—Di Nitto, E.—Ceri, S.: Interoperable Data Migration Between
NoSQL Columnar Databases. 2014 IEEE 18th International Enterprise Distributed
Object Computing Conference Workshops and Demonstrations (EDOCW), Ulm,
2014, pp. 154–162, doi: 10.1109/EDOCW.2014.32.

[16] Shirazi, M. N.—Kuan, H. C.—Dolatabadi, H.: Design Patterns to Enable Data
Portability Between Clouds’ Databases. 12th International Conference on Compu-
tational Science and Its Applications (ICCSA ’12), Salvador, Brazil, IEEE, 2012,
pp. 117–120, doi: 10.1109/ICCSA.2012.29.

[17] Ali, H.—Moawad, R.—Hosni, A. A. F.: A Cloud Interoperability Broker (CIB)
for Data Migration in SaaS. IEEE International Conference on Cloud Computing and
Big Data Analysis (ICCCBDA ’16), Chengdu, China, IEEE, 2016, pp. 250–256, doi:
10.1109/ICCCBDA.2016.7529566.

[18] Bansel, A.—González-Veléz, H.—Chis, A. E.: Cloud-Based NoSQL Data
Migration. 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP ’16), Heraklion, Greece, IEEE, 2016, pp. 224–231,
doi: 10.1109/PDP.2016.111.

[19] Di Martino, B.: Applications Portability and Services Interoperability among
Multiple Clouds. IEEE Cloud Computing, Vol. 1, 2014, No. 1, pp. 74–77, doi:
10.1109/MCC.2014.1.

[20] Natis, Y.—Pezzini, M.—Driver, M.—Smith, D. M.—Iijima, K.—Alt-
man, R.: Magic Quadrant for Enterprise Application Platform as a Service
(Jan. 2014). Available at: http://www.gartner.com/technology/reprints.do?

id=1-1P502BX&ct=140108&st=sb.

[21] Salesforce: Database.com Workbook (Jun 2013). Available at: http:

//www.salesforce.com/us/developer/docs/workbook_database/workbook_

database.pdf.

https://doi.org/10.1109/CloudCom.2010.48
https://doi.org/10.1109/ITNG.2010.214
https://doi.org/10.1016/j.jss.2013.04.037
https://doi.org/10.1109/EDOCW.2014.32
https://doi.org/10.1109/ICCSA.2012.29
https://doi.org/10.1109/ICCCBDA.2016.7529566
https://doi.org/10.1109/PDP.2016.111
https://doi.org/10.1109/MCC.2014.1
http://www.gartner.com/technology/reprints.do?id=1-1P502BX&ct=140108&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1P502BX&ct=140108&st=sb
http://www.salesforce.com/us/developer/docs/workbook_database/workbook_database.pdf
http://www.salesforce.com/us/developer/docs/workbook_database/workbook_database.pdf
http://www.salesforce.com/us/developer/docs/workbook_database/workbook_database.pdf

Ontology-Based Resolution of Cloud Data Lock-in Problem 1255

[22] Google: Google App Engine – Storing Data (Jun 2013). Available at: https://

developers.google.com/appengine/docs/java/datastore/.

[23] Google: Google Cloud SQL (May 2013). Available at: https://developers.

google.com/cloud-sql/.

[24] Franks, L.: Data Storage Offerings on the Windows Azure Platform (Oct. 2010).
Available at: http://social.technet.microsoft.com/wiki/contents/articles/
1674.data-storage-offerings-on-the-windows-azure-platform.aspx.

[25] Auer, S.—Feigenbaum, L.—Miranker, D.—Fogarolli, A.—Sequeda, J.:
Use Cases and Requirements for Mapping Relational Databases to RDF. W3C work-
ing draft (Jun 2010). Available at: http://www.w3.org/TR/rdb2rdf-ucr/.

[26] Astrova, I.—Korda, N.—Kalja, A.: Rule-Based Transformation of SQL Rela-
tional Databases to OWL Ontologies. Proceedings of the 2nd International Conference
on Metadata and Semantics Research, 2007. Available at: http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.110.8189.

[27] Apache: Apache CXF Dynamic Clients. 2013, available at: http://cxf.apache.

org/docs/dynamic-clients.html.

[28] Noy, N. F.—McGuinness, D. L.: Ontology Development 101: A Guide to Creating
Your First Ontology. 2001, available at: http://www-ksl.stanford.edu/people/

dlm/papers/ontology-tutorial-noy-mcguinness.pdf.

[29] SOFTEAM SINTEF Tecnalia: REMICS Deliverable d4.1 PIM4cloud. Project de-
liverable, REMICS Consortium (Mar. 2012). Available at: http://www.remics.eu/
system/files/REMICS_D4.1_V2.0_LowResolution.pdf.

[30] Norton, B.—Kerrigan, M.—Mocan, A.—Carenini, A.— Cimpian, E.—
Haines, M.—Scicluna, J.—Zaremba, M.: Reference Ontology for Seman-
tic Service Oriented Architectures. Public Review Draft 01, OASIS (Nov. 2008).
Available at: http://docs.oasis-open.org/semantic-ex/ro-soa/v1.0/pr01/

see-rosoa-v1.0-pr01.pdf.

[31] Andročec, D.—Vrček, N.: Ontologies for Platform as Service APIs Interoper-
ability. Cybernetics and Information Technologies, Vol. 16, 2016, No. 4, pp. 29–44,
doi: 10.1515/cait-2016-0065.

[32] Google: Entities, Properties, and Keys. 2013, available at: https://cloud.google.
com/appengine/docs/standard/java/datastore/entities.

[33] Microsoft: Data Types (Windows Azure SQL Database). 2013, available at: http:

//msdn.microsoft.com/en-us/library/windowsazure/ee336233.aspx.

[34] Salesforce: SOAP API Developer’s Guide Version 28.0. 2013, available at:
https://developer.salesforce.com/docs/atlas.enus.api.meta/api/sforce_

api_quickstart_intro.htm.

[35] Bechhofer, S.—van Harmelen, F.—Hendler, J.—Horrocks, I.—McGui-
nness, D. L.—Patel-Schneider, P. F.—Stein, L. A.: OWL Web Ontology Lan-
guage Reference. 2004, available at: http://www.w3.org/TR/owl-ref/.

[36] W3C: XML Schema Part 2: Datatypes Second Edition. 2004, available at: http:

//www.w3.org/TR/xmlschema-2/.

https://developers.google.com/appengine/docs/java/datastore/
https://developers.google.com/appengine/docs/java/datastore/
https://developers.google.com/cloud-sql/
https://developers.google.com/cloud-sql/
http://social.technet.microsoft.com/wiki/contents/articles/1674.data-storage-offerings-on-the-windows-azure-platform.aspx
http://social.technet.microsoft.com/wiki/contents/articles/1674.data-storage-offerings-on-the-windows-azure-platform.aspx
http://www.w3.org/TR/rdb2rdf-ucr/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.8189
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.8189
http://cxf.apache.org/docs/dynamic-clients.html
http://cxf.apache.org/docs/dynamic-clients.html
http://www-ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf
http://www-ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf
http://www.remics.eu/system/files/REMICS_D4.1_V2.0_LowResolution.pdf
http://www.remics.eu/system/files/REMICS_D4.1_V2.0_LowResolution.pdf
http://docs.oasis-open.org/semantic-ex/ro-soa/v1.0/pr01/see-rosoa-v1.0-pr01.pdf
http://docs.oasis-open.org/semantic-ex/ro-soa/v1.0/pr01/see-rosoa-v1.0-pr01.pdf
https://doi.org/10.1515/cait-2016-0065
https://cloud.google.com/appengine/docs/standard/java/datastore/entities
https://cloud.google.com/appengine/docs/standard/java/datastore/entities
http://msdn.microsoft.com/en-us/library/windowsazure/ee336233.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee336233.aspx
https://developer.salesforce.com/docs/atlas.enus.api.meta/api/sforce_api_quickstart_intro.htm
https://developer.salesforce.com/docs/atlas.enus.api.meta/api/sforce_api_quickstart_intro.htm
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

1256 D. Andročec, N. Vrček

[37] Sheth, A. P.—Gomadam, K.—Ranabahu, A.: Semantics Enhanced Services:
METEOR-S, SAWSDL and SA-REST. IEEE Data Engineering Bulletin, Vol. 31,
2008, No. 3, pp. 8–12.

[38] SOA4All Consortium: SOWER. 2010, available at: http://technologies.kmi.

open.ac.uk/soa4all-studio/provisioning-platform/sower/.

[39] Ilghami, O.: Documentation for JSHOP2. 2006, available at: http://

sourceforge.net/projects/shop/files/JSHOP2/.

[40] Ilghami, O.—Nau, D. S.: A General Approach to Synthesize Problem-Specific
Planners. Technical report CS-TR-4597 and UMIACS-TR-2004-40, 2003. Available
at: http://www.cs.umd.edu/~nau/papers/ilghami2003general.pdf.

[41] Goebelbecker, M.—Keller, T.—Eyerich, P.—Brenner, M.—Nebel, B.:
Coming Up with Good Excuses: What to Do When No Plan Can Be Found. Pro-
ceedings of the 20th International Conference on Automated Planing and Schedulling
(ICAPS 2010), 2010, pp. 81–88.

[42] Husted, T.: Vosao – Google App Engine CMS. 2013, available at: https://code.

google.com/p/vosao/.

[43] Zoho: Zoho CRM – An Overview. 2017, https://www.zoho.eu/crm/help/

overview.html.

http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-platform/sower/
http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-platform/sower/
http://sourceforge.net/projects/shop/files/JSHOP2/
http://sourceforge.net/projects/shop/files/JSHOP2/
http://www.cs.umd.edu/~nau/papers/ilghami2003general.pdf
https://code.google.com/p/vosao/
https://code.google.com/p/vosao/
https://www.zoho.eu/crm/help/overview.html
https://www.zoho.eu/crm/help/overview.html

Ontology-Based Resolution of Cloud Data Lock-in Problem 1257

Darko Andro�cec is Senior Teaching Assistant at the Univer-
sity of Zagreb, Faculty of Organization and Informatics Varaž-
din, where he was awarded his Ph.D. degree in 2015. He is
a member of the Department for Information System Develop-
ment. Before joining the faculty, he was a computer security
incident handler at CARNet (Croatian Academic and Research
Network) and Java developer of banking information systems.
He currently teaches computer labs in the following courses: In-
formation Systems Development, E-Business, and Business Pro-
cesses in Organizations. His main research areas are cloud com-

puting, interoperability, semantic web, and internet of things.

Neven Vr�cek is Full Professor at the Faculty of Organization
and Informatics, University of Zagreb. He is the main lecturer
at several courses: Software Engineering, Software Analysis and
Design, E-Commerce, ERP Systems and Customer Relationship
Management. He graduated at the Faculty of Electrical Engi-
neering, University of Zagreb. He defended his master theses
as well as his Ph.D. dissertation at the same faculty. His fields
of interests are: strategic planning of information systems de-
velopment, e-commerce and IT applications in business sector,
business performance measurement, and digital signal process-

ing. He was a leader or a team member of several scientific projects financed by the EU
institutions, Croatian Ministry of Science, Education and Sports, and Croatian Science
Foundation and of more than 30 commercial projects. He was appointed as Dean of the
Faculty of Organization and Informatics, University of Zagreb in October 2015.

